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Medical specialties with access to a large amount of imaging data, such as

ophthalmology, have been at the forefront of the artificial intelligence (AI) revolution

in medicine, driven by deep learning (DL) and big data. With the rise of AI and big

data, there has also been increasing concern on the issues of bias and privacy, which

can be partially addressed by low-shot learning, generative DL, federated learning

and a “model-to-data” approach, as demonstrated by various groups of investigators

in ophthalmology. However, to adequately tackle the ethical and societal challenges

associated with the rise of AI in ophthalmology, a more comprehensive approach is

preferable. Specifically, AI should be viewed as sociotechnical, meaning this technology

shapes, and is shaped by social phenomena.

Keywords: ethics, bias, artificial intelligence, fairness, privacy

INTRODUCTION

The rise of artificial intelligence (AI) and big data has been hailed as the 4th Industrial Revolution.
Recent advancement in AI, in the form of deep learning (DL) which is a subtype of machine
learning (ML), and improvement in hardware such as graphic processing units (GPU), have
propelled medical AI applications to the forefront of the public discourse. This is because DL
has been shown to be on par with human experts in analyzing medical images across different
specialties, especially in medical specialties that interact with and have access to a large number of
images, such as dermatology, radiology, and ophthalmology (1–10). In addition, “super-human”
feats achieved by DL, such as the robust prediction of age, gender, blood pressure and smoking
status of a person from a color fundus photograph alone (11), have captured the public’s
imagination and sparked a debate on the role and impact of AI on medicine.

Ophthalmology, being at the forefront of this AI revolution in medicine, is well-positioned to
actively participate in and be a thought-leader on the societal implications for the rise of AI and big
data in medicine. In the following perspective piece, we will highlight the ethical controversies and
considerations from an ophthalmological perspective. The two major concerns regarding the rise
of AI in medicine and ophthalmology center on bias and privacy.

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.845522
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.845522&domain=pdf&date_stamp=2022-06-28
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tliu25@jhmi.edu
https://doi.org/10.3389/fmed.2022.845522
https://www.frontiersin.org/articles/10.3389/fmed.2022.845522/full


Liu and Wu Ethics in Ophthalmology AI

DISCUSSION

Bias and Fairness
AI has the potential to entrench, or even exacerbate, existing

biases in the healthcare system via unfair recommendations or
decision-making. Fairness can be defined as “the absence of

any prejudice or favoritism toward an individual or a group

based on their inherent or acquired characteristics” (12). A

prominent example of a medical AI algorithm providing unfair
recommendations and exacerbating biases was highlighted by a
study by Obermeyer at al. (13) showing that an AI algorithm

systematically biased against Black patients, by erroneously using

previous health costs as a proxy for predicting health needs and
illness severity.

Bias in the training data is one of the most common reasons
for a ML algorithm to produce unfair downstream predictions
or recommendations. Many types of bias in ML exist. A
comprehensive discussion of the different kinds of bias is beyond
the scope of the current paper, but is nicely summarized here (14,
15). Specifically, within the context of ophthalmology DL studies,
imbalance in training images is a common, yet addressable,
reason that can lead to biases against a patient subgroup, such
as patients of a certain race. For example, the AREDS image
dataset (16), generated from a landmark longitudinal clinical trial
and used in numerous important ophthalmology DL studies,
was derived primarily from Caucasian patients (about 96% of
participants). While age-related macular degeneration (AMD)
is more prevalent in Caucasian patients (prevalence of 5.4% vs.
4.2% in Hispanic, 2.4% in Black and 4.6% in Asian) (17–19), the
difference in prevalence on a population level does not explain
fully the extreme imbalance in the AREDS dataset. Additional
factors, such as unequal access to or interest in participating in
clinical trials, likely also played a role.

However, such imbalance in training data can be addressed
in three different ways. First, patient recruitment in prospective
studies can be planned to ensure equal enrollment numbers for
different pre-specified patient subgroups, e.g., based on sex, age,
race, ethnicity, socioeconomic status and disease severity, etc.
Second, if the recruitment of a certain patient subgroup is limited
by practicality or natural prevalence of the disease, e.g., Black
patients with AMD, then low-shot DL can be attempted. Low-
shot DL, in contrast to traditional DL which requires a large
amount of data for training, can be trained with relatively few
samples (20), and can outperform traditional DL approaches
when the available training dataset is small (5). Third, the patient
subgroup that is under-represented in the training samples can be
augmented by generative DL, a DL technique that can generate
synthetic data. It has been shown that retinal images, created
by generative DL, can be used to train a robust DL system for
AMD classification (21). Specifically, in the context of DL-based
detection of referable diabetic retinopathy, generative DL has
been used to increase the training image samples of an under-
represented patient subgroup and has been shown to decrease the
bias against that particular under-represented patient subgroup
during testing (22).

In addition to addressing the data distribution, themodel itself
can be fine-tuned to improve fairness. For example, instead of

minimizing the average error across all statistics, we could aim to
minimize the maximum error of a subset of statistics as evaluated
across different demographic groups of interest.

A recent scoping review on digital health solutions (23) found
that AI health applications generally lacked vigorous pragmatic
prospective real-world validations. Addressing training data
imbalance during model development should produce more
generalizable ophthalmic AI applications that perform more
robustly in real-world validations.

Privacy
DL models typically require a large amount of data for training,
and the rise of DL in ophthalmology coincided with the rise
of big data, both in the form of images and tabular data. The
training and testing of DL models often involve combining
ophthalmic images from different sources, and there is increasing
concern that such transfer of data represents an unacceptable
risk of privacy breach, especially since fundus images are now
considered protected health information.

Such concerns can be addressed in two ways: federated
learning and differential privacy. The training of DL models
can be facilitated by federated learning, which allows model
training in a decentralized fashion, takes advantage of the
data heterogeneity from disparate sources, and does not
require actual transfer of data between the sources (24). This
approach has been successfully implemented in the context
of retinal microvasculature segmentation and referable diabetic
retinopathy detection on optical coherence tomography (OCT)
and OCT angiography images. The authors demonstrated that
a federated learning approach achieved similar results as a
traditional centralized learning approach (25). Similarly, instead
of transferring data to train a DL model, the model itself can
be “brought” to the data for retraining. This concept has been
successfully demonstrated in the context of DL-based intraretinal
fluid segmentation on OCT images, in which the parameters of a
pre-trained DL model were frozen, transferred to and retrained
at a different institution. The authors showed that such a “model-
to-data” work flow could update amodel and improve themodel’s
performance, without the transfer of actual data (26).

Besides image databases, ophthalmology is also at the
forefront of establishing massive tabular databases. The
Intelligent Research in Sight (IRIS) Registry, spearheaded by the
American Academy of Ophthalmology, is the largest specialty
database in all of medicine in the world. The data collected to
date has been invaluable, and led to numerous new insights
and publications. Without a question, the IRIS Registry will
be indispensable in developing the next-generation predictive
ML algorithms. The data collected in IRIS is first de-identified,
before being distributed to researchers. Traditional data de-
identification methods include complete removal of all unique
identifiers or coarsening of the original dataset. Data coarsening
is achieved by providing the exact values of only a subset of
the original sample and thus creating an incomplete dataset
(27, 28). What remains to be seen is whether traditional data
de-identification methods will be sufficient for protecting the
privacy of data in the IRIS registry or similar tabular databases.
Traditional de-identification methods are vulnerable to linkage
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and other re-identification attacks, in which third parties
correlate the supposedly anonymized data with unanticipated
sources of auxiliary information to learn sensitive information
about data participants. Examples of de-identification failure
include the re-identification of “anonymized” hospital records
released by Massachusetts’ Group Insurance Commission and
the re-identification of Netflix users’ movie reviews from a
dataset released as part of a ML challenge that Netflix hosted
in 2006. A promising avenue of research is the application of
differential privacy to large ophthalmic databases, such as IRIS.

Differential privacy is the only principled solution for
releasing aggregate information about a statistical database,
with provable guarantees that no information attributable
to any individual in the dataset will be revealed. Briefly,
differential privacy employs randomization to guarantee that
the log odds ratio of any output of the analysis is bounded
by and compared to a counterfactual world, in which any
given participant has been entirely removed from the dataset,
thereby formally limiting what inferences an arbitrarily well-
informed observer can make about the data of any single
participant (29). By definition, differential privacy prevents
membership inference attacks as discussed above and provides
a general umbrella of protection. However, the exact methods
to create a differentially private dataset of unstructured data,
e.g., ophthalmic images, are not currently available. This a major
limitation of differential privacy as most recent advances in ML
applications to ophthalmology have been in DL applications to
ophthalmic images.

Finally, next-generation data infrastructure, specifically
geared toward big data, ML and data privacy, is being developed,
and a cutting-edge example is swarm learning. Swarm learning
(30) is a decentralized data infrastructure that uses blockchain
technology to ensure peer-to-peer data security. In contrast to
federated learning which still requires a central parameter server,
swarm learning is completely decentralized and, in addition,
could inherit and be compatible with aforementioned differential
privacy algorithms.

CONCLUSION

We are in the midst of the 4th Industrial Revolution, and
ophthalmology has been at the forefront of the rise in AI/ML/DL
and big data in medicine, and encountered various ethical
and societal implications of this trend. While the concerns
surrounding bias, fairness and privacy can be partially addressed
by the strategies outlined above, a more comprehensive approach
is preferable. This shift in mentality is best demonstrated by a
recently announced special funding opportunity that was offered
by the National Institute of Health as part of the Bridge2AI
Common Fund1. The funding opportunity aims to produce Data
Generation Projects that prospectively curate AI/ML ready data
based on ethical principles. Multi-disciplinary teams, comprised
of physicians, computer scientists and ethicists, are expected to
promote a culture of ethical inquiry and consider ethical issues
throughout the entire lifecycle of the project. Such an approach
is grounded in the emerging view that AI is a sociotechnical
issue: that is, AI shapes, and is shaped by social phenomena.
The acknowledgment that the successful application of AI to
medicine hinges on the holistic tackling of the associated ethical
and societal implications is indeed a huge step forward, and we
predict ophthalmologists in particular will play an important role
in this regard in the years to come.
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