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A literal mountain of documentation generated in the past five decades showing unmistakable health
hazards associated with extremely low-frequency electromagnetic fields (ELF-EMFs) exposure. However,
the relation between energy mechanism and ELF-EMF exposure is poorly understood. In this study,
Caenorhabditis elegans was exposed to 50 Hz ELF-EMF at intensities of 0.5, 1, 2, and 3 mT, respectively.
Their metabolite variations were analyzed by GC-TOF/MS-based metabolomics. Although minimal
metabolic variations and no regular pattern were observed, the contents of energy metabolism-related
metabolites such as pyruvic acid, fumaric acid, and L-malic acid were elevated in all the treatments. The
expressions of nineteen related genes that encode glycolytic enzymes were analyzed by using quantitative
real-time PCR. Only genes encoding GAPDH were significantly upregulated (P , 0.01), and this result was
further confirmed by western blot analysis. The enzyme activity of GAPDH was increased (P , 0.01),
whereas the total intracellular ATP level was decreased. While no significant difference in lifespan, hatching
rate and reproduction, worms exposed to ELF-EMF exhibited less food consumption compared with that of
the control (P , 0.01). In conclusion, C. elegans exposed to ELF-EMF have enhanced energy metabolism
and restricted dietary, which might contribute to the resistance against exogenous ELF-EMF stress.

M
agnetic fields have important functions in the origin and evolution of life; animals such as homing
pigeons and sea turtles utilize magnetic fields to navigate toward a specific location1. However, concerns
regarding the harmful effects of extremely low-frequency electromagnetic fields (ELF-EMFs) have

increased with the rapid urbanization, industrialization, informatization, and the concomitant electromagnetic
complexity and interference in the environment.

Since the first publication of a possible link between ELF-EMF and childhood cancer2, numerous studies have
investigated the biological effects of ELF-EMFs on humans, and most of these studies found potential harmful
effects3,4. Despite the huge amount of experimental data, the molecular targets of ELF-EMF remain obscure and
controversial because of the lack of clear and reproducible effects that can be easily quantified or visualized5.
Therefore, either ELF-EMF exerts minimal biological effects to trigger major responses in the living body or
organisms resist the negative effects of ELF-EMF exposure. Energy metabolism enhancement is a typical adaptive
response under hypoxia-induced stress6 and heavy metal-induced neurotoxicity7,8. As another environmental
factor, ELF-EMF might also influence energy metabolism.

The free-living nematode Caenorhabditis elegans has been used as a model organism to study the influences of
environment conditions on human health9. Thus, we selected C. elegans as a model organism in this study.
Previous studies proposed that ELF-EMF exposure affects the reproduction and gene expression of C. ele-
gans5,10–12. However, the effects of ELF-EMF at the metabolic level remain unclear to date. The combination of
C. elegans and metabolomics is a functional genomics tool that can be used to test the molecular effects of
pollution/toxicant exposure13, metabolic pathways14–16, chemical ecology17, and biological variation18. In the
present study, the effects of ELF-EMF exposure on the metabolites of C. elegans were investigated using GC-
TOF/MS. Subsequently, food consumption, gene expression, and metabolite concentration in C. elegans were
analyzed to investigate the relations between ELF-EMF exposure and energy metabolism.
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Results
Evaluating the effects of ELF-EMF exposure on C. elegans at the
metabolic level. In the metabolomics analysis, six independent pair-
wise comparisons were performed to eliminate false positives and
negatives, thereby producing robust information on metabolite
alteration under ELF-EMF exposure. All data were imported into
SIMCA-P1 software (V11.0 Umetrics AB, Umea, Sweden) for
processing. As shown in Figure 1, unsupervised principal compo-
nent analysis (PCA) revealed no noticeable separation between the
exposure and control groups. The unit variance-based partial least
squares discriminant analysis (PLS-DA) and orthogonal projections
to latent structures discriminant analysis (OPLS-DA) as supervised
principal component analyses were performed for further analysis.
Cross-validation plots for the PLS-DA analyses suggest these models
were reliable (Fig. S1). Both PLS-DA and OPLS-DA showed a certain
difference between the exposure and control groups (Fig. 2 and 3).
These results indicate that the homeostasis of C. elegans was
disturbed under ELF-EMF exposure, even though the effects were
not significant.

As listed in Table 1, the concentrations of metabolites associated
with energy metabolism (pyruvic acid, fumaric, and L-malic acids)
and neurotransmission (ethanolamine, phenylethylamine, hydroxy-
lamine, and 5-methoxytryptamine) were all increased in all the expo-
sure groups. Moreover, the contents of some amino acids such as
alanine, glycine, proline, and leucine were elevated as well. Among all
the investigated metabolites, only D-glyceric acid decreased. Both

multivariate statistical analysis and metabolite variation analysis
showed no regular pattern with increasing magnetic strengths.

Effects of ELF-EMF exposure on the expression of genes associ-
ated with energy metabolism. Nineteen genes encoding enzymes
that regulate glycolysis and gluconeogenesis were selected for ana-
lysis to check whether or not ELF-EMF enhances energy metabolic
rate. As listed in Table 2, only gpd-1 and gpd-4 exhibited significant
changes in gene expression in worms under ELF-EMF exposure (P ,

0.01).
Since the mRNA expression levels of gpd-1 and gpd-4 were

increased, the endogenous GAPDH present in L4-larva stage worms
was examined by western blot, with actin protein as internal control.
Our results revealed that GAPDH protein concentration also
increased in worms exposed to ELF-EMF compared with control
(Fig. 4A, B) (P 5 0.041).

Other than its indispensable role in energy metabolism, GAPDH is
also involved in several non-glycolytic processes19–22. In order to
check whether the observed increase in GAPDH protein concentra-
tion is to complement the energy metabolism or to achieve any other
non-glycolytic functions, intracellular GAPDH enzymatic activity
and the total cellular ATP level were tested. In our results, the
GAPDH enzymatic activity was increased significantly (P , 0.01);
however, the total cellular ATP level was lowered approximately 1.5-
fold in worms growing under ELF-EMF condition, even though this
alteration showed no significance in statistics (Fig. 4C, D).

Figure 1 | PCA-derived metabolite profile score plots of L4-stage C. elegans exposed to ELF-EMF and those of the control. (A) 0.5 mT ELF-EMF

exposure versus control. (B) 1 mT ELF-EMF exposure versus control. (C) 2 mT ELF-EMF exposure versus control, and (D) 3 mT ELF-EMF exposure

versus control. AC, BC, CC, and DC were the control groups.
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Effects of ELF-EMF exposure on food consumption and lifespan
of C. elegans. C. elegans can respond to a variety of stressors
including alcohols, heavy metals, sulfhydryl-reactive compounds,
salicylate, and heat, by ceasing pharyngeal pumping23. The effect of
stressors can therefore be conveniently assayed by monitoring the
decrease in the density of the bacterial food in liquid cultures of
nematodes. In this study, food consumption analysis was also
performed on worms exposed to 50 Hz, 3 mT ELF-EMF. Results
showed that the changes in OD600 in the exposure groups were less
than those of the control groups (P , 0.01). This result indicates that
food intake was restricted in the worms under 50 Hz, 3 mT ELF-
EMF exposure (Fig. 5A).

In addition, the lifespans of C. elegans exposed to 50 Hz, 3 mT
ELF-EMF at the embryogenesis stage (12 h), larval stages (24, 36 and
48 h), and the whole life (WL) span were investigated. No noticeable
changes were detected in all exposure groups (Fig. 5B and Table S2).

Effects of ELF-EMF exposure on the hatching rate and brood size
of C. elegans. The development of C. elegans from fertilization to
hatching is referred to as embryogenesis. Post-embryonic develop-
ment involves growth through four larval stages (L1 to L4) before the
final molt to produce the adult24 (Fig. 5C). In the hatching rate
analysis, the fertilized eggs in the worm’s body were chosen for
hatching rate analysis, because they can bear ELF-EMF exposure
for a longer time than those that have been laid outside, so as to
represent the effects of ELF-EMF exposure more accurately. As
shown in Figure 5F, the number of worms hatched from the same

number of eggs was nearly equal between C1 and T1. This result
indicates that 50 Hz, 3 mT ELF-EMF did not affect the hatching rate
of nematode eggs.

As an indicator of reproduction, brood size of worms exposed to
ELF-EMF in various development stages was measured. No signifi-
cant differences in the total progeny number were detected among
the four exposure groups (Fig. 4G) in this study. These results sug-
gested that ELF-EMF exposure may not affect the reproduction of C.
elegans.

Discussion
Metabolites participate in cellular reactions, connecting different
pathways that mediate and perform several cell functions; metabolite
profiling shows the changes in biological functions or phenotypes in
response to genetic or environmental stimuli25–27. With this in mind,
GC-TOF/MS-based metabolomics was used in conjunction with
multivariate statistics to examine the metabolite alteration induced
by ELF-EMF exposure. PLS-DA and OPLS-DA analysis showed a
clear separation between the groups (with exposure and without
exposure), which indicates that ELF-EMF exposure affected C. ele-
gans to a certain extent.

Among the analyzed 596 metabolites, 27 metabolites increased
their concentrations in all four exposure groups, while only D-gly-
ceric acid decreased. Their concentration variations showed no regu-
lar pattern with increasing magnetic strengths in the four groups.
The main reason for these results might be that different magnetic
fields have different effects on worms, and induce different response

Figure 2 | PLS-DA model plots for all groups. (A) 0.5 mT ELF-EMF exposure versus control. (B) 1 mT ELF-EMF exposure versus control. (C) 2 mT

ELF-EMF exposure versus control, and (D) 3 mT ELF-EMF exposure versus control. AC, BC, CC, and DC were the control groups.
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and different self-protection bio-processes in worms, which will
probably affect the concentrations of related metabolites in turn28;
meanwhile, different tissues might also be sensitive to different mag-
netic strengths. Nevertheless, the elevated concentrations of ethano-
lamine29, phenylethylamine30, and 5-methoxytryptamine31 in all of
the treatments imply an adaptive response of C. elegans to ELF-EMF
exposure, and also indicate that ELF-EMF can induce neurobiologi-
cal disorder and act as a stressor for C. elegans.

Pyruvic acid, fumaric, and L-malic acids are important intermedi-
ates in energy generation; increased concentrations of these inter-
mediates might indicate energy metabolism was enhanced. The
enhanced energy metabolism contributes to a typical adaptive res-
ponse under hypoxia-induced stress6 and heavy mental-induced
neurotoxicity7,8. It is an ubiquitous mechanism existed in animals
and plants32. Therefore, energy metabolism enhancement might be
conducive to ELF-EMF-induced stress resistance.

For further confirmation of the enhanced energy metabolism,
nineteen genes encoding enzymes that regulate glycolysis and glu-
coneogenesis were selected for gene expression analysis. However, no
noticeable changes were observed in the mRNA expression of genes
that encode phosphoglycerate kinase, phosphoglycerate mutase,
enolase, and pyruvate kinase, which catalyze reactions that produce
ATP. The main reason may be that glycolysis uses 10 enzymatic
reactions to convert glucose into pyruvate; however, several genes
are predicted to be involved in the glycolytic pathway on the basis of

homology33. Thus, redundancy might contribute to the lack of a
detectable gene expression alteration by qRT-PCR.

In C. elegans, the highly conserved enzyme GAPDH, which is
predicted to reversibly catalyze the oxidation and phosphorylation
of glyceraldehyde-3-phosphate to 1, 3-diphosphoglycerate during
glycolysis, was encoded by four homologous genes. GPD-1 and
GPD-4 are required for embryogenesis and larva development, while
GPD-2 and GPD-3 mainly play a role in adulthood33–36. In the pre-
sent study, GPD-1 and GPD-4 were chosen for gene expression ana-
lysis because the samples we studied were L4 larva stage worms. Both
of their gene expressions were upregulated significantly (P , 0.01)
and data from western blot analysis (Fig. 4A) further confirmed the
upregulated expression level of GAPDH (P , 0.05). However, there
is only a minimal increase observed in the fold of protein increase,
which does not reflect the increased mRNA levels of gpd-1 and gpd-4.
One explanation may be that gpd-2 and gpd-3 still have background
expressions, which obscured the effect of elevated gpd-1 and gpd-4
transcription on GAPDH protein expression level. In addition, the
regulation mechanisms during translation and modification process
might also resulted in disproportionate variation between gpd-1 and
gpd-4 mRNA and GAPDH protein expression level.

Theoretically, increased GAPDH expression indicates increased
ratios of 1, 3-bisphosphoglycerate to glyceraldehyde-3-phosphate33.
Glyceraldehyde-3-phosphate accumulation can glycate proteins,
leading to deleterious effects within cells37. The concentration of

Figure 3 | OPLS-DA analysis suggests that the metabolite profile changed in the exposed worms compared with that in the unexposed worms.
(A) 0.5 mT ELF-EMF exposure versus control. (B) 1 mT ELF-EMF exposure versus control. (C) 2 mT ELF-EMF exposure versus control, and (D) 3 mT

ELF-EMF exposure versus control. AC, BC, CC, and DC were the control groups.
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glyceraldehyde-3-phosphate available to glycate proteins was lower
in the exposure groups than in the control groups. The lower level of
such altered protein benefitted the worms exposed to ELF-EMF.

Given that the mRNA expression of most genes involved in gly-
colysis did not show a significant alteration, we wondered whether
the observed increase in GAPDH level in the current study is to

Table 2 | Expression level of enzymes related to carbohydrate metabolism

Mammalian metabolic enzymes of following C. elegans genes

Relative expression

Sig.control exposure

Hexokinase C50D2.7 1.03 6 0.13 0.89 6 0.12 -
Phosphoglucose isomerase gpi-1 1.00 6 0.10 0.90 6 0.08 -
Phosphofructokinase fbp-1 1.00 6 0.04 0.99 6 0.11 -
Aldolase aldo-1 1.01 6 0.08 0.95 6 0.06 -

aldo-2 1.01 6 0.12 1.05 6 0.15 -
Triose-phosphate isomerase tpi-1 1.01 6 0.12 0.91 6 0.15 -
Fructose bisphosphatase fbp-1 0.99 6 0.11 0.80 6 0.12 -
Glyceraldehyde phosphate dehydrogenase gpd-1 1.00 6 0.11 2.07 6 0.63 **

gpd-4 1.01 6 0.16 1.96 6 0.54 **
Phosphoglycerate kinase pgk-1 0.98 6 0.06 0.88 6 0.09 -
Phosphoglycerate mutase F57B10.3 1.00 6 0.07 1.00 6 0.12 -
Enolase enol-1 1.01 6 0.17 0.79 6 0.16 -
Pyruvate kinase pyk-1 1.00 6 0.07 1.05 6 0.08 -

pyk-2 1.01 6 0.13 1.03 6 0.14 -
Pyruvate dehydrogenase A T05H10.6 1.01 6 0.22 0.83 6 0.14 -
Pyruvate dehydrogenase B C04C3.3 0.97 6 0.06 0.83 6 0.09 -
Dihydrolipoamide dehydrogenase F23B12.5 1.01 6 0.07 0.88 6 0.08 -
PEPCK-C pck-1 1.02 6 0.20 0.92 6 0.27 -
Pyruvate carboxylase pyc-1 1.06 6 0.19 1.49 6 0.48 -

The exposure group was treated with 50 Hz, 3 mT ELF-EMF. Value of relative expression is shown in the form of mean fold change 6 SEM. ** represents P , 0.01, with respect to the control, ‘‘-’’ represents
‘‘no significant in statistics’’. Each experiment was repeated six times independently.

Figure 4 | Effects of ELF-EMF exposure on the expression of GAPDH in C. elegans. (A) Western blot analysis showing the upregulation of GAPDH

protein expression in worms exposed to ELF-EMF compared with the control. (B) Quantitative analysis of panel A showing that the expression of

GAPDH is significantly upregulated under ELF-EMF exposure compared with the control (P 5 0.041). The actin protein was used as an internal control.

Values indicate integrated optical density (IOD) ratio of GAPDH/Actin in immunoblots. (C) Enzymatic activity assay for GAPDH. (D) Total cellular ATP

level analysis. The exposure group was treated with 50 Hz, 3 mT ELF-EMF. ‘‘C’’ represents ‘‘control groups’’, while ‘‘E’’ represents ‘‘exposure groups’’.

All data represent three independent experiments. Bars represent SEM of the mean. ‘‘*’’ means P , 0.05, compared with the control.
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complement the energy metabolism or to achieve any other non-
glycolytic functions. The elevated enzyme activity indicates that the
increased GAPDH expression is probably utilized for complement-
ing the energy metabolism because enzymatic function of GAPDH is
contributed to its role in metabolism rather than non-metabolic
functions. Moreover, the higher concentration of pyruvic acid also
implies enhanced glycolysis, for pyruvic acid is a main product of
glycolysis pathway. Taken together, the increased gene/protein
expression and the elevated enzyme activity of GAPDH promoted
glycolysis pathway in worms exposed to ELF-EMF.

Interestingly, the intracellular ATP level decreased in worms
under ELF-EMF exposure, even though the concentration of inter-
mediates involved in glycolysis pathway and TCA cycle were ele-
vated. Given that the food intake was reduced in worms exposed to
ELF-EMF, we speculated that GAPDH activity is increased to com-
pensate for the depletion of ATP (due to stress tolerance) but it is still

not enough to counteract the effect of diminished food intake and
elevated ATP consumption in stress response process. Previous
study demonstrated that reduced ATP level was related with
increased stress tolerance against high temperature, starvation, or
mitochondrial toxicity38. Thus, the change of ATP intracellular
amount implies a response to the stress caused by ELF-EMF
exposure.

Both metabolomics analysis and gene expression analysis showed
that the rate of energy metabolism was enhanced in the worms
exposed to ELF-EMF. To maintain a balance between ATP demand
and supply in energy metabolism with reduced level of substrate,
various pathways should be activated to produce energy. To date,
numerous works have reported that dietary restriction (DR) nema-
todes increased their oxygen consumption39, and that decreased
available nutrients activated nutrient-sensing pathways40. A switch
in fuel utilization from carbohydrates to short chain fatty acids41 and/

Figure 5 | Effects of ELF-EMF exposure on phenotypes. (A) Food consumption analysis. Worms under ELF-EMF exposure have a reduced food intake.

(B) Lifespan analysis. Exposed worms at larva stages or whole life have no significant change in lifespan. (C) The life cycle of C. elegans consists of the

embryonic stage, four larval stages (L1 to L4), and adulthood. (D) Schematic for hatching rate analysis. (E) Schematic for brood size analysis. (F) Hatching

rate analysis, ELF-EMF exposure has no effect on hatching rate. (G) Brood size analysis. ELF-EMF exposure has no effect on brood size. The

exposure group was treated with 50 Hz, 3 mT ELF-EMF. Bars represent SEM of the mean. ‘‘**’’ represents P , 0.01, with respect to the control.

‘‘C’’ represents ‘‘control groups’’, ‘‘T’’ represents ‘‘treatment groups’’, ‘‘WL’’ represents ‘‘whole life’’. Red arrows mean ‘‘ELF-EMF exposure’’, and black

arrows mean ‘‘Control’’ in panels D and E.
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or a more efficient utilization of ATP42 may be responsible for energy
metabolism and fundamentally contributes to DR. Moreover, DR has
been associated with elevated protein turnover43 and higher mRNA
levels of GAPDH44,45, which are in accordance with our results of
metabolomics and gene expression analysis, respectively. DR also
exhibits many changes that may contribute to physiological benefits,
such as reduced oxidative damage, slowed aging-associated decline
in DNA repair, altered contents of hormones and induced metabolic
changes46,47. Thus, DR might also contribute to the adaptive response
of C. elegans to ELF-EMF exposure.

Although variations were found in the level of molecular biology,
no significant changes were detected in lifespan, hatching rate and
brood size of C. elegans under ELF-EMF exposure. A plausible
explanation is that the effects of ELF-EMF on C. elegans were too
tiny that they were covered by worms’ adapting system48.
Furthermore, the relationship between ATP level and phenotype is
complicated and still remains unclear. For example, in some nem-
atode mutations, lifespan has a positive correlation with ATP levels49,
whereas uncoupled relationship also have been observed in some
other C. elegans mutants50,51.

On the basis of these findings, we propose a biological adaptation
model (Fig. 6). Under ELF-EMF stress, self-protective processes
expend lots of ATP, and promote the enhancement of energy meta-
bolism, including glycolysis and TCA. DR is also involved in the
response to ELF-EMF exposure as an adaptive mechanism. In addi-
tion, elevated amino acids concentration suggest that protein meta-
bolism might be enhanced to maintain the concentrations of
substrates involved in energy metabolism due to the less food intake
in worms under ELF-EMF exposure41.

Conclusion
In this study, we applied metabolomics to consolidate the effects of
ELF-EMF on C. elegans at the metabolic level, and the elevated con-

centrations of glycometabolism-related metabolites pyruvic acid,
fumaric acid, and L-malic acid indicated that worms under ELF-
EMF exposure have an enhanced rate of energy metabolism. We
further confirmed this postulation by examining the expression
levels of genes that encode enzymes involved in carbohydrate meta-
bolism. Moreover, the reduced food intake demonstrated that DR
was involved in the response to ELF-EMF exposure. No significant
changes were found in lifespan, hatching rate and reproduction in
worms exposed to ELF-EMF, and this might be due to the self-pro-
tective mechanisms stated above. As higher organisms including
human beings share high homology with C. elegans in terms of
cellular and molecular structures and functions, metabolic pathways,
and developmental processes52, humans may also benefit from this
mechanism to defend themselves from ELF-EMF stress.

Methods
C. elegans strains and maintenance. Wild C. elegans (N2) was obtained from the
Caenorhabditis Genetics Center (University of Minnesota, St. Pau, MN, USA). C.
elegans strains were cultured on nematode growth media (NGM) seeded with
Escherichia coli OP50 bacteria. The method for obtaining synchronous cultures was
in accordance with standard protocol53.

ELF-EMF exposure system. The ELF-EMF exposure system mainly consists of five
parts: power regulator, Helmholtz coil, biochemical incubator, temperature recorder,
and condenser. Two vertical coils (150 turns of copper wire measuring 1 mm in
diameter) were placed into a biochemical incubator (Jinghong SHP-250, China). The
two coils were connected in series, and a 50 Hz sinusoidal magnetic field controlled
by a power regulator (PS-7005, China) was generated by feeding a line current. When
energized, a uniform magnetic field (0 mT to 3.5 mT) was generated in the center of
the coils where the culture dishes were placed. The magnetic flux densities were then
measured using a portable field meter (PM 8053B, Italy). A piece of silicone tube
connected to a condenser was wound around the coils to counteract the heat that they
generated. The temperature was monitored by a thermal resistance probe (sensitivity
of 60.10uC) placed near the culture dishes and recorded every 15 s by a temperature
recorder (MIK-214B, China) throughout the entire experiment. In addition, the
temperature probes of both biochemical and temperature recorders were positioned
to be in contact with the stand holding the Petri dish. The control system comprised

Figure 6 | A sketch of our results. Worms under ELF-EMF exposure raise a series of self-protective bio-processes, including reduction of food intake and

elevation of ATP consumption, which will consequently lead to the decline of intracellular ATP concentration. Subsequently, the lower level of ATP will

promote the process of carbohydrate metabolism (glycolysis and TCA). To meet the requirement of enhanced energy metabolism in the presence of

dietary restriction, the protein metabolism might be enhanced, as suggested by the increased concentration of amino acids. ‘‘"’’ represents ‘‘increase’’,

while ‘‘#’’ represents ‘‘decrease’’. ‘‘3’’ means no significant alteration, ‘‘?’’ means a postulation needed further confirmation. Those without arrows were

not examined in the present study. The background photograph was sponsored by Mr. San’an Nie.
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the same components as the exposure system, except the former contained no
Helmholtz coil.

Hatching rate and reproduction analysis. Gravid adults were treated with 2%
sodium hypochlorite and 0.5 mol/L NaOH to isolate embryos, and then they were
transferred into new fresh NGM plates. Upon reaching the maximal egg-laying stage
(84 h after synchronization), the worms were bleached incompletely (the worms were
dead, and the eggs remained in their bodies) and then transferred into fresh 35 mm
NGM plates (Fig. 5D). Each plate had five worms and was randomly distributed into
two groups. Each group had at least 10 plates that were randomly divided into two
portions. One portion was used as a control (control 1, C1), whereas the other was
used for exposure (treatment 1, T1). Finally, the worms were counted after 3 d of
culture at 20uC. The processes were repeated at least four times.

To estimate the effects of ELF-EMF exposure on productivity, bleach-prepping
gravid adults were transferred into two NGM plates, each with a diameter of 60 mm.
One plate was taken for exposure, whereas the other was taken as a control (Fig. 5E).
When the eggs reached the L4 larval stage, worms were randomly collected, trans-
ferred into fresh 35 mm NGM plates (n . 70 and one worm per plate), and then
equally divided into two portions. One plate was used as a control (C2 and T3),
whereas the other was used for exposure (T2 and T4). The worms that began to lay
eggs were transferred to fresh plates daily. The day of the first shift was counted as day
1 in the reproduction assay. After each transfer, the worms that hatched from the eggs
were counted to quantify the daily progeny number and total brood size. The process
was repeated three times.

Lifespan analysis. Lifespan tests were performed as previously described by Masse
et al.54. Worm Lifespan assays were performed at 20uC. Bleach-prepping gravid adults
were transferred to six seeded NGM Petri plates. One plate served as a control; the
others were exposed to 50 Hz, 3 mT ELF-EMF. One plate was removed from the
ELF-EMF exposure system every 12 h up to 48 h. Then, 60 L4-stage worms of each
group were selected and transferred to three floxuridine (FUDR)-NGM plates. All
plates were placed in a normal biochemical incubator, except for one that was
subjected to whole-life (WL) challenge. The day of the shift was counted as day 0 in
the adult lifespan assay. A worm was considered dead if it failed to move after being
prodded with a platinum wire. The number of dead worms was counted every 2 d
until all worms were dead. These experiments were repeated thrice.

Food consumption analysis. Feeding assays were performed as previously described
with minor modifications55. E. coli OP50 was cultured in LB medium for 12 h. The
culture medium was removed by centrifugation and then suspended with M9 buffer
(3 g of KH2PO4, 6 g of Na2PO4, 5 g of NaCl, 1 mL of 1 M MgSO4, H2O to 1 L) to
OD600 at approximately 1.3. Ampicillin was added to inhibit E. coli OP50
proliferation. Approximately 1 3 103 pieces of bleach-prepping gravid adults were
suspended in 1 mL of M9 buffer and then divided into 10 equal portions. Two
portions were transferred to two solid NGM plates for counting the number of eggs,
whereas the remaining 8 portions were cultured with 900 mL of E. coli OP50 prepared
in the last step in two 24 well-plates. One plate was taken for exposure, and another
served as a control. The control of each group had the same content except for C.
elegans, and the total volume was adjusted to 1 mL with M9 buffer. After culturing at
20uC for 72 h, each well was diluted with M9 buffer to the final volume of 5 mL and
then mixed uniformly. Aside for 10 minutes for worms deposited at the bottom of
Eppendorf tubes, a 200 mL aliquot of the bacterial liquid was pipetted from the top of
each Eppendorf tube and then evaluated for OD600 using SpectraMax M5 (Molecular
Devices, California state, USA). The processes were repeated thrice.

ATP test. The technique for determining the amount of ATP in the worms used in
this study is essentially as described by Le56. L4-stage worms (48 h after
synchronization) grown under 50 Hz, 3 mT ELF-EMF were harvested (n 5 3 3 104)
in M9 buffer by centrifugation at 300 g. After the worm pellet was washed with M9
buffer twice, Tissuelyser (NingBo SCIENTZ BIOTECHNOLOGY, CO., LTD, China)
was used for 1 min to disrupt tissue. All extraction solvents were centrifuged at 12 000
3 g for 5 min at 4uC. The supernatant was transferred to a new 1.5 mL tube for ATP
test with the ATP detection kit purchased from Beyotime (Catalog No.: S0026,
China). ATP levels were normalized to protein concentration.

Western blot. Western blot was performed as previously described57. In brief, 50-mg
of total protein from the L4 stage worms was fractionated by electrophoresis and
transferred to polyvinylidene difluoride (PVDF) membranes. The membranes were
probed with the mouse-derived anti-GAPDH antibody (60004-1-Ig, Proteintech)
and donkey anti-mouse IgG antibody (ab97030, Abcam). Actin was probed with anti-
ACTIN antibody (60008-1-Ig, Proteintech) as an internal control. Blots were treated
with Western Bright ECL (WBF25, Gel Company, USA) and examined by the
chemiluminescence System (Image Station 4000 mm, Kodak, USA). All of the
experiments were repeated at least three times.

GAPDH enzymatic activity assay. GAPDH enzymatic activity was measured as
previously described57. The supernatant (total protein was 20 mg) containing
GAPDH proteins was analyzed for enzymatic activity according to a standard enzyme
assay by measuring the change in absorbance at 340 nm that reflects the reaction
between NAD1 and NADH. GAPDH enzymatic enzyme activity was tested with the
GAPDH enzymatic activity detection kit (SHANGHAI HALING BIOLOGICAL
TECHNOLOGY CO., LTD. China).

RNA extraction and cDNA synthesis. Total RNA was isolated from a synchronized
C. elegans population using Trizol reagent as previously described with minor
modifications58. Briefly, L4-stage worms were resuspended in Trizol (1 mL/100 mL
compact worms pellet). Protein and lipid impurities were separated from nucleic
acids using chloroform, and RNA was precipitated with isopropyl alcohol. The RNA
pellet was washed with 75% ethanol, air-dried, and then dissolved in RNase-free
water. RNA concentrations were measured using an ND-1000 spectrophotometer
(Nanodrop Technology, Wilmington, DE, USA). Total RNA (500 ng) was reverse-
transcribed to cDNA following the manufacturer’s instructions (cDNA synthesis kit,
TaKaRa).

QRT-PCR measurements. Gene-specific primers were designed using Primer 5.0
software, and act-1was selected as the housekeeping gene because its expression was
not altered by ELF-EMF treatment. The primers used in this study are shown in Table
S1. Quantitative real-time PCR (qRT-PCR) was performed using the SYBR Premix Ex
Taq II kit (TaKaRa) and the Roche LightCycle 480 II sequence detection system
(Roche, Switzerland). Gene expression studies were performed in triplicate, and the
formation of a single PCR product was confirmed using dissociation curves. Negative
controls with the primers comprised all components of the PCR mix, except cDNA.
Relative fold change in gene expression for each gene was calculated using normalized
CT values58.

Metabolite extraction. The methanol–chloroform approach was used for extraction.
Geier et al. reported that this approach to results in good overall metabolomic
coverage59. L4-stage worms (48 h after synchronization) were washed from their
culture plates and then harvested by centrifugation at 300 g. Escherichia coli OP50
was removed by washing the plates thrice with M9 buffer. Worm pellets were snap
frozen by liquid nitrogen and then stored at 280uC. We added 0.4 mL of 351 v/v
methanol: chloroform to each 2 mL Eppendorf tube containing approximately 4 3

104 of C. elegans. QIAGEN Tissuelyser II at 20 Hz was used for 5 min of tissue
disruption. All extraction solvents were centrifuged at 10,000 rpm for 10 min at 4uC.
The supernatants (0.5 mL) were carefully transferred to 2 mL vials. The supernatants
were dried overnight in a vacuum sample concentrator at room temperature. The
extraction was derivatized by adding 80 mL of methoxylamine hydrochloride (20 mg/
mL) at 37uC for 2.5 h and subsequently adding 100 mL of N, O-bis (trimethylsilyl)
trifluoroacetamide at 60uC for 1.5 h. All samples were derivatized in a single batch
and then stored at 280uC until analysis.

GC-TOF/MS analysis. GC-TOF/MS analysis was performed using the Agilent 7890
GC system coupled with Pegasus 4D TOF MS. The system used a DB-5MS capillary
column coated with 5% diphenyl cross-linked with 95% dimethylpolysiloxane (30 m
3 250 mm inner diameter, 0.25 mm film thickness; J&W Scientific, Folsom, CA,
USA). A 1 mm aliquot of the analyte was injected in splitless mode. Helium was used
as the carrier gas, and the front inlet purge flow was 3 mL/min. The gas flow rate
through the column was 1 mL/min. The initial temperature was maintained at 90uC
for 2 min and then increased to 180uC at a rate of 10uC/min, 240uC at a rate of 5uC/
min, and 285uC at a rate of 20uC/min for 12 min. The injection, transfer line, and ion
source temperatures were 280uC, 270uC, and 220uC, respectively. The energy used
was 270 eV in electron impact mode. The MS data were acquired in full-scan mode
within the m/z range of 20 to 600 at a rate of 12 spectra/s after a solvent delay of 492 s.
The total run time was approximately 34 min per sample. All samples were run in a
single batch in the autosampler.

Metabolite profiling analysis. The total protein mass of animals was used to adjust
potential differences in sample size (number of worms and size of worms) between
groups. In all the samples, 2-Chloro-L-phenylalanine was loaded as quality control.
The data matrix was normalized using an internal control (glutamine) and the total
peak area. Data normalization was completed using Excel 2010.

Data analysis. Statistical analysis was performed using one-way ANOVA. The results
of the control and exposure groups were compared using Dunnett’s two-sided test
(SPSS 16.0, USA). Significance levels were set to P , 0.05. In the analysis of metabolite
variation, gene expression and food consumption, quantitative normalization within
replicates were transformed by the logarithmic base of 2.
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