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the AB/BA design and how to
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calculations
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Abstract
Background/Aims: This article studies the effect of attrition in the cluster randomized crossover trial. The focus is
on the two-treatment two-period AB/BA design where attrition occurs during the washout period. Attrition may occur
at either the subject level or the cluster level. In the latter case, clusters drop out entirely and provide no measurements
in the second period. Subject attrition can only occur in the cohort design, where each subject receives both treat-
ments. Cluster attrition can also occur in the cross-sectional design, where different subjects are measured in the two
time periods. Furthermore, this article explores two different strategies to account for potential levels of attrition:
increasing sample size and replacing those subjects who drop out by others.
Methods: The statistical model that takes into account the nesting of subjects within clusters, and the nesting of
repeated measurements within subjects is presented. The effect of attrition is evaluated on the basis of the efficiency of
the treatment effect estimator. Matrix algebra is used to derive the relation between efficiency, the degree of attrition,
cluster size and the intraclass correlations: the within-cluster within-period correlation, the within-cluster between-
period correlation and (in the case of a cohort design) the within-subject correlation. The methodology is implemented
in two Shiny Apps.
Results: Attrition in a cluster randomized crossover trial implies a loss of efficiency. Efficiency decreases with an
increase of the attrition rate. The loss of efficiency due to attrition of subjects in a cohort design is largest for small
number of subjects per cluster-period, but it may be repaired to a large degree by increasing the number of subjects per
cluster-period or by replacing those subjects who drop out by others. Attrition of clusters results in a larger loss of effi-
ciency, but this loss does not depend on the number of subjects per cluster-period. Repairing for this loss requires a
large increase in the number of subjects per cluster-period. The methodology of this article is illustrated by an example
on the effect of lavender scent on dental patients’ anxiety.
Conclusion: This article provides the methodology of exploring the effect of attrition in cluster randomized cross-
over trials, and to repair for attrition. As such, it helps researchers plan their trial in an appropriate way and avoid
underpowered trials. To use the methodology, prior estimates of the degree of attrition and intraclass correlation coeffi-
cients are needed. It is advocated that researchers clearly report the estimates of these quantities to help facilitate plan-
ning future trials.
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Introduction

A common research design in biomedicine is the cluster
randomized trial.1–5 Clusters are randomized to treat-
ment conditions, so all subjects within the same cluster
receive the same treatment. Outcomes of subjects in the
same cluster tend to be correlated; hence, the cluster
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randomized trial is less efficient than the individual
randomized trial. It is obvious that efficiency can be
improved by increasing sample size. However, this is
not always feasible and alternative strategies have
been proposed, such as reducing residual variance by
including covariates,6–9 balancing, matching and
stratification,5,10 taking repeat measurements5,11–13

and introducing a crossover design.14–17

With the crossover design, clusters are randomized
to a sequence of treatment conditions rather than just
one treatment condition. As such, each cluster serves as
its own control, which has an advantageous effect on
efficiency. The simplest crossover design is the so-called
AB/BA design in which one group of clusters receives
treatment A in the first time period and treatment B in
the second, and the other group of clusters receives
both treatments in reverse order.

Two different variants may be distinguished depend-
ing on whether different or the same subjects are
enrolled in the two time periods or, stated differently,
on whether a cross-sectional or cohort design is used.
In the case of a cross-sectional design, the cross-over is
at the level of the cluster. This design is suitable when it
is not possible to use the same subjects in both time
periods. Consider a trial in which two programs to help
adolescents to better support their peers with a mental
health problem were compared in the school setting.18

Both programs were designed for year 10 students, and
hence different cohorts were used in the 2 years.
Another reason for using different cohorts is that inter-
ventions that promote to change participants’ behavior
can often not be undone at the subject level.

In the case of a cohort design, the crossover is at the
level of the subject. An example is a study in which the
New Nordic Diet was compared with standard lunch-
eons.19,20 Nine Danish municipal schools were rando-
mized to treatment sequences; participants were
children 8–11 years old. Apparently, the researchers
were willing to believe the effect of the intervention of
the first time period did not carry over into the second.

The cohort and cross-sectional design have been
evaluated on the basis of their efficiency.17 As is obvi-
ous, the cohort design is more efficient since each sub-
ject receives both conditions and therefore serves as its
own control. This is true when indeed two measure-
ments are made on each subject. In longitudinal studies,
which crossover studies essentially are, attrition is the
rule rather than the exception. Attrition rates of 5%–
10% are not uncommon in crossover studies and they
can be as high as 25%.21 The rate of attrition and rea-
sons for attrition depend on the type of treatments,
subjects and clusters, the treatment sequence and the
duration between the two treatment periods. In the
dietary study, 3.4% of children who entered the second
period did not complete the trial because they did not
like the school meals, changed school or class, disliked
the measurements or found them time consuming, were

lost to follow-up, or for other reasons. An attrition rate
of 7% was found in a study on the effects of an exercise
program on musculoskeletal symptoms and physical
capacity among nursing staff in four geriatric wards.22

Attrition only occurred in the group where the exercise
program was followed by the control and one of the
reasons for attrition was not being interested in the con-
trol. Other reasons were pregnancy, sick leave, starting
to study or a new job.

Attrition may also occur at the cluster level. In a
cross-sectional design, a cluster may drop out when it
is not able or willing to recruit subjects for the second
time period. Other reasons for attrition are the trial is
too time-consuming or too difficult to implement, the
professional who delivers treatment is unavailable in
the second time period, or the cluster is not interested
to implement the treatment of the second time period.

This article extends previous work on cluster rando-
mized crossover trials17 by taking attrition into
account. The efficiency of the crossover design is
related to the degree of attrition. The cross-sectional
design without attrition is compared with the cohort
design with subject attrition and it is studied at what
degrees of attrition the first outperforms the latter. In
addition, two strategies to repair for the loss of effi-
ciency are explored: increasing sample size and repla-
cing those subjects who drop out by others. It is
assumed that missing data are missing (completely) at
random. Statistical models for attrition that is informa-
tive are more complicated and outside the scope of this
article.23 Furthermore, a restriction to linear models
for a quantitative outcome is made.

Methods

Review of the crossover design

The focus of this contribution is on the AB/BA
design.24–26 Each cluster receives each of the two treat-
ments A and B, but in separate time periods, leading to
the formation of two cluster-periods. It is assumed that
carryover is absent, for instance, by using a washout
period of sufficient length. The model that relates the
outcome variable to treatment condition should take
into account different levels of nesting: clusters, sub-
jects and, in the case of a cohort design, measurements
within subjects. An appropriate model is the multilevel
model.27–30

Cross-sectional design. The multilevel model for the cross-
sectional design is given by

yhij = g0 + g1x1h + g2x2hj + uhj + eij ð1Þ

where yhij is the quantitative outcome of subject
i= 1, . . . , m in cluster j= 1, . . . , k in time period
h= 1, 2. The total number of clusters, k, is assumed
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even, with k=2 clusters per treatment sequence. The
predictor x1h denotes the time period and is equal to 0
for the first period and 1 for the second. The predictor
x2hj indicates the treatment received by cluster j in time
period h and is equal to 0 for the control and 1 for the
intervention. uhj is the random effect of cluster j in time
period h and ehij is the random effect of subject i in
cluster j in time period h. They have a mean of zero
and variance var(eij)=s2

I and var(u1j)= var(u2j)=
s2

CP +s2
C , and covariance cov(u1j, u2j)=s2

CP. Here, s2
C

is the variance in mean outcome between clusters, s2
CP

is the variance in mean outcome between cluster-
periods and s2

I is the residual variance.
The total variance is var(yhij)=s2

T =s2
I +s2

CP +
s2

C . The within-cluster within-period correlation is the
correlation between outcomes of two different subjects
i and i’ in the same cluster-period

cor y1ij, y1i0j

� �
= cor y2ij, y2i0j

� �
=

s2
CP +s2

C

s2
I +s2

CP +s2
C

= r

ð2Þ

The within-cluster between-period correlation is the
correlation between outcomes of two subjects in the
same cluster and different periods

cor y1ij, y2i0j

� �
=

s2
CP

s2
I +s2

CP +s2
C

=h ð3Þ

The weights g0, g1 and g2 are the overall mean out-
come in the first time period for the control condition,
the period effect and treatment effect, respectively. The
latter is of primary interest and it is estimated by taking
the difference in the two period means across all clus-
ters. The related variance is

var ĝ2ð Þ=
2s2

T 1+ m� 1ð Þr � mhð Þ
mk

ð4Þ

The derivation of this equation is given elsewhere.15

Equation (4) shows that the treatment effect estimate is
less efficient when r increases and/or when h and/or m
decreases.

Cohort design. With the cohort design, each subject is
measured in both time periods. This implies an extra
level, the repeated measures level, is needed

yhij = g0 + g1x1h + g2x2hj + uhj + eij +mhij ð5Þ

The term mhij is the random effect at the measure-
ment level. The three random effects have a mean of
zero and variances var(mhij)= ~s2

M , var(eij)= ~s2
I and

var(u1j)= var(u2j)= ~s2
CP + ~s2

C, and covariance
cov(u1j, u2j)= ~s2

CP. Note that a tilde is used to distin-
guish these variances from those in the cross-sectional
design.

The total variance is var(yhij)=s2
T = ~s2

CP +
~s2

C + ~s2
I + ~s2

M . The within-cluster within-period corre-
lation is

cor y1ij, y1i0j

� �
= cor y2ij, y2i0j

� �
=

~s2
C + ~s2

CP

~s2
C + ~s2

CP + ~s2
I + ~s2

M

= r

ð6Þ

The within-cluster between-period correlation is

cor y1ij, y2i0j

� �
=

~s2
C

~s2
C + ~s2

CP + ~s2
I + ~s2

M

=h ð7Þ

The within-cluster within-subject correlation is the cor-
relation between the two measurements within a subject

cor y1ij, y2ij

� �
=

~s2
C + ~s2

I

~s2
C + ~s2

CP + ~s2
I + ~s2

M

= j ð8Þ

As for the cross-sectional design, the treatment effect
is estimated by taking the difference in means over the
clusters. This estimator has variance

var ĝ2ð Þ=
2s2

T 1� j + m� 1ð Þ r � hð Þð Þ
mk

ð9Þ

See the Online Supplement for the derivation.
Equation (9) shows that the treatment effect is esti-
mated with higher variance when r increases, and/or
when h and/or j and/or m decreases.

The effects of attrition

Attrition is defined as the situation where clusters or
subjects drop out during the washout period. This
implies an outcome is measured on them in the first
time period but not in the second. Simple closed-form
expressions for the variance of the treatment effect esti-
mator cannot be derived; hence, matrix algebra is used
to explore the detrimental effects of attrition.

First, the multilevel model for the case without attri-
tion is given and then it is shown how attrition is taken
into account. The data are organized such that the first m
observations are for time period 1 and the second m obser-
vations are for time period 2. The multilevel model for
cluster j for the cohort design in matrix notation is

yj =Xjg + uj + ej +mj ð10Þ

where yj is the vector of length 2m with response vari-
ables; Xj is the 2m 3 3 design matrix for the fixed part
of the model; g =(g0, g1, g2)

0 is the vector of length 3
with regression coefficients; and uj, ej and mj are vec-
tors of length 2m with random terms at the cluster, sub-
ject and repeated measures levels. Vj = cov(yj)=
cov(uj + ej +mj) is the 2m 3 2m covariance matrix of
the responses. The vector of regression coefficients is
estimated as

422 Clinical Trials 17(4)



ĝ =
Xk

j= 1

X
0

j V̂�1
j Xj

 !�1Xk

j= 1

X
0

j V̂�1
j yj ð11Þ

and its corresponding covariance matrix is estimated as

vâr ĝð Þ=
Xk

j= 1

X
0

j V̂�1
j Xj

 !�1

ð12Þ

The model for the cross-sectional design follows
from equation (10) by removing the vector mj.

Results

Attrition of subjects in a cohort design

Suppose that a proportion pj of the m subjects in cluster
j drops out. This implies removing the last p 3 m entries
from vectors yj, uj, ej and mj; the last p 3 m rows from
matrix Xj; and the last p 3 m rows and columns from
matrix Vj. Note that attrition rates may vary across
clusters and treatment sequences.

Figure 1 shows the effects of various realistic degrees
of subject attrition in a cohort design (constant across

clusters), as a function of the number of subjects per
cluster-period and for four combinations of the correla-
tion coefficients h, r and j. The cohort design without
attrition is used as a reference (i.e. its relative efficiency
is 1) and the cross-sectional design without attrition is
also included. As is obvious, the cohort design becomes
less efficient when more subjects drop out, especially so
when the number of subjects per cluster-period is small.
However, the loss of efficiency is most often small and
only slightly depends on the correlation coefficients.
The largest loss in efficiency is observed in the lower
right panel: the relative efficiency is 0.88 when 10 sub-
jects per cluster are included but 30% of them drop out.
In that case, the cohort design is slightly less efficient
than the cross-sectional design without attrition.

Attrition of clusters in a cohort or cross-sectional
design

The focus is on the scenario where some of the k clus-
ters drop out. The attrition rates may vary across treat-
ment sequences. For those clusters that drop out the
last m entries from vectors yj, uj, ej and mj are removed,

Figure 1. The effects of subject attrition in a cohort design as a function of the number of subjects per cluster-period and for four
combinations of values of the correlation coefficients. h is the within-cluster between-period correlation, r is the within-cluster
within-period correlation, and j is the within-cluster within-subject correlation. The legend in the upper left panel holds for all panels.
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and so are the last m rows from the matrix Xj and the
last m rows and m columns from the matrix Vj.

Figure 2 shows the effects of various realistic degrees
of cluster attrition in a cohort design (constant across
treatment sequences), as a function of the number of
subjects per cluster-period and for four combinations
of correlation coefficients h, r and j. The cohort design
without attrition serves as a reference. It is obvious the
cohort design becomes less efficient when the attrition
rate increases. The relative efficiency hardly depends on
the number of subjects per cluster-period, or the combi-
nation of the correlation coefficients h, r and j. A com-
parison with Figure 1 shows attrition of clusters results
in a larger loss of efficiency than attrition of subjects.
The smallest relative efficiency is found in the lower
right panel: it is equal to 0.75 when 30% of the clusters
drop out and each cluster-period includes m= 40

subjects.
The results of cluster attrition in a cross-sectional

design are very similar and a figure is not included. In
general, the effects of attrition of clusters are slightly

less severe for a cross-sectional design than for a cohort
design.

How to account for attrition in sample size
calculations

The aim of a cluster randomized crossover trial is to
detect the treatment effect g2 with sufficient probabil-
ity. The statistical power 1� b in a two-sided test fol-
lows from

z1�b + z1�a=2 =
g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var g2ð Þ
p ð13Þ

where 1� a is the type I error rate and z1�a=2 and z1�b

are the 100(1� a=2)% and 100(1� b)% standard nor-
mal deviates.

Power is related to sample sizes k and m through
var(g2). An a priori sample size calculation that ignores
the possibility of attrition will result in an underpow-
ered study in case attrition turns out to be present. The

Figure 2. The effects of cluster attrition in a cohort design as a function of the number of subjects per cluster-period and for four
combinations of values of the correlation coefficients. h is the within-cluster between-period correlation, r is the within-cluster
within-period correlation, and j is the within-cluster within-subject correlation. The legend in the upper left panel holds for all panels.
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aim of this section is to explore strategies to adjust for
potential attrition at the study design stage.

Anticipated attrition. Anticipated attrition is defined as
attrition that a researcher anticipates before the start of
the trial. The most obvious strategy to repair for such
attrition is increasing the number of subjects and/or
number of clusters from the start of the study onwards.
This implies that in both time periods, higher sample
sizes m and/or k are used than those that are based on
an a priori power analysis for a study without attrition.

Figure 3 explores the effects of including extra sub-
jects or clusters. The values of the correlation coeffi-
cients are h= 0:1, r= 0:2 and j = 0:3 and a constant
attrition rate of 30% of either subjects or clusters is
taken into account. The design without attrition is used
as a reference. The top left panel shows results for attri-
tion of subjects in a cohort design. Including 20% extra
subjects results in an efficiency of almost 1. Including
just 10% extra clusters results in a relative efficiency
above 1 for all values m.

Repairing for attrition is a bigger challenge when
clusters drop out, as is shown in the other panels of
Figure 3. Increasing the number of clusters with 30%
results in a relative efficiency slightly above 1. The
effects of increasing the number of subjects are most
evident for a small number of subjects per cluster-
period (m= 10), but even then the number of subjects
should be doubled to reach a relative efficiency near 1.
For a large number of subjects per cluster-period
(m= 40), the effect of increasing m is only small. A
similar effect was found in cluster randomized trials
without crossover: the effect of increasing cluster size is
relatively large at small cluster sizes but levels off at
higher cluster sizes, especially so when the intraclass
correlation is large.31 Furthermore, it should be noted
that the loss of efficiency as a result of cluster attrition
is somewhat larger for a cohort design than for a cross-
sectional design. A Shiny App is available at https://
utrecht-university.shinyapps.io/CRXO1/ to explore the
effects of anticipated attrition and the effects of increas-
ing sample size.

Subject attrition in a cohort design
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Cluster attrition in a cohort design
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Subject attrition in a cross-sectional design
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Figure 3. Repairing for anticipated attrition. For all graphs, the within-cluster between-period correlation h= 0:1, the within-
cluster within-period correlation r= 0:2 and the within-cluster within-subject correlation. j= 0:3.
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Unanticipated attrition. Unanticipated attrition is defined
as attrition that a researcher does not anticipate before
the start of the trial. In other words, only during the
washout period does it become clear that some subjects
or clusters will not continue to the second time period.
The only means to repair for the loss of efficiency is
increasing the number of subjects in the second time
period within those clusters that do not drop out.

Sampling more subjects in the second time period
than originally planned may raise issues with respect to
informed consent and also administrative and practical
issues. For instance, the number of subjects that may
be enrolled in the second time period may be limited
because a limited amount of material and equipment to
deliver the treatments was ordered before the start of
the study, or because a limited number of professionals
who are eligible to deliver the treatments were con-
tracted. In the worst case, the number of subjects that
can be enrolled in the second time period cannot be
larger than the number that was originally planned.

Figure 4 shows the effects of enrolling extra subjects
in the second time period. As in Figure 3, the design

without attrition is used as a reference. In all graphs,
the values of the correlation coefficients are h= 0:1,
r= 0:2 and j = 0:3 and 30% attrition is taken into
account.

The panel at the top left shows the effect of repla-
cing those subjects who drop out in a cohort design by
others. The design thus becomes a mixture of a cohort
and cross-sectional design: those subjects who do not
drop out are measured in both time periods (i.e. they
are the cohort part of the study) and all others in just
one time period (i.e. they are the cross-sectional part).
In other words, the study has an open cohort sampling
structure. As is obvious, the efficiency of this strategy is
between that of a study without attrition and that of a
study with 30% attrition that does not replace subjects
who drop out. This strategy is an effective means to
increase efficiency, especially so for larger number of
subjects per cluster-period.

Adjusting sample size for unanticipated attrition of
clusters is more difficult than repairing for anticipated
attrition. The top right and bottom panels show that
even increasing the number of subjects in time period 2

Figure 4. Repairing for unanticipated attrition. For all graphs the within-cluster between-period correlation h= 0:1, the within-
cluster within-period correlation r= 0:2 and the within-cluster within-subject correlation j = 0:3.
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by 200% does not result in a relative efficiency near 1.
The effect of increasing the number of subjects in time
period 2 becomes smaller when the number of subjects
per cluster period increase. In addition, this strategy is
somewhat less effective for the cohort design than for
the cross-sectional design. For a Shiny App, the reader
is referred to https://utrecht-university.shinyapps.io/
CRXO2/.

Example: effects of lavender scent on dental patients’
anxiety

This example is based on a study on the effect of laven-
der scent versus no odor on dental patients’ anxiety.32

A total of 340 patients agreed to participate; these were
from one practice and randomization was done at the
patient level. One of the outcomes was the Modified
Dental Anxiety Scale. The difference between the two
conditions was insignificant (F(1338) = 2.17, p . 0.05).
The estimates were as follows: mean = 9.84, standard
deviation (SD) = 4.74 (lavender) and mean = 10.65,
SD = 5.40 (control), and hence the effect size was small
(Cohen’s d = 0.16) and a total sample size of 1228
would have been needed to detect such an effect with
80% power in a two-sided test with a = 0.05. The
power for a study with 340 subjects is only 0.31.

A sample of 1228 can hardly be recruited within a
reasonable amount of time within just one dental prac-
tice. It is therefore needed to involve multiple dental
practices in a cluster randomized trial. Suppose k = 20

dental practices are willing to participate. The required
cluster size m depends on the intraclass correlation coef-
ficient. Let us use an a priori estimate of r= 0:01. Such
a small value is common in large clusters such as dental
practices where the interaction among patients is lim-
ited. Then m= 157 patients per cluster are needed. The
total sample size is mk = 3140, which is almost 10 times
as large as in the original study.

A smaller sample size is needed in a crossover
design. Suppose an a priori estimate of the within-
cluster between-period correlation is h= 0:005. Then
m= 36 subjects per cluster-period are needed in a
cross-sectional design, or 2m= 72 per cluster, less than
half the sample size as for a cluster randomized trial
without crossover. The total number of subjects is
2mk = 1440, and since each subject is measured only
once, this is also the total number of measurements.

A cohort design further decreases the required num-
ber of subjects per cluster. Here, an a priori estimate
j = 0:3 of the within-cluster within-subject correlation
is used. The number of subjects per cluster is m= 26,
resulting in a total number of subjects of mk = 520. As
each subject is measured twice, the total number of
measurements is 2mk = 1040. The cohort design thus
has a smaller number of subjects and measurements
than the cross-sectional design.

The risk of the cohort design is attrition of subjects.
Let us assume an attrition rate of 25% per cluster, irre-
spective of treatment sequence. The power for a design
with 26 subjects per cluster slightly drops to 0.75. The
loss of power may be repaired by including 30 subjects
per cluster; all of them are measured in period 1 but
only 75% of them are measured in period 2. Another
strategy is replacing those subjects who drop out by
other subjects. In that case, the power is 0.79. All
designs are summarized in Table 1.

Conclusions and discussion

Attrition results in a loss of efficiency. In the case of
subject attrition in a cohort design, the effect of attri-
tion becomes smaller when the number of subjects per
cluster-period increases. However, this sample size
hardly influences the effect of attrition in the case clus-
ters drop out. Cluster attrition results in a larger loss of
efficiency than subject attrition. It should, therefore, be

Table 1. Summary of different designs for the lavender scent example.

Design Sample size Power

Individual randomized trial k= 1 cluster, n= 340 subjects per cluster
k= 1 cluster, n= 1228 subjects per cluster

0.31
0.80

Cluster randomized trial
parallel groups

k= 20 clusters, m= 157 subjects per cluster 0.80

Cluster randomized trial
Crossover, cross-sectional

k= 20 clusters, m= 36 subjects per cluster-period 0.80

Cluster randomized trial
Crossover, cohort

k= 20 clusters, m= 26 subjects per cluster-period 0.81

Cluster randomized trial
Crossover, cohort
25% attrition of subjects

No repair: k= 20 clusters, m= 26 subjects in cluster-period 1
Increase m: k= 20 clusters, m= 30 subjects in cluster-period 1
Replacement: k= 20 clusters, m= 26 subjects per cluster-period

0.75
0.80
0.79
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avoided at all costs because it is difficult to repair, espe-
cially so when the number of subjects per cluster-period
is large. It may be more cost-efficient to spend money
on incentives to motivate those clusters who tend to
drop out to remain in the trial than to spend money on
recruiting extra subjects.

The effect of attrition of clusters is somewhat larger
in a cohort design than in a cross-sectional design, but
the cohort design may still be more efficient in the case
attrition occurs. For each study at hand, these two
designs should be compared for realistic a priori esti-
mates of the degree of attrition and intraclass correla-
tion coefficients. The final choice should not only be
based on statistical but also on practical considerations.
A cohort design is only recommended when the inter-
vention can be undone at the level of the subject.
Furthermore, the study should be planned such that
subjects can indeed participate in both time periods.

The results of this study may help researchers plan a
cluster randomized crossover study in the case attrition
is anticipated. The efficiency of a design depends on
the intraclass correlations and degree of attrition, and a
plausible a priori estimate for each of them should be
available. An overview of papers that lists estimates of
intraclass correlation coefficients for cluster rando-
mized trials without crossover is given in Table 11.1 of
Moerbeek and Teerenstra.33 A similar table should also
become available for cluster randomized trials with
crossover. Researchers conducting such a trial are
therefore encouraged to clearly report the estimates of
the intraclass correlation coefficients. In addition, they
are encouraged to report attrition rates and reasons for
attrition at the subject and cluster level so that this
information can be used in planning future trials, see
also item 16 in proposed reporting items for cluster
randomized crossover trials.34

An obvious extension of this work is to more com-
plicated cluster randomized crossover trials that
include more than two treatments and/or more than
two time periods, where the attrition rate may change
over time. It may also be interesting to study the opti-
mal number of time periods in a trial of fixed duration,
as a function of attrition and for different correlation
structures. It has been shown that for the continuous-
decay within-cluster correlation structure, greater num-
bers of crossovers result in greater study power,35 and it
should be verified if this is still the case of attrition is
present.

Furthermore, it is also necessary to study the effect
of attrition for the cluster randomized stepped wedge
design where the number of time periods, and hence
the number of measurements, is typically larger than
two.36,37 This implies there are multiple points in time
where attrition may occur; hence the results of this arti-
cle do not easily translate to the stepped wedge design.

Other directions for future research are exploring
the effects of attrition in the case where clusters and

subjects may drop out simultaneously, and for non-
continuous outcome variables. Another avenue of future
research would be the impact of non-random attrition,
that is, when missing data are missing not at random.
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