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Abstract: Cough is a very common symptom and the most frequent reason for seeking medical
advice. Optimized care goes inevitably through an adapted recording of this symptom and automatic
processing. This study provides an updated exhaustive quantitative review of the field of cough
sound acquisition, automatic detection in longer audio sequences and automatic classification of
the nature or disease. Related studies were analyzed and metrics extracted and processed to create
a quantitative characterization of the state-of-the-art and trends. A list of objective criteria was
established to select a subset of the most complete detection studies in the perspective of deployment
in clinical practice. One hundred and forty-four studies were short-listed, and a picture of the
state-of-the-art technology is drawn. The trend shows an increasing number of classification studies,
an increase of the dataset size, in part from crowdsourcing, a rapid increase of COVID-19 studies,
the prevalence of smartphones and wearable sensors for the acquisition, and a rapid expansion of
deep learning. Finally, a subset of 12 detection studies is identified as the most complete ones. An
unequaled quantitative overview is presented. The field shows a remarkable dynamic, boosted by
the research on COVID-19 diagnosis, and a perfect adaptation to mobile health.

Keywords: cough sound acquisition; automatic cough sound processing; cough diagnosis; cough
recognition; literature review; machine learning; quantitative analysis

1. Introduction

Cough is a very common symptom, with a prevalence up to 33% of the population,
including young children [1]. It is the most frequent reason for which people seek med-
ical advice [1–6]. Acute cough can often be a symptom of a common cold clearing itself
within two weeks [1,6]. Chronic cough alone counts, however, for 10–38% of requests for
respiratory disorders [1,6]. Most cases of chronic cough can be ascribed to smoking or
exposure to tobacco smoke [1], as well as to other risk factors such as exposure to envi-
ronmental pollutants [1,4]. Respiratory and non-respiratory disease conditions of cough
include chronic rhinosinusitis, asthma, Chronic Obstructive Pulmonary Disease (COPD),
pneumonia, chronic bronchitis, obesity, gastroesophageal reflux disease, lung cancer, heart
failure and medications [1,4,7]. These conditions lead to high costs for the health care
system, reported at US $40 billion per year for the common cold [6] and US $23 billion
per year for asthma and COPD hospitalizations [8] in the United States. The high rate of
occurrence and costs call for particular attention. Despite being a very common symptom,
the assessment of cough symptoms remains very challenging. A standard assessment
approach involves scoring or filling questionnaires [5,6,9–12], usually performed by the
patients themselves or by a parent [12,13], and questioning their objectivity [13–16]. As a
consequence, various studies (see further details in Reference [9], for instance), as well as
the ERS Committee [6] “clearly outlined the need for ( . . . ) objective cough assessment
technology” [17] (p. 2).
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Objective approaches were considered as early as the 1960s [6,18–21]. They relied
for a long time on manual assessment (refer, e.g., to Reference [22]), limiting their gen-
eralization despite their improved reliability [3,23]. Only recent technological develop-
ments since the 2000s, both in the acquisition systems and in technological processing,
opened the way for automatic processing [9]. As early as 1937, attempts were made
to record and analyze a cough scientifically by measuring diaphragm movements [24].
Since then, several measurements based on different types of sensors have been con-
sidered [25]: chest wall movements [26–28], airflow measurements [29–34], electromyo-
graphic measurements [23,35,36], electroglottographic measurements [37], electrocardio-
graphic measurements [27,28], accelerometer-based measurements [38] or a combination
of them [17,27,28,35] as a non-exhaustive list. An intuitive, noninvasive and evident marker
of coughing is the sound, making it a popular approach for objective cough assessment
(see, e.g., Reference [5] for a recent review).

The acquisition and automatic processing of cough sounds constitute the core frame-
work of this review. Its commercial potential can be illustrated by the patents filled in
the domain [39–44]. Traditionnal acquisition through a microphone are now replaced by
advanced techniques based on mobile technologies and wearable sensors. The increasing
number of papers trying to diagnose COVID-19 by this way [45–56] (see also Reference [57]
for a short review) confirm its positive dynamics. Our attention focused more specifically
on the acquisition of cough sounds and their automatic detection and classification, i.e., the
detection of the cough events in longer audio sequences and the classification of the nature
or disease of recorded coughs. These two topics appear often considered together [58] and
involve similar technological approaches [59]. Several scientific reviews have already been
reported regarding this or a close topic. Chung [3] illustrated the rise of objective cough
counter monitors before their automation. Smith et al. [2,19,60] emphasized the need for ob-
jective count monitoring and reviewed the latest developments for automatic monitoring at
the time. Amoh et al. [8] reviewed the various approaches available for automatic detection.
Spinou et al. [9] reviewed the subjective and objective approaches for cough monitoring and
focused more specifically on two cough monitoring systems. Pramono et al. [61] provided
a systematic review of the detection and classification of adventitious respiratory sounds
with a methodology close to the current review. Shi et al. [5], one of the closest and most
recent reviews related to the current study, reviewed the existing automatic cough detection
systems. Tabatabaei et al. [62] focused on the smartphone-based systems for analyses of
respiratory sounds. Recently, the review from Hall et al. [63] focused on the specific tools
for counting coughs to measure their frequency. Finally, Lella et al. [57] provided a short
review of a COVID-19 diagnosis from the respiratory sounds. Not a review, per se, the
ERS task force [6] attempted to provide a normalized scientific framework and to draw
up recommendations for the assessment of coughs. All these reviews present limitations
regarding our objective. Most of them are outdated, focus on very specific aspects, such as
COVID-19 diagnosis or cough counting, or cover side topics. In addition, to our knowledge,
no review has covered exhaustively the field of cough detection and classification. The
current article intends to fill this gap by providing an updated and complete review of
the field. Far more than a simple list of studies, it proposes an unequaled quantitative
analysis by (1) providing an up-to-date exhaustive overview, (2) providing quantitative
analyses, (3) emphasizing the technological and scientific trends and (4) identifying the
most advanced studies towards possible deployment.

The manuscript is organized as follows: the background, in Section 2, describes
the coughing process and defines the terms detection and classification, our method is
described in the next Section 3, the results of our comparative analyses are in the following
Sections 4 and 5 provides a discussion and conclusion.
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2. Background
2.1. Cough Physiology and Acoustic Properties

Cough is a defense mechanism preventing the entrance in the lower respiratory tract
from foreign material and helping to clear the respiratory system from secretions [6,17,64].
Chronic or excessive cough, on the other hand, is the sign of a disorder and requires further
investigation [17], the cough itself being only a symptom.

This symptom and some of its properties have already been described about 2000 years
ago by physicians such as Aulus Cornelius Celsus and Areteus of Cappadocia (reported in
Reference [64]). It is characterized by large inter-subject and intrasubject variability [5,60,65].
A consensus however emerged [19,64], emphasized by the ERS guidelines stating that “all
basic scientific articles should refer to cough as a three-phase motor act” [6] (p. 3) (Figure 1):
(1) an inspiratory phase, with the glottis fully open, where the air is drawn into the lungs,
(2) a compressive phase, with the glottis fully closed, where the respiratory muscles contract
and compress the air against the glottis, increasing the pressure, and (3) an expulsive phase,
with a sudden reopening of the glottis, where the air is rapidly expelled, the source of the
generated cough sound. A subdivision of the expulsive phase, “where the vocal cords
briefly close for a second time, producing a further increase in sound at the end of the
cough”, can also be considered as a fourth phase [19] (p. 3).

Figure 1. Waveform of a cough superimposed with the phases corresponding to the act (top text,
orange) and to the sound (bottom text, green). The horizontal (time) and vertical (amplitude) axes
have been omitted to provide a simpler schematic overview.

This maneuver generates a cough sound, itself consensually described in three
phases [5,19,64,66,67] (Figure 1). The sound phases do not match the motor phases de-
scribed earlier, leading sometimes to confusion in the literature. These phases are as
follows [19]: (1) an explosive phase, short in duration, when the glottis suddenly opens,
corresponding to a loud burst, (2) an intermediate phase, lasting longer, corresponding
to a noisy steady flow of air, and (3) a voiced phase, when the glottis narrows again and
the vocal folds start vibrating. The last phase may not always be present [19,67]. Inciden-
tally, the English word “cough” with the plosive consonant [k] mirrors remarkably these
phases [64]. Each of these three acoustic phases are considered to reflect the situation in
specific regions of the respiratory system [64,68]: the explosive phase informs about the
state of the bronchus, the intermediate phase about the state of the trachea and the voiced
phase about the state of the vocal folds and the larynx. This should, however, be balanced
with the observation that the role of the “laryngeal structures and the resonance of the
nasal and thoracic cavity ( . . . ) are uncertain” [5] (p. 2). The oral cavity may also play an
important role.

The cough duration is reported around 300–500 ms [63,64,67,69,70] but can also last
shorter or longer [65,71–73]. The cough definition still remains a challenge, leading to
the observation that “a clear definition of cough is lacking in the majority of scientific
papers” [6] (p. 3).
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For these reasons, there is no universal way of quantifying a cough sound [60]. Mon-
itoring coughs and reporting cough symptoms have, for instance, been performed by
counting the number of cough events, of explosive cough sounds or of breaths; by counting
the total duration of coughing; by counting the number of epochs (e.g., continuous cough-
ing sounds without a 2-s pause); by measuring the frequency of coughing or by measuring
the intensity [6,74]. Automatic processing has used a large variety of features (see the
section Features in the Results). Cough sounds are reported to be particularly difficult to
differentiate from speech, laughter and throat-clearing [8]. A common strategy consists in
detecting its explosive part, considered as more distinctive (e.g., References [27,75]).

2.2. Detection vs. Classification

Cough detection, sometimes referred to as cough recognition [76–78], refers to the
identification and localization of cough events in larger sound files containing many
possible audio events, such as noise, speech, TV, laughs, etc. [58]. The purpose is to
identify the time range or the instant where a cough occurs. It can be further processed
to provide medically relevant information [6]. Cough classification, on the other hand,
consists of providing a diagnosis based on a cough sound. It usually assumes that the
considered analyzed sound files contain a cough event. It also aims at providing medically
relevant information [58,79]. For this task, the considered coughs might sometimes contain
extra sound data before and after the event. In this case, a simple coarse detection (as in
Reference [17]) is not considered in this review as a pure detector.

3. Method

Many variations of the keywords “cough detection”, “cough monitoring” and “cough
classification” were searched in Google Scholar between March 2020 and June 2021, leading
to a first shortlist of studies. Given the major societal challenge of the COVID-19 pandemic
and the relationship with the current reviewed topic, a special search around the word
“COVID-19” was performed to capture the latest developments. All studies found related
to the reviewed topic were included. Then, the list was iteratively expanded by including
all the studies cited in the shortlist and related to the review topic but not already listed so
far. The iterative process stopped when no new study could be found. Online archived
articles not published elsewhere, whose numbers have strongly increased since 2020, were
discarded; one unpublished Ph.D. Thesis was retained [80], and one study was added after
the first review [81]. This search and selection process was performed by the first author of
the current study.

Google Scholar was not considered as a unique source but as an entry poInternational
It generated the first list of relevant studies, incrementally expanded afterwards. Following
recent reports [82] recommending the use of Google Scholar in combination with other
renowned academic databases, a posteriori searches with PubMed (Medline database),
Embase and Web of Science were performed. It led to a slight increase of the listed studies
to which the iterative process was applied. Our impression was that the coverage of the
field and the number of included studies by this original search strategy appeared much
larger than simply relying on the results of database searches. In conclusion, only the
studies not referenced or lowly ranked in terms of relevance in the previously mentioned
search engines and concomitantly not cited in any of the listed studies would be missing in
our review. Each study was individually analyzed by the first author of the current study
and transposed in terms of cross-study metrics to seek out quantitative-based evidence
and trends. The chosen metrics aimed at covering, at best, all aspects of a study while
being general enough to be present in most studies. In the conclusion, we finally draw
the accurate profile of a typical study and how this model is evolving. All aspects of a
scientific study were covered: (a) the meta-characteristics, including the publication year,
the research group, the type of study (detection vs. classification), the classes and the
primary motivation, (b) the data, the sensors and acquisition systems and the number and
profile of the subjects, (c) the method, including the approach, the exact list of features and
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the classifiers, (d) the validation, including the cross-validation approach and the numerical
results and (e) the number of citations. The metrics were collected from all studies when
available by the first author of the current study. All collected metrics were separately
processed to draw a picture of the state-of-the-art and of the trends of the domain. The main
analyses consisted of interpreting metric distributions, displaying studies and experiments
in terms of particular metrics, observing the time evolution of well-chosen metrics and
ratios and identifying categories. The results are presented in the next section following the
five aspects mentioned above.

A further added value consisted of taking advantage of our large dataset of metadata
and metrics to sort out the substantial number of detection studies and select a small subset
of the most complete ones. This is presented at the end of the next section.

4. Results
4.1. Referenced Studies

One hundred and forty-four studies were finally listed. A very large part of them (56%)
focused on the detection task and a third (33%) on the classification task. Only 10 studies
(7%) considered the two problems: six of them implemented in first place a detector in
order to diagnose a disease in the second place [49,54,83–86], one detected cough into two
distinctive classes [87], two alternatively detected coughs and classified coughs according
to their type [88] or associated disease [80], and one classified the detected coughs according
to the sex of the emitter [78].

4.1.1. Cough Classification Studies

Cough classification consists of labeling a cough event. In most cases, the ultimate
objective is to provide a diagnosis for a patient, the subject classification, usually derived
from the cough classification results. Both for simplicity reasons and as most of the studies
do not specifically address this issue, “cough classification” and “subject classification” will
be referred to as “cough classification” in this article. Only a few studies make the distinc-
tion (e.g., References [84,89]) and provide explicit separate results (e.g., References [90,91]).
The classifications aim at recovering the property of a cough or at diagnosing the pres-
ence and/or the type of a pathology. Table 1 provides an exhaustive list of the 58 cough
classification studies and their classes.
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Table 1. Cough classification studies and their classes.
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[70,79,92–97] X X
[98] X X
[87] X X
[99] X X
[88] X X

[33,100] X X
[100] X X
[29] X X X

[30,101–106] X X
[59,85,107] X

[59,84,85,89] X
[85,90,91,108] X

[105,109] X X
[110] X X

[83,111] X
[112] X X X
[81] X X

[113–115] X X
[80] X
[58] X X
[116] X X X
[100] X X
[86] X X X
[105] X X
[59] X
[85] X

[105,109] X X
[85] X
[105] X X
[85] X

[45–53,81] X X
[48,52,54,55] X

[52] X X
[54] X X X X
[56] X X X X
[81] X X X
[78] X X

[117,118] X

4.1.2. Cough Detection Studies

Unlike for cough classification, cough detection studies cannot be summarized as in
Table 1. Alternatively, the 91 cough detection studies were categorized according to their
major motivation, for which five categories were identified (Table 2). This provides an
initial overview of the actual underlying motivations for cough detection, even though
other decompositions are possible.

Although all detection studies aim ultimately at maximizing the performance of a de-
tector, some focus more specifically on methodological aspects, possibly at the cost of lower
overall performances: the robustness to the data sampling frequency and noise [119–122],
the implementation on a smartphone [123–127], the relevance of the recording sensors [27],
the non-intrusiveness of the recording setup [128], the deployment of a system in a real
home environment [129], the real-time detection using wearable sensors [130,131], the
time variations of the signal [132], the discrimination of individuals [133], the privacy
preservation [134,135], the optimization of features [68,136], the tuning of parameters [137],
the refinement via a confidence factor [138] and the ability to track a disease [14,139]. Fi-
nally, a few studies limit the non-cough events to specific events: speech [140], sleeping
movements [123], snoring [74,123,141,142] and sneezing [138].

Technically, cough detection can be considered as a particular instance of classification
where the two classes are “cough” and “non-cough”, which justifies considering them
together in this review. This also explains why some studies refer to the term “classification”
for a detection task (e.g., References [96,143]).
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Table 2. Cough detection studies per motivation.

Motivation References Number
Objective monitoring [17,22,28,74–76,78,80,88,133,140–163] 34

Remote/self/lab-free
monitoring [119–131,134,135,138,164–172] 25

Disease assessment [14,27,69,73,132,137,139,173–182] 17

Disease diagnosis [49,54,83–87,183–185] 10

Methodology [68,77,136,186,187] 5

4.1.3. Other Studies

Five studies could not be labeled as classification nor detection but have been partly
considered as related to the topic. Four perform automatic data compression or detection
of the non-cough segments for further manual counting [188–191] and another detects
respiratory symptoms, cough being only one of them [192]. Conversely, studies of other
communities implementing cough detection, such as for body activity detection, usually
not driven by medical purposes, were discarded (e.g., References [193,194]).

4.1.4. Publication Years

The distribution of the 144 studies over the publication years is displayed in Figure 2.
The research topic started to emerge significantly in 2005 and showed a steady increase
until 2020. Earlier research emphasized the need for objective cough processing but usually
relied on manual counting [195,196]. In 2005, the needs were clearly identified, and the
progress in machine learning made the automatic approach conceivable. The highest
number of studies was recorded in 2019 and 2020; the year 2021 may see this number
progress even more due to the COVID-19 pandemic. The 144 studies were published by
73 different research groups, corresponding to two publications per research group, on
average.

Figure 2. Distribution of the studies over the publication years (blue bars), and ratio of the number
of studies using a smartphone or derivative recording system over fix and traditional systems
(violet line).

4.2. Data and Subjects
4.2.1. Sensors and Acquisition Systems

The recording sensor can be either fixed in the room or directly attached to the sub-
ject, a solution particularly adapted for long-term acquisition and monitoring. For the
studies concerned with such distinction, 52% of them chose a subject-related acquisi-
tion system and 48% a room-related one. In the fix systems, the most frequent solu-
tion is to use a microphone or an MP3 recorder ([30,33,58,68,73,80,87,90,91,93,94,97,99,
101,104,110,116,128,129,139,149,150,160–162,169,172–174,178]), or more recently a smart-
phone as a microphone ([47,48,52–54,59,70,74,81,84,85,89,96,102,103,112,113,120–123,126,
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135,141,142,171,172]). The subject-attached recording system aims rather at recording dur-
ing several hours to several days. This is achieved by attaching a microphone or a lapel
microphone to the subject ([14,17,22,27,50,88,94,133,136,140,143,145,148,151,152,156–159,
165–167,175–177,179,180,182,185,188–191]), by providing a smartphone or a dedicated app
to the subject ([78,80,119,120,125,127,134,144,164,192]), by measuring directly the subject
internal sounds using a contact microphone ([17,27,75,77,95,100,117,118,146,153,174,181,
182,184,188,189,191]) or by considering wearable sensors ([28,29,130,131,138,154,155,168,
170,171]). Some studies combine several audio sensors, such as a microphone and a contact
microphone [174]. Combining several modalities, such as audio, electromyography and/or
chest belt, appears also as a popular solution (e.g., References [17,28]), although the single
audio modality seems to outperform multimodal approaches to detect coughs [27]. As
displayed in Figure 2, we observe that recordings based on smartphones, wireless and/or
wearable sensors tend from the mid-2010s to overtake more traditional systems based on
microphones, (see also [62] for a recent review on smartphone-based respiratory sound
analysis). The falling trend in the last two years needs however to be confirmed on a long
run, the ratio still remaining largely above 1. Not counted in the binary classification of
sensors, some studies collect existing material on the web (e.g., Reference [83]). Besides, the
crowdsourcing, i.e., the recruitment of volunteers and collection of data from web-based
platforms designed on purpose, has seen a recent rapid increase: after a pioneering study
carried out over the phone [98], many studies rely on this approach in 2020–2021 for the
diagnosis of COVID-19 [45,48,49,51–53]. The pandemic, combining major societal and
economic impacts and restrictions in the running of in-person experiments, acted as a
booster for this technique (see e.g., Reference [47] for a short review). It allows an easy
collection of large datasets, at the cost of limited control on the data quality and integrity.

Some studies present full monitoring systems, e.g., embedding acquisition and pro-
cessing, with a brand name, suggesting that a deployable solution already exists or that
a further deployment is in project. They usually consist of ambulatory recording devices
aiming for long-term signal recordings, sometimes integrating several sensors. The Hull
Automatic Cough Counter (HACC) system [22] includes a lapel microphone, the VitaloJAK
system [148,188,189,191] a lapel and a contact microphone, the KarmelSonix system [17]
an ambulatory microphone, a contact microphone and non-audio related sensors, the
Leicester Cough Monitor (LCM) system [133,176,177] an ambulatory microphone and the
LifeShirt system [28] a wearable contact microphone and non-audio related sensors. To
our knowledge, only the KarmelSonix system has been approved by the Food and Drug
Administration for commercial use, although it has been reported as being not available
anymore [63,120]. For mobile-based detection we can report the Automated Device for
Asthma Monitoring [106,127,145], the DeepCough [154], the MobiCough [168], the Smart-
Cough [164], the CoughWatch [170,171] (based on smartwatches) and the HealthMode
Cough (only the recording component, Reference [144]) systems; for mobile-based classi-
fication the TussisWatch [112] and the AI4COVID-19 [54] systems. In addition comes the
CoughLoc system [128], based on a network of fix sensors in a room and the SymDetector
system [192], a smartphone-based respiratory symptom detector. In this review, only cough
audio-based processing is considered. Breath audio and non-audio data-based approaches,
such as collected from additional sensors (e.g., in Reference [33]) or from clinical data
(e.g., in Reference [58]), have been discarded, unless the data or results from these various
sources could not be disentangled (e.g., in References [17,52,107–109,114,115]).

4.2.2. Subjects and Protocol

In machine learning, the models are derived from training data and the results evalu-
ated on test data. While a relative flexibility is possible on the training data, the test data are
supposed to represent the population targeted by the system. For this reason, we provide
in this section a short overview of the overall datasets and a deeper analysis of the test
subjects as a marker of the system.
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Many studies tend traditionally to rely on a relatively small number of subjects in their
database, typically less than 45, emphasizing the difficulty to collect and process such data,
as well as the preliminary character of many studies (Figure 3). A few studies have larger
databases. The larger ones contained, respectively, 141 [183] and 5320 [45] subjects for the
pure detection and classification studies. Two studies considered only one subject [130,131].
As expected, we observed the size of the databases increasing over time, boosted by the
recent crowdsourcing data collection approach, as emphasized by the linear regression
plotted in Figure 4.

Figure 3. Number of studies vs. overall number of subjects.

Figure 4. Overall number of subjects vs. publication year per study (blue dots) and associated linear
regression (orange line). Note the logarithmic scale of the y-axis.

Mirroring the observation made on the overall databases, many studies tend also
to rely on a relatively small number of test subjects, typically less than 30 (Figure 5).
Testing requires indeed arduous manual labeling of audio data to identify the coughs. The
number of samples per subject varied greatly between studies. As a result, the number of
subjects characterized the variety of the test data but not their amount. Two studies [45,49]
considered, for instance, more than 1000 test subjects. Thirteen other studies tested their
systems on more than 100 subjects [29,33,48,52,53,70,81,86,96,107–109,114], including all
the crowdsourced-based studies for which the number of test subjects was disclosed. All
15 studies dealt logically with cough classification, where the data consisted usually of a few
coughs per subject at maximum, unlike cough detection, which usually considered long-
term recordings for a few subjects and for which data labeling was much more challenging.
The highest number of test subjects for a detection study was reported to be 59 [75]. As
noted earlier for the databases, we observed an increase of the number of test subjects
in the last years, boosted by the recent research on COVID-19 and crowdsourcing data
collection [45,47,48]. Finally, we observed 54% male vs. 46% female test subjects.
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Figure 5. Number of studies vs. number of test subjects.

The health profiles of the test subjects, according to the categories provided by the
authors of the studies, are reported in Figure 6 (The two studies with more than 1000 test
subjects [45,49], consisting of 29% COVID-19 patients and 71% healthy subjects, were
discarded, as they largely outnumber the number of subjects of the other studies and bias
the display). About a third of the test subjects were healthy: for cough detection, they
were suitable for a proof-of-concept study, and for cough classification, a pathology is
often diagnosed against its absence, necessitating the presence of healthy control subjects.
Asthma patients represented about 10% of the test subjects for both study types. COPD,
pertussis and bronchitis patients represented each of them about 10% of the test subjects for
the detection studies and Lower Respiratory Tract Disease (LRTD) and pneumonia patients
again about 10% of the test subjects for the classification studies. Finally, despite discarding
two studies [45,49] on the figure, already, 11% of the test subjects of the classification studies
were COVID-19 patients, making this disorder the most studied in terms of test subjects.
This figure represents the number of patients; representing the number of studies per
disease would provide slightly different and complementary information, discarded for
space reasons.

Figure 6. Distribution of the test subjects per health condition, as labeled by the authors, for the
detection (left) and classification (right) studies.

Regarding the age category, 85% of the test subjects were adults, and only 15% were
adolescents, children, infants or babies grouped into a few studies [30,83–85,89–91,93,94,
102–111,127,145,150,151,163,190].

Each recording protocol appears unique: controlled environment [33] vs. daily rou-
tine [145], clinic [150] or home [128] recordings, day [168] vs. night [73] recordings, rest-
ing [160] vs. exercising [17], voluntary [58] vs. spontaneous [121] coughing, one single
cough [116] vs. many days [192] for one subject, etc. The data are also processed differently:
differentiating between subject and environmental coughs [133] or not [28], considering any
kind of real-life background noise [22] or very specific non-cough or background noise [140],
considering raw [155] or pre-processed [183] recordings, considering prelabeled [144] or
self-annotated data by one or several annotators up to several times [177], etc. Finally, for a
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given set of data, protocol and method, the choice of the classes plays a major role: one can
imagine that discriminating a COVID-19 cough from a pneumonia cough is much more
challenging than from a healthy cough. This diversity calls for a careful process while
comparing the studies.

4.3. Methods
4.3.1. Approach

Both cough classification and detection aim at classifying input data. Interestingly,
most of the studies follow the same architecture, divided in four consecutive stages: (1) the
preprocessing stage, aiming at preparing the raw signal (resampling, denoising, splitting
into successive time frames of 20 to 50 ms, windowing, filtering, etc.), (2) the coarse detec-
tion stage, consisting in applying a very simple detection algorithm, usually based on an
absolute or adaptive amplitude or energy threshold, to discard the trivial non-cough seg-
ments (e.g., References [17,70,88,147,153,164,165,169,192]), (3) the feature extraction stage,
consisting in extracting a limited number of relevant features describing the input signal,
detailed in the following section Features, and (4) the classification stage, consisting in
classifying the input signal on the basis of the features, detailed in the following section
Classifiers. In deep learning, becoming slowly the dominant approach, the feature ex-
traction and the classification steps are performed concomitantly by an artificial network,
discarding the troublesome task of feature definition [59].

Some studies deviate from this framework. A few detectors can be considered as
semi-automatic, or requiring some manual intervention, like the VitaloJAK or the LCM
systems. Some studies try also to take advantage of the time variation of the cough signal.
This is done by using Hidden Markov Models ([14,68,69,76,133,136,143,145,175–177,180]),
as already suggested in 1992 [30], by considering time-related neural networks [49,50,56,
84,150,155,172], by taking into account time derivatives in the computation of the features
([22,27,68,89,101,128,132,133,136,143,145,148,158,165,166,173–177,180,182]), by considering
feature synchronization techniques [132], or by measuring recurrent patterns [51].

4.3.2. Features

An audio signal is a series of values representing a sound at regular time intervals.
It provides an extensive description but remains difficult to interpret. It requires further
processing, as also performed by the human ear and brain. The aim is to describe the signal
in terms of limited representative features.

Many features have been proposed in the literature. The time domain features provide
information related to the time evolution of the signal, such as duration and amplitude,
whereas the frequency domain features, also called spectral features, provide information
related to the frequencies present in the signal. The cepstral domain is obtained by replacing
the spectrum by the logarithm of its magnitude and by recalculating back the pseudo-time
domain [197]. The cepstral analysis has proven to be very useful in speech and therefore
considered as a good candidate for cough analysis.

Up to 178 features have been identified. The features not retained in the final re-
sults privileged by the authors have been discarded, as well as the non-audio features
(e.g., clinical [29,90] or flow-related features [33]). At the end, the retained number of
178 provides rather an order of magnitude than an exact count. Note also that the di-
mension of a feature can largely vary, from one single value for the Zero-Crossing Rate
(ZCR) [83] to an entire spectrogram image [144] for instance.

The most frequent feature observed is by far the Mel-Frequency Cepstral Coefficients
(MFCC), typically a set of 13 coefficients [197], present in 59 studies. It is followed by the
ZCR, representing the frequency of zero crossing of the time domain signal and whose
values are supposed to be higher for noisier and higher frequency signals, present in
31 studies. The third one is the energy, supposedly high in presence of cough, especially
for the explosive phase, present in 14 studies.
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We have grouped the features in 17 groups by the type of information they are aiming
to capture, each feature being arbitrarily assigned to one group only (Table 3). Although
other groupings would also be valid, this provides a general overview. The Figure 7 displays
their usage. The cepstral coefficients remain largely the most popular features. This can
be attributed to the abundant research in speech recognition [197] largely inspiring the
current research. Numerous studies have also tried to optimize them for cough processing
([54,68,158]). Come in second and third positions respectively the time domain features
and the measures of power and energy, usually simple features but important markers
to discriminate cough, especially the explosive phase. A special type of features are the
custom features, sorted in the “Deep learning raw data” category. They correspond to
the rising field of deep learning ([29,45–50,52,54–56,78,80,84–87,110,126,129,137,143,144,
148–150,154,155,157,171,172,183,185–187]). Deep neural networks take as input large raw
data, such as spectrogram images, and provide as output or intermediate results a limited
set of machine-interpretable values containing pertinent information, the features. They can
then be used for classification in a further step (see the following section Classifiers) [48,183],
or the classification stage can be directly embedded within the network, without explicit
stage of feature calculation (e.g., References [54,144,154,155]).

Table 3. Groups of features.

Group and Description Examples

A—Cepstral coefficients: Coefficients obtained from
cepstral analysis.

MFCC [145], improved MFCC [68], Gammatone Frequency
Cepstral Coefficients [158]

B—Time domain distribution and regularity: Characterization of
the time domain distribution.

ZCR [83], Shannon Entropy [150], Variance [100], Skewness [33],
Kurtosis [94], Crest Factor [83]

C—Total energy and power: Overall energy or power values, for
which the explosive phase is supposed to present a sudden rise.

Total Energy [33], Log-Energy [68], Total Power [156], Average
Power [33], Loudness [27]

D—Pitch, prosody, formants and harmonics: Speech-related
characteristics, supposed to detect voicing activity.

F0 [174], Pitch Standard Deviation [75], Pitch Coverage [75],
Formant Frequencies [94]

E—Spectral distribution and regularity: Characterization of the
spectrum distribution.

Spectral Centroid [29], Spectral Bandwidth [121], Spectral Flatness
[112], Skewness [70]

F—Frequencies: Peculiar frequencies of the spectrum. Spectral Rolloff [192], Dominant Frequency [83]

G—Energy and power in specific bands: Energy or power values
in specific frequency bands.

Power [30], Loudness [27], Log Spectral Energies [58], Octave
Analysis [33]

H—Energy and power ratios: Ratios of energy or power between
different frequency bands. Power Ratio [79], Relative Energy [132], Relative Power [121]

I—Time, duration and rates: Duration and time dynamics values. Duration [116], Slope [140], L-ratio [33], Left to Right Ratio [192],
Rising Envelope Gradient [160]

J—Frequency domain general: General spectrum
characterization. Power Spectral Density [99], Spectral Distances [99]

K—Spectrogram images, moments and filterbanks: Overall
spectrogram images, image moments and outputs of filterbanks.

Local Hu Moments [124], Cochleagram moments [84], Gabor
Filterbank [98]

L—Deep learning raw data: Input data for deep neural networks. Mel-Spectrogram [54], Mel-Scaled Filter Banks [137]

M—Time domain envelope: Characterization of the time domain
envelope shape, capturing typically characteristic peaks in the
explosive phase.

Filtered Envelope [69], Peak Number [79], Peak Location [160],
Rate of Decay [100]

N—Frequency domain ratios: Ratios between different
characteristic of the spectrum.

Harmonic to Noise Ratio [132], High-Frequency Content [147],
Low quantile ratio [147]

O—Spectral variations: Time variation measures of the spectrum. Spectral Variation [132], Spectral Flux [132], Evo [146]

P—Time domain amplitude: Characterization of the time
domain amplitude. Maximum Value [113], Minimum Value [113], Amplitude [160]

Q—Other Wavelet [91], Katz Fractal Dimension [184], DeoxyriboNucleic
Acid [81]
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Figure 7. Number of studies for each feature group.

In order to keep the number of features minimal, many studies consider a reduction of
dimensionality as post-processing. Most of them implement an algorithm selecting the most
pertinent subset of features ([27,53,58,70,74,81,83,84,90,91,93,94,96,113,121,122,132,141,142,
146,173,174,182,184]) while a few extract the feature principal components ([48,99,134,146]).

4.3.3. Classifiers

27 different classifiers have been identified. The classifiers not retained in the final
solution provided by the authors were discarded. The classifiers sharing analogous ap-
proaches have been grouped together to form categories. The Support Vector Machines
(SVM) and derivatives category encompasses the classical SVM classifiers ([48,53,54,74,77,
84,89,92,97,101,117,118,121,136,138,158,169,192]), its use in ensemble learning [159] and
the Sequential Minimal Optimization, an implementation instance of it ([165,166]). The
Decision Trees and related ensemble learning category encompasses the classifiers based on a
simple Decision Tree ([29,73,88,122,123,130,131,140,151,152,160,161,178,191,192]), as well as
the Random Forest classifier, using a multitude of decision trees and taking a final decision
by voting ([29,70,74,96,111–113,134,135,170,184]), and ensemble decision trees based on
boosting ([29,51,59,169]) and bagging [153]. It ranges from very simple trees based on
expert observations (i.e., References [73,160,178,192]) to very recent approaches based on
ensemble learning (i.e., References [29,153,169]). The Hidden Markov Models and derivatives
category encompasses the Hidden Markov Models ([69,76,127]), inherited from the speech
recognition research and particularly adapted to model times series [176], as well as its
implementation where the observation probabilities are generated by Gaussian Mixtures
([14,68,133,145,175–177,180]) and by deep neural networks ([143,180]). The Neural Networks
category encompasses all the neural networks, from the most simple ones with limited size
and limited hidden layers, or supposed so ([22,27,69,111,132,156,162,174,182]) to the state-
of-the-art deep networks ([29,55,85,87,110,148,149,183]), including the Convolutional Neu-
ral Networks ([45–47,52,54,78,80,86,126,129,137,144,154,155,171,185–187]), the Time Delay
Neural Networks ([84,150]), the Recurrent Neural Networks [49,50,56,155,172], the Genera-
tive Adversarial Networks [80] and the Octonion Neural Networks [157]. The other classi-
fiers are the Logistic Regression ([48,58,75,83,90,91,93–95,100,147,163]), the k-Nearest Neigh-
bors (kNN) ([49,81,104,119,120,124,125,138,141,142,146,164]), the Principal Component Analy-
sis [33], the Fuzzy C-means [99], the Gaussian Mixture Models ([78,98,102,103,128,168,173]),
the Discriminant Analysis [30,116] and the Naïve Bayes [153]. Their usage is presented in
Figure 8: the two most popular classification approaches are the Neural Networks and the
Decision Trees and related ensemble learning.
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Figure 8. Number of studies for each category of classifiers.

To grasp the trend and popularity of the classifiers, linear regressions of the number
of studies on the publication years have been calculated for the last 10 years (2012–2021).
Four classifiers or categories show a positive regression line slope, representing their gain
in popularity: the Neural Networks (slope = 0.75), the Decision Trees and related ensemble
learning (slope = 0.27), the SVM and derivatives (slope = 0.16) and the kNN (slope = 0.22).
The popularity of the SVM and derivatives could be attributed to the proven robustness
of such classifiers for small datasets, usually used as a reference classifier. The gain in
popularity of the kNN could be attributed to its relative simplicity, making it a good
candidate for implementation on smartphones with limited capacities, and mostly used
lately by the University of the West of Scotland research group ([119,120,124,125,164]).
The two remaining categories, the Neural Networks and the Decision Trees and related
ensemble learning, present the two highest gains in popularity over the last 10 years,
in particular the neural networks, and clearly benefit from the recent breakthroughs in
computational powers. These two categories are further detailed in Figure 9: the ensemble
learning component and the deep learning component take over the more traditional
approaches in their respective categories.

Figure 9. Time evolution of the ratios of the number of deep neural network studies in the “Neural
Networks” category (blue) and of the number of random forest and ensemble learning studies in the
“Decision Trees and related ensemble learning” category (orange).

4.4. Validation

We have gathered the characteristics of the validation and the numerical results. When
several experiments are provided in one study, only the ones considered in the eyes of the
authors or by default in our eyes as the most representatives were selected. Although we
intend to draw trends, it must be reminded that the studies remain hardly comparable.

The machine learning classifiers usually require a large number of training samples.
At the same time, collecting extensive data and manually labeling them remains arduous,
limiting the quantity of available data. In addition, a system must be tested on data not used
for the training. To optimize the use of available data, several cross-validation approaches
are considered. In the test data approach, a subset of the data is put aside for validation
and not used for training, or another set of data are specifically collected for validation
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purposes only. In the Monte–Carlo approach, the data are randomly split into a training
and a testing subset; this is repeated typically several tens to hundreds of times and the
averaged results are provided. While this approach allows a large number of tests, the
splitting between training and testing is not controlled. In the k-Fold approach, the data are
randomly split into k folds of comparable size, the training is done using (k-1) folds and
the system tested on the remaining fold; the folds are then rotated so that each fold is used
exactly once for testing and the averaged results are provided. Finally, in the Leave-one-out
approach, the system is trained on all the data except one sample and tested on the left
sample; the process is then repeated so that each sample is used once as the test sample.
This is a particular case of the k-Fold cross-validation.

We have identified altogether 207 experiments for which the cross-validation process
was explicitly mentioned. Half of the experiments consider an explicit set of test data (50%),
a quarter a k-Fold cross-validation (27%), followed by a leave-one-out cross-validation
(14%); the Monte-Carlo cross-validation is only considered in a minority of experiments
(9%). The split between the training and testing data can be considered at the sample (i.e., at
the cough event or cough frame) or at the subject level. A subject-level approach can ensure
a clear separation between the training and the test subjects. Stricter and more challenging
in terms of validation, reported as subject-independent, this approach aims at evaluating the
system on unknown subjects, as it is supposed to be the case after the system deployment.
A few numbers of systems aim however at implementing a self-training mode where
feedback regarding the specific user are possible ([74,133,139,142,164,164,166,176,177]). A
majority of the experiments (54%) do not appear however explicitly subject-independent.
Only 8% of them consider a self-training mode for which the non-subject-independency
could be considered as legitimate.

Reporting results consist in reporting binary classification results, where any input
sample is classified as positive or negative. The evaluation is performed on a set of samples
for which the classes are already known, usually by mean of human labeling. An actual
positive sample classified as positive is a True Positive (TP) and classified as negative is
a False Negative (FN). A good system maximizes the number of TP while minimizes the
number of FN, measured by the sensitivity ratio TP/(TP + FN), optimally achieving 100%.
Complementarily, an actual negative event classified as negative is a True Negative (TN)
and classified as positive a False Positive (FP). A good system maximizes the number of
TN and minimizes the number of FP, measured by the specificity TN/(TN + FP), optimally
achieving 100%. The sensitivity and the specificity measure the performance, as well as
a possible bias towards one or the other class. This assumes that the actual number of
positive (TP + FN) and negative samples (TN + FP) are of the same order. While this
remains usually the case for cough classification, it is not the case for cough detection.

4.4.1. Cough Classification

The number of samples for the two classes are usually of the same order and in-
terchangeable, making the sensitivity and specificity two comparable complementary
measures. A sample is usually one cough event. 81 sensitivity-specificity pairs have been
gathered, displayed as percentages in Figure 10. Multi-class classifications (e.g., Refer-
ence [98]) have been split into several binary classifications and missing values have been
recalculated when possible. Most results show comparable values higher than 75% in terms
of sensitivity and specificity. The 95% confidence ellipse shows a good balance between
sensitivity and specificity, centered around 85%. Further pairwise comparisons between
studies remain however very hazardous given their specificities. As an illustration, the
number of test subjects ranges from 8 [87] to 1064 [45] and of test cough samples from
16 [79] to 8380 [47]. Some studies consider one sample per subject while some others many
samples per subject.
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Figure 10. Specificity vs. sensitivity for the experiments of the cough classification studies. Each re-
search group is associated with a specific color. The dashed line represents the specificity = sensitivity
line and the dashed ellipse the 95% confidence ellipse.

4.4.2. Cough Detection

The cough and non-cough classes are not interchangeable, introducing further chal-
lenges. A cough detector typically classes as positive a cough event and as negative any
non-cough event: the evaluation still consists in estimating the TP, FN, TN, and FP and
ultimately the sensitivity and the specificity.

A first issue is the definition of an event. Some studies simply count the positive
and negative processing frames, although they may not be representative of the cough
Processing Most studies however aggregate several consecutive frames as events (before or
after classification [158]), and count the positive and negative events. A second issue is the
definition of a non-cough event: anything else than a cough, with variable durations. One
approach consists in considering events of variable lengths, making the processing more
challenging, while another consists in dividing the non-cough events into events of similar
durations than a cough, at the cost of creating artificial events.

The major issue is that cough segments are usually much more rare than non-cough
segments, most of them being trivial to discriminate such as silence. This leads to artificially
high values of TN and specificity, not representative of the real performance of the detector:
even with a very high specificity, “the number of false positives may exceed the actual
cough rate of the individual” [134] (p. 2). This is sometimes solved by discarding trivial
non-cough events to keep a similar number of cough and non-cough events, at the cost of
losing in authenticity. The alternative is to keep much more non-cough than cough events
and aiming for a very high specificity, as emphasized by den Brinker et al. [129], at the cost
of losing in readability. A few authors have also decided to replace or complement the
count of TN and specificity by a rate of FP per hour. This is also taken into consideration in
our review.

We have identified 86 studies having performed 125 experiments with at least one
numerical result reported. Further validation measures have been recalculated when
possible. The Figure 11 presents the most frequent reported measures: the sensitivity is
reported in about 85% of the experiments, while the specificity in less than two-thirds
of the experiments (62%). The FP per hour is reported in about 15% of the experiments.
The accuracy, representing a global evaluation measure, is reported in a good third of the
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experiments (38%). Precision, F1 measure and Negative Predictive Value (NPV) represent
complementary measures of the classifiers, reported in 15% to 35% of the experiments, as
well as the Area Under the Receiver Operating Characteristics (AUC-ROC), which provides
an estimation of the power of separability of the two classes. The histograms show a peak of
sensitivity around 85–90% and, as expected, a much higher peak of specificity, around 99%.
The accuracy, as a global measure, is more equally distributed. The imbalance between the
cough and non-cough classes is measured by the ratio of the number of test cough events to
the number of test non-cough events, measured at 0.54 ± 0.44 (by excluding the outlier [68]
having a much higher number of cough events).

Figure 11. Cough detection. Left: percentage of experiments reporting each of the 8 most frequent
measures. Right: histograms of the 3 most-frequent measures.

Eighty-seven out of 125 experiments reported a sensitivity-specificity or sensitivity-FP
per hour pair (Figure 12). The sensitivity spreads between 70% and 100% and the specificity
tends to be higher within a narrower range from 80% to 100%. The pertinence of the
FP per hour measure in complement to the specificity can be observed for the study of
Sterling et al. [145], who report both high specificity of 96% and high FP per hour of 26.

Finally, the number of cough samples per test subject vary also greatly between studies:
it ranges from 43 test cough samples for 84 test subjects [69] to 30,982 test cough samples for
6 test subjects [179]. The median number of test subjects is 13 and of test cough events 764.

Figure 12. Cont.
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Figure 12. Specificity (top) and FP per hour (bottom) vs. sensitivity for the cough detection. Colors,
lines and ellipses are analogous to Figure 10.

4.5. Citations

The number of citations measures the impact on the community and highlight the
most inspiring studies. They were collected (between October 2020 and June 2021) on Web
of Science and Google Scholar. Naturally, older articles are more prone to a higher number
of citations. The 10 most-cited studies from each source are displayed (Figure 13), leading to
12 studies altogether. Interestingly, the five most-cited studies are cough detection studies
also referenced in Table 4 of the most complete studies (see next section). Three cough
classification studies are listed, including the pioneering study of Thorpe et al. [30] and one
study from a nearby community ([192]). The most recent study is from 2015.

Figure 13. Number of reported citations for the most cited studies.
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Table 4. Overview of the selected cough detection studies (see text). GMM-HMM = Gaussian
Mixture Model—Hidden Markov Model, TDNN = Time Delay Neural Network, SE = Sensitivity,
SP = Specificity, PREC = Precision, FPh = False Positive per hour, ACC = Accuracy and F1 = F1 score.

Study and System # Test Subjects
(Cough Events)

Feature Groups
(as in Table 3)
+Classifiers

Results Description

[121] 13 (1309) A − E − F − H − J − N + SVM SE = 88–90, SP = 81–75 Robust smartphone-based
cough detection

[22]
HACC 10 (237) A + Probabilistic Neural

Network SE = 80, SP = 96
Cough detection over long
periods of time for
objective monitoring

[14]
HACC-LCM 18 A + GMM-HMM SE = 57.9, SP = 98.2,

PREC = 80.9

Objective cough
monitoring for COPD
patients

[175]
LCM 9 (2151/1338) A + GMM-HMM SE = 71–82, FPh = 13–7

Continuous cough
detection for ambulatory
patients

[176]
LCM 26/9 A + GMM-HMM

SE = 85.7–90.9,
SP = 99.9–99.5,
PREC = 94.7, FPh = 0.8–2.5

Continuous cough
detection over long
periods of time for
ambulatory patients

[177]
LCM 23/9 A + GMM-HMM SE = 86–91, SP = 99,

FPh = 1–2.5

Continuous cough
detection over long
periods of time for
ambulatory patients

[150] 10/14 (656/1434) A − B − D + TDNN
SE = 89.8–92.8,
SP = 94.8–97.5,
ACC = 93.9–97.4

Cough detection for
pediatric population

[28]
LifeShirt 8 (3645) SE = 78.1, SP = 99.6,

ACC = 99, PREC = 84.6

Cough detection over long
periods of time for
ambulatory COPD
patients

[160] 10 (1019) I − M − P + Decision Tree
SE = 90.2, SP = 96.5, ACC
= 93.1, PREC = 96.7,
F1 = 93.3

Cough characterization
and detection

[17]
KarmelSonix 12

SE = 96–90, SP = 94,
PREC = 90–93, FPh =
1.2–1.2

Objective cough
monitoring for realistic
ambulatory situations

[181] 10 (50) SE = 84, SP = 50, ACC = 67,
PREC = 62.7, F1 = 71.8

Separation of cough and
throat clearing sounds

[78] 15 (5489) A − B − L + CNN SE = 99.9, SP = 91.5,
ACC = 99.8

Overnight
smartphone-based cough
monitoring for asthma
patients

4.6. Most Complete Detection Studies

Unlike classification studies for which small subsets can be easily selected according to
their classes (Table 1), the current review identified 91 detection studies hardly manageable.
Considering the ultimate objective of detection, i.e., building a system able to detect
automatically coughs, our ambition is to rely on the metrics and analyses presented in the
previous sections to select a limited subset of studies approaching at best this objective. The
selected studies may appear as candidate studies in the perspective of future deployment
in clinical environment. For this purpose, a list of objective criteria has been established,
covering the main aspects of a study: (1) regarding the study characteristics, it must be
published in a peer-review journal, (2) regarding the motivation, it must aim at proposing
a complete system and not focusing on a methodological aspect, (3) regarding the data
integrity, the samples must not be collected from public web platforms or artificially
manipulated, (4) regarding the validation, it must be explicitly subject-independent, unless
a self-training mode is implemented, and (5) regarding result reporting, it must report
a FP measure (e.g., specificity, false positive rate, or FP per hour). These criteria were
designed according to our expertise to target recurrent weaknesses in order to reduce
efficiently the number of studies to a manageable size. In no meaning this limited list
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represents an explicit validation of the integrity of a study. Rather, it constitutes a set of
minimum measurable pre-requisites towards this objective. Many crucial parameters have
not been considered, such as the number and profile of the test subjects and the recording
protocol, as objective criteria could not be set. The manageable size of this subset opens the
opportunity for deeper individual reviewing in the future. The studies fulfilling the criteria
but not reporting it explicitly could not be selected. This process led to a remaining subset
of 12 studies detailed in (Table 4).

5. Discussion and Conclusions

One hundred and forty-four studies were shortlisted and split into cough detection
and classification, and a comparative review was carried out. It resulted in an overview
of the state-of-the-art of the domain and a picture of the trends. Such a quantitative and
extensive analyses turned out to be challenging but provided, to the best of our knowledge,
an unequalled assessment of the field.

In summary, about half to two-thirds of the studies are dedicated to cough detection
and about a third only to cough classification. A rebalancing in favor of more classification
studies tends to occur in the last year, pushed by the studies dedicated to COVID-19
diagnosis. Classification studies aim mostly at diagnosing a disorder while detection studies
aim mainly at providing an objective or clinical-free cough monitoring or at assessing a
disorder. They are mainly applied to healthy subjects and patients suffering from COPD,
pertussis, bronchitis, asthma, LRTD, pneumonia and the latest newcomer, COVID-19. A
constant rise of publications was observed from 2005 to 2019. A typical study prefers
an ambulatory subject-related acquisition system and considers up to 30 test subjects.
Smartphones and wearable sensors tend now to overcome traditional acquisition systems.
The features are, by far, dominated by the cepstral coefficients, followed by the time domain
and the energy-related features. The preferred classifiers are the neural networks, the
decision trees and the derived ensemble learning. Among them, deep neural network and
ensemble learning show a clear rising trend. About half of the studies adopted a cross-
validation scheme based on the rotation of the training and test datasets. Classification
studies tend to show comparable sensitivity and specificity performances above 75%, while
detection studies show typically sensitivities above 80% and specificities above 95%, due to
imbalances between the cough and non-cough classes. A manageable subset of 12 detection
studies have been identified as the most complete towards the ultimate objective of a
deployable system. As far as we know, only the KarmelSonix system [17] has become a
commercial system. All the other studies can be considered as preliminary or in validation
phases. Finally, the most influential studies have been identified (including Birring et al.
and Barry et al. ([22,177]).

Despite our efforts, some studies may have escaped our attention. We can, however,
reasonably speculate that they would not alter the general trends reported in this article.

Despite a thorough analysis, it appeared impossible to compare the efficiency of the
methods and rank the studies accordingly. Such a procedure can only make sense for
studies sharing similar objectives and data. Alternatively, we attempted to provide an
objective overview of the various encountered techniques and how they are evolving. This
overview may serve in the future as the basis for selecting limited subsets of studies for
which deeper comparative analyses can be reasonably carried out.

Very close to each other and feeding themselves, cough detection and classification
were considered together. While this makes sense when dealing with automatic processing,
they remain nonetheless very distinct. To acquire data, cough detection considers arduous
long-term monitoring with all the associated challenges, while a smartphone recording a
subject for a few seconds in a controlled environment for cough classification is usually
enough. Regarding the processing, cough classification aims at classifying two comparable
cough signals, usually from balanced classes, while cough detection aims at classifying
more rare cough signals against an unlimited number and type of non-cough signals. In
other words, cough classification benefit from an easier data acquisition, opening the way
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for the collection of large datasets, such as collected from crowdsourcing. In cascades, such
large datasets open the way for powerful recent deep learning approaches, for which cough
classification processing is perfectly adapted. This may explain why cough classification
research has become more popular than cough detection research lately and that a rebal-
ancing between the two seems to occur. This phenomenon is perfectly illustrated by the
rapidly rising number of COVID-19 classification studies.

Despite abundant research, almost no study has led to a final medical product. This
could be attributed to several factors: (1) the difficulty in acquiring data, the fix room-
related acquisition systems lacking of flexibility and the ambulatory subject-related ones
showing practical limitations; (2) the difficulty in covering all possible real-life situations;
(3) the challenge in recruiting subjects and labeling data; (4) the difficulty in covering
real-life conditions for the validation and in estimating the false positives and (5) the lack
of standardization in the definition of the problem and of the expected outputs, despite
existing attempts ([3,6]).

In our view, breakthrough in the field may come from the technology and the method-
ology. Regarding the technology, the field may embrace two major evolutions: (1) the
development of big data and deep learning, boosting the classification performances and
(2) the rise of mobile health, making available to every individual at any time an ambula-
tory audio sensor. The development of big data and deep learning is a very clear trend
already observable in the current review. Substantial increases if the dataset sizes have
been achieved by means of crowdsourcing lately and used for the diagnosis of COVID-19.
Concomitantly, the increase of the dataset sizes opens up the opportunity for deep learn-
ing. This is the chosen approach for all recent studies with large datasets. Although the
potential of deep learning is unanimously recognized in this domain, it remains arduous to
handle: the need for a large set of training data, heavy processing, network architecture and
convergence obtained by trials and errors, problems of unbalanced classes, overfitting and
generalizability, etc. This still leaves much room for improvement. Mobile-based solutions
have now taken the leadership over traditional systems, and optimized approaches are
under investigation [121]. An exciting challenge consists in combining big data and deep
learning on the one hand and mobile health approaches on the other hand to obtain mobile
and robust systems. The current considerations consist of optimizing networks offline
and installing the optimized solution on a mobile for a local processing or sending the
recorded data to a cloud for a heavier online processing. Regarding the methodology, a
standardization of the datasets and expectations may provide a fruitful frame and feed
a virtuous competition. Publicly available datasets would furthermore certainly boost
research in the domain. This trend is already visible regarding the COVID-19 data collected
by means of crowdsourcing [198,199]. Finally, the COVID-19 pandemic, for which cough is
one of the most prominent symptoms, and for which a quick, reliable and light diagnosis
remains challenging, may emphasize the importance of this line of research and should
participate in its promotion.
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