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Abstract

Analysis of sensory neurons’ processing characteristics requires simultaneous measurement of presented stimuli and
concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of
spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component
describes the neuron’s receptive field. From a machine learning perspective, this corresponds to the binary classification
problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field
(CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-
response data and subsequently interprets learned classifier weights as the neuron’s receptive field filter. Computational
learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk
of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of
the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from
experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-
modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and
higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs,
even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data
samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation
variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove
useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is
induced by experimental design.
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Introduction

Characterizing responses to sensory stimuli is fundamental for

understanding how biological systems encode information about

the outer world into a robust internal representation. At the level

of single neurons, information is encoded in a sequence of spike

and non-spike events [1,2]. The way stimuli are encoded in this

binary sequence is commonly analyzed using the receptive field

(RF), a functional model relating sensory stimulus and evoked

response (for a review see [3,4]). As illustrated in Figure 1 A
processing in the RF model is performed by a linear projection of

stimuli through the neuron’s linear filter, and a subsequent

nonlinear operation that governs the neuron’s spike response

(Figure 1 B). Such a cascade is also known as linear-nonlinear

Poisson (LNP, [5]) model. The linear filter corresponds to the RF

of a neuron and describes how that neuron integrates stimulus

features. Neural coding in terms of the RF has been applied to

different sensory modalities, e.g., in the visual system [6–9] and in

the auditory system [10–16].

However, even in the seemingly simple RF case, estimation is

non-trivial since estimation algorithms are not only influenced by

the true underlying system parameters, but also by the statistics of

the stimulus ensemble [17,18]. When the stimulus ensemble is

composed of stimuli with non-Gaussian distribution or higher-

order correlations across stimulus components, linear RF estima-

tion methods like the spike-triggered average (STA, [19]) and

derived variants, e.g., [7,11,20,21], may not correctly identify the

underlying linear RF parameters [8,22]. Recently developed

information-based estimators allow RF estimation under more

general conditions at the expense of optimization procedures that

may lead to suboptimal RF estimates, particularly for small sample

sizes [8,18,23].

The generalized linear model (GLM) framework [24] provides a

flexible approach to linear-nonlinear model parameter estimation.

A GLM utilizes a linear predictor and an invertible link function to

infer the system response’s expectation value and probability

density. Spike interactions may be incorporated in terms of a post-

spike history filter [9,25–27]. For arbitrary stimulus ensembles, the

GLM is proven to provide an unbiased estimator of the response if

the chosen inverse link function corresponds to the neuronal

processing nonlinearity. Thus, a mismatch between hypothesized

and actual nonlinearity may lead to biased estimates [25]. Iterative
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fitting of the linear filter and the nonlinear link function may

reduce the bias and provides a numerical approximation to

maximization of mutual information between stimulus and

response in case the number of spikes is small [23].

Here, a classification-based method is proposed that reliably

estimates a neuron’s RF when the stimuli possess characteristics

akin to those of natural stimuli, involving non-Gaussian statistics

and higher-order correlations within the stimulus ensemble. The

rationale for the approach is based on the classic notion of the

McCulloch-Pitts model [28] in which neurons are regarded as

binary decision units that linearly sum inputs and respond with the

presence or absence of a spike depending on whether a (possibly

noisy) threshold is exceeded or not. Figure 1 C illustrates the

corresponding generative model in which spikes are generated

from projections of stimulus examples onto the linear filter,

followed by a noisy threshold operation. The spike threshold, as a

fundamental part of the neuron’s response, is explicitly accounted

for in the model, and the stochasticity in the neuron’s response is

incorporated through the additive noise term.

To learn the parameters of the model we have to find the

classifier parameters such that the probability of falsely detecting

spike or non-spike examples is minimized. The principle is

illustrated in Figure 1 D. A stimulus s~ s1,s2,s3,:::,sDð ÞT, such as

the spectro-temporal density of an acoustic stimulus preceding the

response, is represented by a vector in a D-dimensional space.

Based on the observed response r, where r~z1 and r~{1
indicate the presence or absence of a spike, respectively, the

stimulus is assigned to either the spike or non-spike class. The goal

is to find the linear filter k such that spike and non-spike stimulus

examples are maximally separated in the D-dimensional space.

Maximum separation of spike-conditional stimulus examples is

directly related to the concept of empirical minimization of the

misclassification error [29]. Thus, the optimal k minimizes the risk

of falsely predicting a spike or no spike on the data and represents

an estimate of the neuron’s linear filter.

The underlying optimization corresponds to a classification task

and we will refer to this approach as classification-based RF

(CbRF) estimation. To find the parameters of the model we

propose an algorithm based on a large-margin classifier (see

Materials and Methods). We demonstrate that incorporation of

spike and non-spike probabilities is required to obtain robust

Figure 1. Classification-based receptive field estimation. (A) Linear models of neural response generation perform integration of stimulus
features using a linear filter corresponding to the neuron s receptive field (RF). (B) Standard linear-nonlinear Poisson (LNP) model: a static
memoryless nonlinearity is applied to the linear stimulus projection with subsequent Poisson spike generation. (C) The binary model assumed here
generates spikes from the (noisy) linear projection through an explicit threshold operation. (D) Stimulus examples, e.g., image or spectrogram
patches, are recast as vectors in order to estimate the linear filter in the binary model. The binary responses recorded in experiments are used to label
the resulting vectors as spike-eliciting (red) or non-spike-eliciting (gray). The proposed classification-based receptive field (CbRF) estimation method
aims to identify the hyperplane that optimally separates the spike and non-spike classes in a high-dimensional space, whose dimensionality
corresponds to the stimulus vectors’ dimensionality. The box illustrates the principle in two dimensions: a large-margin classifier adjusts the
separating hyperplane with normal vector k such that the risk of misclassifying stimulus examples is minimized. Misclassified stimulus examples are
marked by white circles and their distance to the hyperplane by black lines. The estimate of the linear RF filter corresponds to the recast normal
vector of the hyperplane.
doi:10.1371/journal.pone.0093062.g001
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parameter estimates for non-Gaussian stimulus ensembles. The

resulting estimator is robust to asymmetric stimulus distributions

and second- and even higher-order correlations in the stimulus

ensemble. It bears resemblance to maximization of mutual

information between stimulus and response in case the fraction

of stimuli that evoke a spike is small.

These findings are validated using simulations and recordings

from the inferior colliculus of Mongolian gerbils for responses to

highly non-Gaussian stimuli. We find that the classification-based

method is less sensitive to the detailed form of the nonlinearity

than the GLM when probed with natural stimuli. In the large-data

regime the proposed approach performs equally to information-

theoretic estimators with the benefit of much better convergence

properties. Thus, the CbRF method allows robust response

characterization, even in situations in which common estimators

may not provide reliable estimates of the RF parameters.

Materials and Methods

Classification-Based Receptive Field Estimation
Binary model of neural coding. In experiments, we present

D-dimensional sensory stimulus examples s(t)[RD from an

ensemble of stimuli while recording the one-dimensional response

r(t) to these examples from a specific neuron. We assume that the

response is already discretized and assumes binary values, with

r~1 denoting that a spike has been elicited and r~{1 indicating

the absence of a spike. In the auditory system, s(t) usually contains

the spectro-temporal density preceding the response in a specific

time window. In the visual system, s(t) may represent a sequence

of image patches.

When a spike is observed at time ti it is assumed that there is

some pattern in the stimulus example s(ti) that elicited the spike

and is characteristic for that neuron. Intuitively, observing that

specific pattern should increase the probability of detecting a spike.

In a simplified model, this can be quantified by the projection

x(t)~s(t)Tktrue of the stimulus onto the linear filter ktrue that

characterizes feature sensitivity of the neuron. To obtain a binary

response a threshold operation is applied to produce a spike if the

stimulus example contains a pattern similar to ktrue and x assumes

high values. Furthermore, neural responses are not deterministic

and we have to account for neural noise.

The time-dependent (binary) response r(t) of the system is given

by.

r(t)~sgn s(t)Tktrue{gzE
� �

~
1 s(t)Tktrue{gzE§0

{1 s(t)Tktrue{gzEv0

(
ð1Þ

with a noise term E centered around the spiking threshold g and

signum function sgn(u), which is 1 for u§0, and {1 for uv0.

The shape of the corresponding static nonlinearity in the LNP

model is determined by the cumulative density function of the

neural noise.

Estimation of model parameters. Numerical solutions for

direct estimation of ktrue and g in the binary model (Eq. (1)) from

data lead to a non-convex optimization problem and may result in

suboptimal estimates. Instead, a convex upper bound to the binary

loss is obtained by minimization of the objective function.

k�~arg min
k[Rd

g[R

1

T

XT

t~1

L r(t),a(t)ð ÞzlEkE2 ð2Þ

with loss function L, L2-norm regularization term E:E2, and

a(t):s(t)Tk{g. The loss function is a nonlinear function of how

distant misclassified examples are from the separating hyperplane

in stimulus space (cf. Figure 1 D) and thus determines the degree

to which "small’’ and "large’’ errors, respectively, are penalized.

The choice of L is crucial to find optimal solutions [30,31]. We use

the squared hinge loss.

L(r,a)~ 1{rað Þz
� �2

~
0 ra§1

(1{ra)2 rav1

�
ð3Þ

and (u)z is a function such that uz is u, if uw0, and zero,

otherwise. The regularization term effectively maximizes the

geometric margin between spike and non-spike class and is

controlled by the regularization parameter l, which is found using

cross-validation.

The optimization in Eq. (2) corresponds to the general form of a

large-margin classifier and does not involve explicit estimation of

class probabilities. However, the employed loss function directly

aims at the optimal decision rule that minimizes the risk of

misclassifying stimulus examples assuming knowledge of the true

conditional probabilities p(spikejs) of a spike being generated

given stimulus s [32]. Thus, if responses were generated according

to the noisy threshold model illustrated in Figure 1 C, the

proposed approach is guaranteed to find the optimal parameters.

This is also true for other loss functions; prominent examples are

exponential loss, logistic loss, and hinge loss [30,31,33]. The latter

corresponds to the square root of the squared hinge loss and is

closely related to the support vector machine (SVM) methodology,

which is motivated by maximizing the geometric margin between

classes [34,35].

The above definition of the problem assumes that spike and

non-spike examples occur with equal probability, i.e.

p(spike)~0:5 and p(no spike)~0:5. However, spikes are sparse,

particularly in cortical areas, making it necessary to extend Eq. (2)

to account for highly unbalanced spike and non-spike classes. Prior

information may be introduced into Eq. (2) by replacing the loss

function L with the weighted loss Lw,

Lw(r,a)~

1
p(spike)

L(r,a), r~1

1
p(no spike)

L(r,a), r~{1,

 
ð4Þ

which weights errors of spike and non-spike examples by the

corresponding inverse probabilities [33,36].

Figure 2 shows the difference between solutions with and

without weighting of misclassification errors for a two-dimensional

example with p(spike)&0:06. Without weighting, the solution

systematically deviates from the true solution, whereas the

weighted solution recovers the ground truth RF. For comparison

we also tested the linear spike-triggered average (STA) estimator

(see Methods S1). The STA solution is highly biased due to

violation of the symmetry assumption.

Relation between class decisions and conditional

distributions. Here, we will show that prior-based weighting

of misclassification errors (cf. Eq. (4)) provides a link between

spike-conditional projections onto the linear filter and spike-

conditional distributions. This interpretation allows to relate the

CbRF method to probabilistic approaches, e.g., information-

theoretic estimators (see below).

Assume we have estimated linear filter k and spiking threshold g
for a given stimulus–response set. After projection onto k, the joint
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distribution of projected stimuli x and spike labels r is given by

p(x,r). The probability mass in the two slices of this distribution,

p(x,r~{1) and p(x,r~1), is distributed very unevenly. However,

the class-specific weighting proportional to the inverse prior

probabilities implies sampling from the (normalized) conditional

distributions p(xjr~0) and p(xjr~1) due to the equality.

p(xjr~i)~
1

p(r~i)
p(x,r~i) i[{1,1: ð5Þ

In consequence, weighted errors obtained in the limit of high

and low threshold values, respectively, are equal, reflecting the

symmetric influence of the two classes on the binary error

function.

Lbinary(r,̂rr)~
0 r~r̂r

1 r=r̂r,

�
ð6Þ

where r̂r is the response predicted by Eq. (1). This is also true for

the CbRF method, which optimizes a convex upper bound to the

binary misclassification error.

Optimal spike decisions minimize threshold noise. Let

f �(k,g,l) denote a decision rule for which we have estimated

linear filter k and spiking threshold g for a particular choice of the

regularization parameter l. According to Eq. (1), decisions are

made by applying a threshold operation to the projections

x(t)~s(t)Tk of the spike-eliciting and non-spike-eliciting stimulus

examples onto the estimated linear filter. As a result of prior-based

class weighting, the distributions associated with the conditional

projections, namely p(xjno spike) and p(xjspike), determine the

expected misclassification risk. An example for spike-conditional

and non-spike-conditional distributions is shown in Figure 3 A. In

the region where the density of one of the distributions is close to

zero the response can be considered to be essentially deterministic.

In the transition region, the separability highly depends on the

overlap, which is determined by the noise level around the

threshold. Therefore, the optimal filter estimate is given by the

model that results in the smallest overlap between the distribu-

tions, corresponding to the lowest achievable noise level.

Figure 2. Effect of incorporating class prior probabilities into
the objective function. LNP simulation with a D~2-dimensional
uncorrelated stimulus, asymmetric stimulus distribution and sigmoid-
shaped nonlinearity. The dashed line indicates direction of the ground
truth linear filter. Light and dark gray dots represent presence or
absence of spikes, respectively, with p(spike)&0:06. Filter estimates
represented by the normal vectors of the decision hyperplanes have
been estimated using the proposed classification-based method with
true class prior weighting (blue arrow) and uniform weighting (black
arrow) of misclassification errors. The green arrow illustrates the spike-
triggered average (STA) solution. The filter direction estimate obtained
with uniform weighting systematically deviates from the true direction.
For visualization purposes, normal vectors of decision hyperplanes have
been rescaled equal length.
doi:10.1371/journal.pone.0093062.g002

Figure 3. Misclassification risk and threshold noise. (A) Distributions of spike-eliciting (p(xjspike); dark gray) and non-spike-eliciting
(p(xjnospike); light gray) stimulus examples after projection onto CbRF method-derived linear filter; abscissa in arbitrary model units (a.u.). The
hatched area indicates the overlap of the distributions where the model produces non-deterministic classification responses. (B) Receiver operating
characteristic (ROC) analysis of classification performance for one estimated RF filter, obtained by varying the decision threshold applied to projection
x and subsequent plotting of resulting true positive and false positive classification rates, i.e. threshold varies along the curve. The (0, 1) point
indicates optimal performance and corresponds to vanishing noise around the threshold. The area under the ROC curve constitutes a measure of the
misclassification risk specific to the underlying RF filter and decreases with increasing noise levels. Regularization parameter l of the CbRF model (Eq.
2) is obtained by maximization of area under the ROC curve during cross-validation on the training data. Results shown based on data from LNP
model simulations with natural image stimuli.
doi:10.1371/journal.pone.0093062.g003
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A similar approach has previously been used in physiological

studies to quantify the discrimination sensitivity of neurons

between two possible decisions, e.g., [37,38]. It is based on the

receiver operating characteristics (ROC) curve, which is generated

by plotting the fraction of correctly detected spike examples ("true

positive rate’’) versus the fraction of falsely detected non-spike

examples ("false positive rate’’) for different spiking thresholds. In

the linear threshold model, this is equivalent to "shifting’’ the

threshold along the axis of stimulus projections and estimating the

rates from the distributions. The ROC curve for the example is

shown in Figure 3 B. The overlap between the distributions can be

quantified by integrating over all thresholds yielding the area

under the ROC curve (AUC). A value close to 1 corresponds to a

small overlap, whereas a value close to 0.5 indicates highly

overlapping distributions manifesting in a random response.

A similar scenario occurs in information-theoretic RF estima-

tion that seeks to maximize mutual information (MI) between

stimulus and response in a linear-nonlinear model [8,18,23]. MI is

given by the Kullback–Leibler divergence (cf. Eq. (1) in Methods

S1) between prior and spike-triggered stimulus distributions p(x)
and p(xjspike), respectively [39]. If the probability of the

occurrence of a spike is small, i.e. p(spike)%p(no spike), the

distribution of non-spike-conditional projections, p(xjno spike), is

effectively equivalent to p(x), as is usually the case for sensory

neurons. Hence, both unconstrained maximization of MI and

constrained minimization of the relative misclassification risk aim

for models that minimize threshold noise. RF estimation based on

MI maximization is known as "maximum informative dimensions’’

(MID, see Methods S1 for details) [18]. For comparison, we also

applied to MID method to the data.

Numerical Optimization. The optimization problem in Eq.

(2) is convex and permits efficient solution using standard gradient

descent methods. Here we used a Newton conjugate gradient

trust-region algorithm for unconstrained minimization [40]. The

regularization parameter l is chosen using five-fold cross-

validation on the training set. The value of l that results in the

highest cross-validated AUC is used to estimate the final RF

parameters. On a full IC data set determination of the best

regularization parameter took less than 10 minutes on a current

multi-processor computer.

Physiology Experiment
Ethics statement. All experiments were conducted in

accordance with the international National Institutes of Health

Guidelines for Animals in Research and with ethical standards for

the care and use of animals in research defined by the German

Law for the protection of experimental animals. Experiments were

approved by an ethics committee of the state Saxony–Anhalt,

Germany.

Electrophysiology. Recordings in the inferior colliculus (IC)

were made in 31 ketamine/xylazine anesthetized adult male

Mongolian gerbils (Meriones unguiculatus; age, 3–16 months;

body weight, 80–120 g). For detailed description of the surgical

procedure and electrophysiological recordings please see [41].

Briefly, single-unit recordings in IC were made with tungsten

electrodes (3–4 MV) via dorsoventral insertion using a Plexon

Multichannel Acquisition Processor (Plexon Inc). Recording

within IC was ensured by stereotactic coordinates and tracking

down the electrode until short-latent (approx. 6–10 ms spike

latency) responses to brief tone-pips were found [42,43]. Single-

unit data was verified off-line using the software Offline Sorter

(Plexon Inc). Only units that produced at least 100 spikes per trial

have been considered for the analysis.

Stimulus generation. We used two stimulus ensembles. The

first ensemble was composed of consecutive blocks of frequency-

modulated tones. A block with randomly drawn starting and

ending frequencies between 0.5 kHz and 16 kHz is generated

according to.

s(t)~
XN

i~1

ai cos 2pVi(t) tzwið Þ: ð7Þ

We set ai~1 and wi~0, i~1,2,:::,N, for all N~4 sweeps in a

block. The block length is Tb~0:1 s and 5 ms half-cosine ramps

are used at the beginning and at the end of each sweep. The length

of the stimulus sequence is 100 s and the whole sequence has been

repeated five times. In the the second stimulus ensemble the same

FM sweeps started continuously in time under the constraint that

the average sweep density is between 3 and 4 sweeps.

In this study, we used linear sweeps, V(t)~f0z
f1{f0

t1
t, with

starting and ending frequencies f0 and f1, respectively, and t0 and

Figure 4. Robustness of RF filter estimation to stimulus distribution asymmetries, obtained with LNP model simulations and
asymmetric white noise stimuli. (A) Ground truth linear filter underlying the simulations. (B) Stimulus amplitude distribution with long tail
towards positive values, created by drawing 104 samples from a Gaussian white noise distribution and subsequent expansion (compression) of
positive (negative) amplitudes, respectively. The stimulus auto-covariance matrix remains diagonal, simplifying the linear estimator to STA without
covariance correction. 50 samples of the temporal stimulus sequence shown in the inlet. (C) Estimates of the linear filter obtained using STA, MID and
CbRF approach. While the latter two methods reconstruct the true linear filter faithfully, the STA-based estimate shows a non-symmetric scaling of
the positive and negative deflection. Linear filter amplitudes rescaled to arbitrary units (a.u.) in the interval ½{1,1� for visualization.
doi:10.1371/journal.pone.0093062.g004
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t1 are the corresponding time instants. Sounds were delivered by

an amplifier to a calibrated Canton Plus XS.2 speaker and

presented free field in a double-walled sound booth. For analysis,

the stimuli were transformed into their time-frequency represen-

tation by filtering the sound pressure waveform using a

gammatone filterbank into octave-like frequency bands (approx.

2 filters per octave). Compression resulting from the cochlea has

been simulated by applying log-compression to the envelope of the

filter outputs.

Results

Receptive Field Estimation from Simulated Responses
Robustness to asymmetric stimulus distributions. We

demonstrate the robustness of the proposed method by consider-

ing a model neuron whose RF can be described by a temporal

filter. As indicated in Figure 4 A the linear filter represents an

onset detector with symmetric negative and positive deflection

amplitudes. Such a system may arise in the analysis of auditory

nerve responses [19] or visual retinal ganglion cells for responses to

a sequence of image intensities [5,20].

A temporal stimulus sequence was created by independently

drawing N~104 values from a normal distribution,

st*N 0,1ð Þ,t~1,2,:::,N , and expanding positive values and

compressing negative values. Such positively-skewed distributions

often arise for natural images [20]. Figure 4 B shows mean across

all stimulus dimensions of the modified stimulus distribution.

Stimulus examples were created from the stimulus sequence by

recasting D~50 samples preceding the response. Responses were

simulated by projecting stimulus examples onto the RF and

applying a saturating static nonlinearity with subsequent Poisson

spike generation.

Figure 4 C shows estimates of the linear filter obtained using the

CbRF method, MID analysis and the linear STA estimator (see

Methods S1). Both CbRF and MID recover the true linear filter.

The correlation between estimated and true RF is 0.99 in both

cases. The STA-based estimate, however, suggests that the

magnitude of the positive deflection is about half the magnitude

of the negative deflections. This is produced by the long tail

towards large positive values of the stimulus distribution.

Decorrelation of the STA did not enhance performance due to

the diagonal stimulus auto-covariance matrix.

Robustness to higher-order correlations in the stimulus

ensemble. Interactions between higher-order correlations in

the stimulus ensemble and nonlinear neural response properties

may result in an overestimation of the dimensional support of the

RF, even for stimulus ensembles with vanishing second-order

correlations [22]. By dimensional support we refer to the

dimensions in which the true linear filter is non-zero. Hence,

filter estimates obtained with stimuli that contain higher-order

correlations may partially reflect stimulus-dependent response

properties rather than properties of the true RF. The performance

in such scenarios is investigated below for the proposed method

and compared to the STA and MID.

To separate the effect of higher-order correlations and

asymmetric stimulus distributions we used an ensemble of sinusoid

gratings, an effective and frequently used stimuli in the visual

system, e.g., [2,7]. The stimulus ensemble consists of 80000

patches of size 25625 with randomly chosen orientation, spatial

modulation frequencies and spatial phase. Figure 5 B shows four

grating stimulus examples. Second-order correlations were

removed by whitening the stimulus ensemble prior to simulation

and analysis. The resulting stimulus distribution is spherically

symmetric due to the equal-probable positive and negative

sinusoidal amplitudes but the stimulus dimensions are not

independent due to periodicity of the gratings: non-zero filter

values in two dimensions may systematically imply non-zero values

in other dimensions ("multi-point interactions’’) for the subset of

stimulus examples that produce a non-zero response (see Methods

S1).

The results are shown in Figure 5 C. Already for a quadratic

nonlinearity (p~2; "three-point interactions’’, see Methods S1) the

STA exhibits systematic and significant overestimation of the

dimensional support at multiples of the modulation frequency of

the Gabor filter. The effect becomes even more pronounced for a

cubic nonlinearity (p~3; "five-point interactions’’). In contrast,

CbRF and MID do not show any systematic overestimation of the

Figure 5. Robustness of RF filter estimation to higher-order correlations in the stimulus ensemble. (A) Ground truth linear filter
underlying the simulations. (B) Examples of sinusoid grating stimuli conveying higher-order correlations. The stimulus ensemble was composed of
80,000 grating stimuli with random orientation and spatial frequency. Second-order correlations were removed by a whitening transformation prior
to simulation and analysis. (C) Filter estimates obtained with STA, MID and CbRF methods. Quadratic (p = 2, upper row) and cubic (p = 3, lower row)
nonlinearities were used for LNP model simulations. Overestimation of the RF filter support visible in the STA result is a result of higher-order stimulus
correlations, since the stimulus (second-order) auto-covariance matrix was diagonal by construction. Correlation of estimated with true RF filter
indicated in lower right corner of each plot.
doi:10.1371/journal.pone.0093062.g005
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Figure 6. Spectro-temporal receptive field (STRF) estimation from simulated responses to natural stimuli: Robustness to neuronal
nonlinearity. (A) Ground truth spectro-temporal linear RF filter used in LNP model simulations of spike responses to four minutes of human speech.
(B) Different static nonlinearities utilized in the LNP model, ranging from linear to step-like, the output of which was used for Poisson process spike
train generation. (C) Linear RF filter estimates obtained with four estimation methods (rows, explanation cf. Table 1) for each of the nonlinearities in
panel B (columns). Numbers indicate correlation of estimated with true RF filter. CbRF and MID methods reliably recovered the true linear filters. The
GLM shows a bias when the assumed exponential inverse link function deviates from the static nonlinearity used to generate the data, e.g., for the
compressive, sigmoid, and threshold nonlinearities. (D) Average correlation between true and estimated linear filter for speech stimuli of varying
length. An ensemble of model cells was created using different linear filters and different nonlinearities from panel B with randomly chosen
parameters. Shown are the correlations’ mean and standard deviation across 150 model cells for each method. With mean correlation about 0.93 for
100% (four minutes) of the data, CbRF and MID yield higher correlation than GLM and ridge regression. Towards smaller sample sizes, CbRF method
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dimensional support indicating robustness to higher-order corre-

lations in the stimulus ensemble, even in such a distinct example.

Receptive field inference from responses to natural

stimuli. The stimuli used in real experiments usually contain

both second as well as higher-oder correlations and a non-

symmetric stimulus distribution p(s). Here, we analyze the

capability of the different methods to reconstruct RF parameters

from simulated responses to natural stimuli.

As an example, we used human speech taken from the TIMIT

speech corpus [44]. To simulate peripheral processing utterances

from different speakers have been transformed into octave-like

frequency bands using a gammatone filterbank with subsequent

log-like compression of the envelope of the filter outputs. The

frequency range has been limited to the range in which speech

contains a complex harmonic structure, namely between 500 Hz

and 4 kHz, and the temporal resolution was set to 2.5 ms.

Responses were simulated using a narrow-band onset spectro-

temporal receptive field (STRF) (Figure 6 A), a pattern that has

been found throughout different stages of the auditory system of

mammals [10,15,45]. The output of the linear stage was

transformed into a spike rate using different nonlinearities, ranging

from linear to step-like (cf. Figure 6 B). Spikes were generated

from the spike rate by an inhomogeneous Poisson process. We

strove to achieve a realistic average spike rate between 0.02 and

0.1 spikes per sample for all nonlinearities.

Figure 6 C shows linear filter estimates for the onset filter

produced by ridge regression, a GLM with Poisson distributed

noise, MID, and the CbRF method (see Methods S1 for details on

ridge regression, the GLM and MID). For the half-wave rectified

linear and quadratic nonlinearities, GLM, MID and CbRF

perform almost identically, obtaining a correlation of approxi-

mately 0.9 with the true filter. With increasing degree of

nonlinearity the performance of the GLM decreases. This is likely

a result of a mismatch in the assumed nonlinearity, which is

exponential for the GLM, and the nonlinearity used to produce

the spike trains. MID and CbRF were able to reliably recover the

true linear filters. Due to the strong non-Gaussian structure of

speech the linear ridge estimator shows a strong bias, in particular

for nonlinear model cells.

We also tested dependence of the different methods on data set

size. Therefore we simulated responses with varying number of

samples using the different nonlinearities and estimated the linear

filter using the different methods. To obtain a diverse ensemble of

responses we also used different linear filters, e.g., frequency-

shifted versions of the above onset filter and Gabor-like filters of

different orientations. We further randomly varied the parameters

of the different nonlinearities, e.g., the exponent of the compres-

sive nonlinearity or the spiking threshold of the threshold

nonlinearity, resulting in 150 distinct model cells for each sample

size.

The results are shown in Figure 6 D. For 100% of the data

(corresponding to 4 minutes of speech) MID and CbRF show

comparable performance. With decreasing sample size the CbRF

method yields noticeable higher average correlations with the true

linear filter than MID. The performance of the GLM is below the

CbRF by about 5%, a result of bias in GLM-based estimates for

static nonlinearities not matching the GLM’s inverse link function

as described above. Thus, across all model cells the CbRF method

is more robust to different nonlinearities than the GLM while

being less sensitive to small sample sizes than MID.

Figure 6 E shows the results for the same experiment but with

zebra finch vocalizations as stimulus instead of human speech. The

zebra finch vocalizations were provided by the Theunissen lab

through the CRCNS database [46], and have previously been

used as stimuli in neurophysiological experiments [47,48]. Similar

to the speech experiment, the CbRF method yields considerable

higher mean correlation values than MID with decreasing sample

sizes. However, the GLM shows improved performance compared

to human speech, outperforming MID for sample sizes below

50%. This may be a result of the less non-Gaussian structure of

zebra finch songs compared to human speech. This also becomes

apparent for the ridge method that yields higher mean correlation

values. However, across different model cells and stimulus classes,

the CbRF method provided the best performance, in particular for

small sample sizes.

performance declines slower than the other methods’ including MID’s. Bias of the linear ridge regression estimator may be due to the highly non-
Gaussian structure of human speech. (E) Same experiment as in D but with conspecific zebra finch vocalization stimuli of total length three minutes.
CbRF method resulted in highest mean correlation for all stimuli lengths. GLM and MID method showed similar performance for long stimuli with
GLM declining less towards smaller sample sizes below 50%. The somewhat higher mean correlation values observed for ridge regression in
comparison to panel D may be attributed to the fact that the zebra finch vocalizations were less non-Gaussian than human speech.
doi:10.1371/journal.pone.0093062.g006

Table 1. Summary of estimation methods with associated cost function, regularizer and optimization technique.

Method Cost Regularizer Criterion Optimizer

STA Least squares None n/a Closed form

Ridge Least squares L2 MI Closed form

NRC Least squares Truncated SVD of cov. matrix MI Closed form

MID MI Early stopping MI SA+gradient ascend

GLM Poisson log-likelihood L2 MI Trust region Newton CG

CbRF Squared hinge loss L2 AUC Trust region Newton CG

Ridge, GLM and CbRF methods put a Gaussian prior on the filter coefficients, implemented by the L2-norm penalty in the objective function. The squared hinge loss of
the CbRF method corresponds to the least squares loss with truncated negative part. Cross-validation on training data is used for all methods to determine the optimal
regularization hyperparameter or the termination of early stopping for MID. STA: spike triggered average [19]. Ridge: ridge regression [67]. NRC: normalized reverse
correlation [11]. CbRF: proposed classification-based receptive field estimation. GLM: generalized linear model [25,26]. MID: maximally informative dimensions [18]. MI:
mutual information between stimulus and response. SVD: singular value decomposition. CG: conjugate gradient. AUC: area under receiver operating characterisitc
curve. SA: simulated annealing.
doi:10.1371/journal.pone.0093062.t001
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Receptive Field Estimation from Experimental Responses
The method was then tested using data from single-unit

recordings in the inferior colliculus (IC) of anesthetized Mongolian

gerbils. Stimuli for STRF estimation consisted of consecutive

blocks of frequency-modulated (FM) tone complexes (see Materials

and Methods). FM tones have been shown to constitute important

auditory features, e.g., phoneme transitions in human speech or

conspecific vocalizations, manifesting in the sensitivity of the

auditory system to spectro-temporal transients [10,49,50], and can

be considered as partial analogue to visual spatiotemporal edges

[51]. Furthermore, temporal amplitude transients induced by the

block structure have shown to be an essential feature of the

auditory system [52,53]. Hence the used FM complex stimuli

might bear advantages for investigating neuronal processing of

specific aspects of natural sounds. We also probed IC units with

FM sweeps that continuously start in time. For details on

experimental procedures and stimulus generation see Materials

and Methods.

Figure 7 A shows a 1 s segment of an FM complex stimulus

spectrogram. The block length is 0.1 s and each block contains

four sweeps with randomly chosen starting and ending frequen-

cies. The stimulus distribution is shown in Figure 7 B. Stimulus

examples were sampled from the stimulus spectrogram by

recasting spectro-temporal patches preceding the response in a

40 ms time window as vectors. Thus, the statistics of the stimulus

ensemble is well approximated by the distribution of samples in

each frequency channel, which is clearly non-Gaussian in this case

(mean skewness {1:31+0:30). As indicated in Figure 7 C,

second-order correlations in the stimulus ensemble are most

pronounced in temporal direction spanning the whole patch size.

This is a result of the high temporal resolution (2 ms) of the filter

bank corresponding to the bin width of the spike trains. All units

had a best frequency below 6 kHz. Therefore, we restricted the

analysis to the range 0.5 kHz to 8 kHz resulting in 900-

dimensional stimulus vectors.

Example STRFs for four units estimated using ridge regression,

MID, GLM, and the CbRF method are shown Figure 7 D. The

ridge estimator shows both diagonal ("sweep like’’) structures and a

stronger negative deflection compared to the other methods.

Taking into account the results for simulated responses, the

diagonal structures may be a result of higher-order correlations,

whereas the increased negative deflection is likely caused by the

long tail of the stimulus distribution towards negative values (see

Materials and Methods).

Compared to MID both GLM and CbRF reveal slightly finer

spectro-temporal tuning in some cases. In general, the three

methods reveal almost the same STRF structure. There was a high

correlation between STRFs derived using CbRF and the GLM

(0:90+0:1 for the 38 IC units probed with FM sweep complexes

arranged in blocks; 0:90+0:15 for the 38 IC units probed with

continuously starting FM sweeps). The mean correlation between

STRFs for MID and CbRF was only slightly lower (0:87+0:13 for

the 38 IC units probed with FM sweep complexes arranged in

blocks; 0:88+0:15 for the 38 IC units probed with randomly

starting FM sweep stimuli). For comparison, the mean correlation

between STRFs estimated using CbRF and ridge regression was

0:83+0:07 and 0:82+0:05 for the block-like and continuously

starting stimulus ensembles, respectively.

Units C and D in Figure 7 D were also probed with dynamic

moving ripple (DMR) stimuli as described in [54]. DMR have

successfully been used in the IC in cats and allow STRF estimation

using linear estimators like ridge regression [55]. The DMR-based

STRFs are shown in Figure 7 E. The absence of diagonal and

strong inhibitory structures suggests that MID, GLM and the

CbRF method produced robust estimates of spectro-temporal

integration mechanisms for the units.

Population Analysis. For a quantitative evaluation the data

is split into two different parts: one part for training the model

(80%) and one part to evaluate the model on unseen data (20%).

This is done for different parts of the data in a 5-fold cross-

validation scheme. The regularization parameter is found by cross-

validation on the training data. We used mutual information (MI)

between stimulus and response for evaluation of the STRF

estimates (see Methods S1). MI is a model-independent measure

and does not depend on the scaling of the STRFs, which is

inherently different for all methods. Marginal and spike-condi-

tional probability densities were estimated using histograms.

We also included the "plain’’ STA and the normalized reverse

correlation (NRC, [11]) method, a variant of the STA that uses a

different regularization scheme than ridge regression (see Methods

S1). The NRC estimator has been used as a reference a in number

of studies, e.g., [8,27,56,57], and has been included to allow a

better comparison across studies.

Figure 8 A summarizes mean and standard error for cross-

validated MI values for the different methods for the neural

subpopulation probed with FM sweep complexes arranged in

blocks. Across all 38 units, MID, GLM, and the CbRF method

show a significantly higher predictive power than the linear

estimators, namely STA, NRC, and ridge regression (paired

Wilcoxon test; a~0:05). GLM and CbRF yield slightly higher but

not significant mean predicted MI values than MID (paired

Wilcoxon test; a~0:05). Example scatter plots comparing cross-

validated MI for the CbRF method to ridge regression, MID, and

the GLM for the 38 units are shown in Figure 8 C. Detailed

comparisons of cross-validated MI values for the other methods

are shown in Figure S1. All p-values have been adjusted using the

Holm–Bonferroni method.

There is also a significant difference in cross-validated MI

between the linear estimators. Ridge regression shows significantly

higher predictive power than the NRC method (pv1:5:10{5;

paired Wilcoxon test) and the STA (pv1:2:10{6; paired Wilcoxon

test). Whereas the STA is biased due to second- and higher-order

correlations, the only different between NRC and ridge regression

is the regularization method (see Methods S1 and Discussion). The

results for the second ensemble of IC responses to FM sweep

stimuli with continuously starting sweeps shown in Figure 8 B
confirm these findings. Thus, across a large ensemble of IC

responses to non-Gaussian stimulus ensembles the CbRF method

allows reliable estimation of STRF parameters.

Convergence Properties. The time we are able to record

from one or more units usually restricts the available dataset to

some noisy observations. In other situations, we may want to study

neural effects, e.g., adaptation to stimulus statistics, that may take

place on time scales smaller than the time a method needs to

converge [8]. In both situations, the goal is to achieve accurate

estimates with a possibly small amount of data.

To test convergence properties on neural recordings, we

estimated STRFs using 10%, 25%, 50%, 75%, and 100% of the

experimental IC data. To mimic a real recording situation we

always started from the beginning of the recording. Since the

"ground truth’’ STRF is not known and the employed MI measure

depends on the total information in the response for each unit and

may become highly biased for small sample sizes, we used the

correlation between partial STRF estimates and the STRF

estimated using all data. Hence, the obtained convergence curves

represent relative convergence and the population MI results

have to be taken into account for comparison of the overall

performance.
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Example STRFs for three units estimated using CbRF, GLM,

and MID are shown Figure 9 A. In all cases, the CbRF method

produces estimates very close to the final estimates using about

50% of the data as indicated by the high correlation between

partial and full estimates. To quantify this, we calculated the

correlation for all data sets. Figure 9 B and Figure 9 C display

mean and standard deviation for the IC responses to FM sweeps in

blocks and continuously starting FM sweeps, respectively. For all

conditions, the CbRF approach yields higher mean correlation

values than MID reaching a similarity of 90% with its final

estimate with approximately 60% of the data. MID requires on

average more than 90% of the data to reach the same mean

correlation value. The variability of the CbRF-derived estimates

indicated by the standard deviation is much smaller than for the

other methods. For comparison, the GLM has also been tested

showing intermediate performance compared to CbRF and MID.

Discussion

We have described a novel classification-based receptive

field (CbRF) estimation approach to infer receptive field (RF)

parameters from binary spike/non-spike predictions in a high-

dimensional stimulus space. In this interpretation, the problem of

RF estimation corresponds to finding the linear classification rule

Figure 7. STRF estimation from gerbil inferior colliculus (IC) responses to frequency-modulated (FM) sweep complex stimuli.(A)
Example segment of block-design FM tone complex with length 1 s. Amplitude scaling in decibel (dB), dynamic range limited to 25 dB below
maximum for visualization. (B) Stimulus amplitude histogram, shown for each spectral band after centering; red (blue) indicate high (low) probability,
respectively. (C) Normalized spectro-temporal auto-correlation function of stimulus ensemble. (D) STRFs estimated from recorded responses of four
gerbil IC units (columns) with four inference methods (rows, explanation cf. Table 1). All units had best frequency below 8 kHz and analysis was
restricted to the range 0.5 kHz to 8 kHz. The spike waveform density function of each unit is shown on top of each column, verifying single-unit
activity [66]. Spectro-temporally transient ("diagonal’’) patterns that are exhibited in the ridge regression-based estimates (top row) lack confirmation
in the MID-, GLM-, and CbRF-derived STRF estimates (lower three rows). Thus, we hypothesize that these are an artefactual result originating from
higher-order correlations and distribution asymmetries within the stimulus ensemble which the ridge regression method is not robust to. In general,
MID, GLM, and CbRF produce very similar STRF estimates, with the latter two methods revealing a slightly finer tuning in some cases. (E) Validation
experiment with dynamic moving ripple (DMR) stimuli responses recorded from two identical units (units C and D) as shown in experiment panel D.
Spectro-temporal transients absent in all methods’ STRF estimates, presumably due the absence of higher-order correlations in the DMR stimuli and
consistent with the explanation of panel D results.
doi:10.1371/journal.pone.0093062.g007
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that optimally separates stimulus examples that elicited a spike

from those that do not. The underlying threshold model includes

an essential characteristic of the spike generation process and a

simple model with Gaussian noise is sufficient to explain a wide

range of nonlinearities, ranging from almost linear to step-like

[18]. The assumption of a monotonic nonlinearity restricts the

model to cells for which the spike-triggered average (STA) is non-

zero [17]. However, such cells occur at many stages of the sensory

system, e.g., in the IC of gerbils and cats [45,55], in the A1 of

ferrets [13,16], and in V1 in cats [8,57].

We have also presented an algorithm based on a linear large-

margin classifier with the goal of minimizing the empirical risk of

misclassifying stimulus examples. The objective function is convex

and solutions of the resulting optimization problem can be found

efficiently. Although the underlying loss function aims at Bayes

optimal decision rule [30,31], this approach learns RF parameters

without specifying any density function and, therefore, differs from

maximum likelihood estimation of model parameters [9,21,25,27].

On the other hand, recent analysis has shown that the support

vector machine (SVM), a problem highly related to the proposed

approach, may be viewed as a maximum likelihood estimate of a

class of probabilistic models [36]. Furthermore, in case the loss

function can be expressed as the negative log-likelihood risk

Figure 8. Population analysis of STRF estimation for gerbil IC units using FM sweep complex stimuli in block–design and
continuous–onset–design. (A) Predictive power for the different methods in terms of cross-validated mutual information (MI) between stimulus
and response, showing mean and standard error. CbRF, MID and GLM perform almost identically with no significant difference between the methods.
Linear estimators (STA, NRC, ridge regression) show significantly lower predictive power. � denotes statistical significance (paired Wilcoxon test;
a~0:05). (B) Same experiment as panel A, but for 38 IC responses to continuously starting FM sweep complexes recorded in a separate neural
subpopulation. (C) Predictive power of the CbRF method for single units compared to ridge regression, MID and GLM. Shown are mean and standard
deviation across five cross-validation folds for the 38 IC units in panel A.
doi:10.1371/journal.pone.0093062.g008

Discriminative Learning of Receptive Fields

PLOS ONE | www.plosone.org 11 April 2014 | Volume 9 | Issue 4 | e93062



minimization and likelihood maximization are numerical identi-

cal, i.e. penalized logistic regression.

To elucidate the importance of class priors for the CbRF

approach we also estimated STRFs from the IC recordings

without weighting errors by the respective inverse class prior (cf.

Figure S2). Without weighting, STRF estimates reveal stronger

negative deflections and slight diagonal structures as for the ridge

modification of the STA. Moreover, comparing cross-validated

mutual information (MI) values of weighted and unweighted

estimators reveals that weighting significantly increases predictive

power (cf. Figure S2; weighted vs unweighted: pv4:10{4; paired

Wilcoxon test). These results indicate that this approach does not

work with a standard classifier and validate theoretical consider-

ations regarding highly unbalanced binary problems [33,36].

We have shown that the CbRF estimator is robust against

second-order and higher-order correlations in the stimulus

ensemble, thus alleviating the Gaussian assumptions of the STA

method. Even though higher-order correlations contribute only a

small fraction to the quantitative entropy measure of information

explained in natural signals (ƒ10 %, [58]), RF estimates obtained

using a linear STA estimator may suggest qualitative difference in

response characteristics [8,22]. E.g., the diagonal structures in STA-

based STRF estimates in Figure 0, which are presumably induced

by the stimulus ensemble composed of frequency-modulated tone

Figure 9. Convergence properties. STRFs have been estimated using a subset of the data and compared to the full data estimates as described in
the text. (A) Example STRFs for three units estimated using CbRF, GLM, and MID using 10%, 50%, and 100% of the data, respectively. Numbers in each
STRF plot indicate correlation with the corresponding full (100%) estimate. (B) Relative convergence curves showing mean and standard deviation
across 38 IC units for the block–design FM sweep complex stimuli for CbRF, GLM, MID and ridge regression. The CbRF method shows an average
correlation of 0.9 (0.8) with the full STRF estimate for about 60% (35%) of the data. MID requires more than 87% (76%) to reach the same correlation.
Performance of the GLM is between CbRF and MID. Across all experiments, CbRF has consistently lower standard deviations than MID, GLM and ridge
estimation. Note that by contruction all curves reach correlation one with standard deviation 0 at training size 100%. Bars were shifted horizontally for
visualization purposes (with GLM at correct horizontal locations). (C) Same experiment as in B, but for 38 IC responses to continuously starting FM
sweep complexes.
doi:10.1371/journal.pone.0093062.g009
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complexes and do not represent neural response properties. This

is confirmed by the absence of such diagonal structures for

DMR stimuli that only contain correlations up to and including

second order, making them suitable for STA-based response

characterization [54,55,59]. However, frequency modulations

are prominent features of natural signals [49,60]. Thus, a robust

description of stimulus-response properties for such stimulus

ensembles, particularly with regard to natural stimuli, is

fundamental for neural response characterization.

Differences between the Different Estimation Methods
All estimation methods apart from MID and NRC can be

formulated as L2-norm regularized optimization problem (cf. Eq.

(2) in Materials and Methods). Thus, the only computational

differences are the employed cost functions and the optimization

strategies. Table 1 summarizes cost functions, regularizers,

optimization algorithms, and model selection criteria for the

different methods.

STA, ridge regression and NRC are linear estimators that seek

to minimize the mean-squared error between model predictions

and neural data (for details see Methods S1). The difference

between the latter two methods is the employed regularization

method. NRC performs linear regression in a subspace spanned

by the eigenvectors of the covariance matrix whereas ridge

regression assumes a multivariate Gaussian distribution of the

linear filter parameters. As discussed in [27] NRC tends to remove

high frequency components for signals with low-pass characteris-

tics, e.g., natural stimuli, resulting in broadened STRF estimates.

We also found this effect in the NRC-based STRF estimates.

Ridge regression revealed STRF estimates with finer tuning and

thus higher predictive power. For both methods we also compared

closed-form regression solution and different iterative gradient-

based optimization techniques and found no significant difference

in predictive power (paired Wilcoxon test; a~0:05). Furthermore,

replacing the MI-based optimization criterion to find the

regularization hyperparameter by area under ROC curve (AUC)

or mean squared error did not increase predictive power (paired

Wilcoxon test; a~0:05).

In comparison with linear estimators, the CbRF method reliably

recovered the true linear filter from simulated responses to natural

stimuli and revealed higher predictive power on IC data. Both

CbRF and ridge regression use the same Gaussian prior on the

linear filter coefficients (L2-norm regularization). Thus, the only

quantitative difference is the employed loss function. Considering

that the CbRF’s loss function corresponds to the least squares loss

of ridge regression with truncated negative part the improved

performance of the CbRF method may seem surprising. However,

the underlying empirical risk minimization principle is different

from the least squares approach, which assumes a Gaussian

distribution of the data. Empirical risk minimization in the form of

a large-margin classifier does not make any stimulus distribution-

related assumptions, which seems to be crucial for reliable

estimation of RF parameters.

The GLM fits the data to a Poisson distribution and relates the

linear part to the spike response via an exponential nonlinearity.

The exponential is the canonical inverse link function for the

Poisson distribution and other choices are possible. However, as

demonstrated in [27], the specific type of link function seems to

have minor influence on the predictive power of the GLM. We

also tested a half-wave rectified linear inverse link function on a

subset of both IC data sets and did not find a significant difference

in predictive power (paired Wilcoxon test; a~0:05). The influence

of spike interactions in the form of a post-spike filter were tested on

a subset of the IC data. However, there was no increase in

predictive power or convergence speed and in some cases we even

found a decrease in performance.

The CbRF method revealed higher robustness to different

nonlinearities than the GLM on simulated data. To explore the

comparable predictive power of GLM and CbRF on neural

recordings we analyzed the neural nonlinearities in the IC data.

Both approaches reveal largely expansive (x2-like) nonlinearities

(cf. Figure S3). The average correlation between nonlinearities

inferred from STRFs estimated using the CbRF method and the

GLM is ~0:91+0:13. Thus, the equivalent performance of GLM

and CbRF on the IC recordings seems to be a result of

nonlinearities that may be well approximated by the GLM’s

exponential nonlinearity.

We found a significant influence of the optimization algorithm

on the performance of both CbRF and GLM, in particular for

highly correlated stimulus features. Amongst all tested gradient

descend algorithms, e.g., conjugate gradient (CG), truncated

Newton CG, and the Broyden–Fletcher–Goldfarb–Shanno algo-

rithm, the employed trust region Newton CG algorithm showed

the best performance on both simulated data and IC recordings.

Compared to the GLM the CbRF allows more efficient

computation of the model parameters. As a result of the CbRF’s

truncated least squares loss the gradient needs only to be updated

for the subset of misclassified stimulus examples, allowing the

combination of low computational cost and fast convergence of the

employed trust region optimization algorithm [40]. We found a

speedup of about 2–10 for the CbRF method compared to the

GLM.

Both CbRF and MID effectively aim at the model that

minimizes the overlap between the distributions of spike-condi-

tional and non-spike-conditional projections onto the linear filter

(see Materials and Methods). The high correlation between STRFs

produced by the two approaches in the large-data regime indicates

that there is not only a conceptual but also a quantitative

similarity. However, the underlying empirical risk minimization

principle is different from maximization of MI between stimulus

and response. This becomes apparent for small sample sizes, a

scenario in which the concept of class separation makes it sufficient

to "collect’’ some stimulus examples close to the separating

hyperplane to obtain an approximate solution to the problem

[34,35,61]. This also enhances performance in case the number of

spikes is rather small (cf. Figure S4). In contrast, information-

theoretic approaches use histogram-based estimation of probabil-

ity distributions, which is prone to be biased in some data regimes

even if the correct estimator is used [62]. The AUC metric

implicitly optimized by the CbRF has been shown to significantly

reduce bias compared to MI for rather small sample sizes while

being highly correlated with MI in the large-data regime [63].

Limitations of the CbRF Method
In comparison to the proposed CbRF method, estimators like

the spike-triggered covariance (STC) are much more general

allowing RF estimation for cells with symmetric nonlinearity (for

which the STA is zero) and extension to several linear filters

spanning the relevant subspace of a neuron for Gaussian stimuli

[3,17]. Information-based approaches extend this concept to non-

Gaussian stimulus ensembles, e.g., natural stimuli [18,23,58,64].

However, similar to the generalized quadratic model [65] the

CbRF may be extended to several filters by augmenting a

quadratic component. The resulting estimator seeks the separating

hyperplane in an second-order polynomial space. Such an

approach may be implemented efficiently in terms of a polynomial

kernel [35,61]. Thus, the CbRF method may even allow

characterization of the relevant subspace spanned by several
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linear filters. In the current version, the proposed CbRF approach

represents an alternative technique to infer single filter parameters

from responses to non-Gaussian stimulus ensembles that may be

beneficial in case data is rare or if the number of observable spikes

is small.

Supporting Information

Figure S1 Cross-validated mutual information for 38 CI

(TIFF)

Figure S2 Classification-based S RF estimation with and

(A) Example STRFs for two units with and

without weighting of misclassification errors by inverse class priors.

STRFs estimated using the unweighted version show stronger

negative deflections and diagonal-like structures similar to ridge

regression. (B) Predictive power of classification-based STRF

estimates in terms of cross-validated MI with and without

weighting of errors. STRFs estimated using the weighted version

result in significantly higher MI predictions (paired Wilcoxon test).

(TIFF)

Figure S3 Neural nonlinearities inferred from the I C recordings.

Neural nonlinearities estimated from 38 IC responses to FM tone

complexes arranged in blocks. The nonlinearities were constructed

by filtering the stimulus ensemble with the STRF, x~sTk, and

forming the ratio f (x)~p(spikejx)=p(x). p(x) and p(spikejx)
were estimated using histograms (11 bins). (A) Nonlinearities

constructed from STRFs estimated using the CbRF method. (B)

Nonlinearities constructed from STRFs estimated using the GLM.

In both cases, most nonlinearities reveal an expansive shape that

may be well fitted using the GLM’s exponential inverse link

function. The average correlation between the 38 nonlinearities

for CbRF and GLM is 0:91+0:13.

(TIFF)

Figure S4 Relation between correlation with full S RF and

For each IC unit STRFs were estimated using

10%, 25%, 50%, and 100% of the data. Each dot represents the

relation between the number of spikes used for STRF estimation

and the correlation with the STRF estimated using 100% of the

data. (A) Results for 38 IC responses to FM tones arranged in

blocks. (B) Results for 38 IC responses to FM tones continuously

starting in time. The number of spikes was constant across all

methods. Thus, any differences in correlations result from the

performance of the different methods. The CbRF method reveals

noticeable higher correlation values than MID, in particular for

small numbers of spikes.

(TIFF)

Methods S1 MID, GLM and STA methods.

(PDF)
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