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Abstract

Humans and animals face decision tasks in an uncertain multi-agent environment where an agent’s strategy may change in
time due to the co-adaptation of others strategies. The neuronal substrate and the computational algorithms underlying
such adaptive decision making, however, is largely unknown. We propose a population coding model of spiking neurons
with a policy gradient procedure that successfully acquires optimal strategies for classical game-theoretical tasks. The
suggested population reinforcement learning reproduces data from human behavioral experiments for the blackjack and
the inspector game. It performs optimally according to a pure (deterministic) and mixed (stochastic) Nash equilibrium,
respectively. In contrast, temporal-difference(TD)-learning, covariance-learning, and basic reinforcement learning fail to
perform optimally for the stochastic strategy. Spike-based population reinforcement learning, shown to follow the
stochastic reward gradient, is therefore a viable candidate to explain automated decision learning of a Nash equilibrium in
two-player games.
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Introduction

Neuroeconomics is an interdisciplinary research field that tries

to explain human decision making in neuronal terms. Behavioral

outcomes are construed as results of brain activity and the

neuronal correlates of the quantities relevant for the decision

making process are identified. Humans, as economic agents,

attempt to optimize some reward function by participating in the

production, exchange and maintenance of goods. Reward for the

individuals will depend in general not merely upon their own

actions but also on those of the other players and, furthermore,

these will adapt their own strategies.

Classical models in neuroeconomics are based on temporal

difference (TD) learning [1], an algorithm to maximize the total

expected reward [2] with potential neuronal implementations

[3,4]. It assumes that the environment can be described as a

Markov decision process (MDP), i.e. by a finite number of states

with fixed transition probabilities [5]. Multi-agent games, howev-

er, are not Markovian as the evolution of the environment

typically does not only depend on the current state, but also on the

history and on the adaptation of the other agents. Such games can

be described as partially observable Markov decision processes

(POMDP, [6]) by embedding the sequences and the learning

strategies of the other agents into a large state space. We have

presented a policy gradient method for population reinforcement

learning which, unlike TD-learning, can cope with POMDPs and

can be implemented in neuronal terms [7]. Yet, since a human

learner would need to successfully explore the large state space of

the POMDP, this appears to be an unrealistic scenario for

explaining decision making in a multi-agent environment. A more

realistic learning scenario is that humans transiently conceive the

other players to follow a fixed strategy, and try to find their

optimal counter strategy under this stationarity approximation.

Maximizing one’s own payoff while assuming stationarity in the

opponents strategy is called a fictitious play and conditions are

studied when this play effectively converges to a stationary (Nash)

equilibrium [8].

Here we show that for classical two-player games [9] a

simplified population reinforcement learning approach [7], which

is policy gradient under the stationarity approximation, can

reproduce human data. We consider two games, blackjack [10]

and the inspector game [11], as examples for which the optimal

strategy is either deterministic or stochastic, respectively. Opti-

mality is expressed in terms of the Nash equilibrium, a solution

concept for games involving two or more players. It is reached

when no player has anything to gain by changing its strategy

unilaterally. Each player is making the best decision it can, taking

into account the decisions of the other(s), hence the Nash

equilibrium constitutes an optimum. Our algorithm is consistent

with behavioral experiments for these games [10,11] while

performing optimally according to the Nash equilibrium. We also

show that TD-learning as well as covariance learning fail to find

the stochastic Nash equilibrium for the inspector game.

The current paper follows a long tradition of explaining human

and animal behavior by simple models of reward-based learning,

starting from Thorndike’s law of effect [12] and Pavlovian

conditioning paradigms [13,14] up to more recent theories of

reinforcement learning [1,2,15,16]. Basic reinforcement learning

with simple models of a few free parameters have also been

applied to games. It has been shown for a wide set of two-player

games that these simple algorithms well approximate human
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performance [17].Yet, we show that basic reinforcement learning

does not follow the reward gradient, and in fact it does not fit

human data on the inspector game as well as our gradient rule.

Obviously, playing games involves cognitive reasoning, as for

instance captured by the theory of ‘adaptive control of thought–

rational’ (ACT-R, [18]). Within such a theory, our model

represents a neuronal implementation of a ‘production rule’

which initiates a behavioral pattern in response to sensory and

possibly cognitive input.

Results

Model
The network representing a player consists of a population of

N~100 Spike-Response-Model (SRM) neurons with escape noise

[19], driven by a common presynaptic stimulus encoding the

current state of the game (the player’s hand value in blackjack, and

a fixed stimulus for the inspector game). Each input spike pattern

(X ) is composed of M~80 afferent spike trains generated once by

independent 6Hz Poisson processes with T~500ms duration,

and then repeatedly presented with the same fixed spike timings.

The population neurons integrate the afferent presynaptic input

spike trains and produce an output spike pattern (Y , see Fig. 1).

The decision of an individual postsynaptic neuron is denoted by c,

with c~{1, if the considered neuron does not spike, otherwise

c~1. Behavioral decisions D~+1 are stochastically made based

on the population activity A defined as sum of the individual

decisions c across the N population neurons: if A is small, the

population decision is likely D~{1, and the larger A is, the more

likely is D~1. At the end of a game involving either a single

decision (like in the inspector game) or a sequence of decisions (like

in blackjack), a reward signal R is delivered by an external critic

which either informs about winning or losing (with R~+1 like in

blackjack) or delivers a specific payoff (like in the inspector game).

The synapses feeding the stimulating spike pattern to the

population neurons are updated according to a multi-factor

plasticity rule involving the reward, the behavioral decision, the

single neuron decision and the eligibility trace which depends on

the post- and pre-synaptic activity:

Dw~RewDeccE : ð1Þ

Here, Rew is the reward signal encoding the reward prediction

error [20] (see Eq. 5 in Methods), Dec is the global feedback signal

informing the synapses about the population decision D weighted

by the population activity (Eq. 6 in Methods), and c~+1 is the

neuronal decision (spike/no spike). The eligibility trace E is a

synaptic buffer roughly encoding the covariance between the past

pre- and postsynaptic activity relevant for learning (Eq. 8 in

Methods). Technically, E is the derivative of the log-likelihood of

producing the postsynaptic spike train. The learning rule can be

shown to perform gradient ascent in the expected reward

(Supporting Text S2).

While most of the terms in Eq. 1 may have their standard

biological counterpart [16], there is less experimental evidence for

assigning the decision feedback Dec’ to one specific neuromod-

ulator. Yet, be the population neurons recurrently connected [21]

or not, decision learning based on a population always requires

that a global population signal is fed back to the individual

neurons, as otherwise learning would quickly degrade with

increasing population size [7,22]. By the same performance

reasons it is not possible to replace the other factors ‘RewcE’ in

Eq. 1 by a classical spike-timing dependent plasticity (STDP)

implementation endowed with the multiplicative reward signal

‘Rew’ [23]. In fact, reward-modulated STDP is only able to learn

multiple stimulus-response associations when the reward factor

averages out to zero for each stimulus individually, requiring an

additional reward-prediction network [16].

Our neuronal implementation is as simple as possible to provide

the required computational properties. The lack of feedback

connectivity avoids issues relating to population spike correlations

[24], and the neural mechanisms supporting the readout of the

decision and the population feedback signal are not considered

here. Similarly, the fixed spike trains representing an input pattern

is a biological simplification which does not fundamentally restrict

the suggested approach.

Blackjack
The simplified version of blackjack considered here was played

in 18th century France and is the precursor of the version played

in casinos nowadays. The card decks used consist of 52 cards. Ace

counts eleven, jack, queen and king ten points and the numbers

two to ten according to their written value. The player (gambler)

draws one card after the other, starting with an initial two card

hand, with the object of bringing the hand value (total across

drawn cards) as close as possible to 21, but stopping early enough

so that it does not exceed this number, in which case he

immediately loses. Afterwards the croupier does the same for the

bank. The player wins if its score is higher than that of the croupier

or if the croupier exceeds 21, otherwise the croupier wins. The

winner’s payoff is 1, the loser’s {1. We assume that both player

and croupier base their decision whether to draw another card or

not only on their current hand value. Player and bank follow a

strategy defined by the hand value s1 and s2, respectively, from

which on they stop to draw another card.

The described rules of the game result in the payoff-matrix

(Table 1) comprising the average payoff of the bank as a function

of the strategies s1 and s2 of the player and bank, respectively

(Methods). The gambler loses whatever the bank wins, therefore

the game is an example of a zero sum game. For zero sum games a

Nash equilibrium corresponds to a minimax solution [25]. If the

pay-off matrix has a saddle point (an entry which is the maximum

Author Summary

Socio-economic interactions are captured in a game
theoretic framework by multiple agents acting on a pool
of goods to maximize their own reward. Neuroeconomics
tries to explain the agent’s behavior in neuronal terms.
Classical models in neuroeconomics use temporal-differ-
ence(TD)-learning. This algorithm incrementally updates
values of state-action pairs, and actions are selected
according to a value-based policy. In contrast, policy
gradient methods do not introduce values as intermediate
steps, but directly derive an action selection policy which
maximizes the total expected reward. We consider a
decision making network consisting of a population of
neurons which, upon presentation of a spatio-temporal
spike pattern, encodes binary actions by the population
output spike trains and a subsequent majority vote. The
action selection policy is parametrized by the strengths of
synapses projecting to the population neurons. A gradient
learning rule is derived which modifies these synaptic
strengths and which depends on four factors, the pre- and
postsynaptic activities, the action and the reward. We
show that for classical game-theoretical tasks our decision
making network endowed with the four-factor learning
rule leads to Nash-optimal action selections. It also mimics
human decision learning for these same tasks.

Decision Learning in Two-Player Games
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in its row and the minimum in its column) the corresponding

strategy pair is a minimax solution which represents a pure Nash

equilibrium. In blackjack there is a unique such pair,

(s1~15,s2~16), and hence there is a unique Nash equilibrium

at all. For this optimal strategy pair the gambler stops drawing

another card as soon as he has 15 points or more, while the

croupier stops at 16 or more. The entry represents the lowest loss

for the gambler given the strategy of the bank (minimum in the

column), and the maximal payoff obtainable by the bank given the

strategy of the gambler (maximum in the row). The Nash

equilibrium is asymmetric because in the case of a standoff (equal

final hand values) the croupier always obtains reward 1 and the

player {1. For hand values smaller than 11 it is safe to draw

another card whereas for more than 19 drawing another card

leads to certain loss due to exceeding 21. While we do not model

these trivial actions, we address the learning problem for hand

values between 11 and 19.

pRL and TD-learning converge to a pure Nash

equilibrium. We first simulated two neural networks playing

against each other. Each hand value between 11 and 19 was

represented by a fixed spatio-temporal spike pattern generated by 6 Hz

Poisson processes, with different (but fixed) patterns distinguishing

numbers, gambler and croupier. Since initially no ordering information

is associated to the Poisson spike train encoding of the hand values, the

learning process has yet to assign this information by trial and error.

The drawing probabilities for each hand value learned by the gambler

after 500 and 10000 games, averaged over ten runs, are shown in

Fig. 2A. The colored dashed lines in the plot indicate the decision

boundaries of Nash equilibrium above which no further card is drawn

by the gambler or croupier, respectively. Initially, both players

randomly decide with 50% chance to draw (black dashed line). After

about 500 games both players have learned to not exceed 21 and do

not draw further cards for high hand values, being still undetermined

about what action to take for low hand values. After 10000 games both

have learned successfully to draw another card for low hand values and

tend to play according to the Nash equilibrium.

We next simulated the gambler by a neural net and the croupier

by a computer algorithm which follows right from the beginning a

fixed strategy. The resulting drawing probabilities after 10000
games are shown in Fig. 2B for three different strategies of the

croupier, s2~15, 16 and 17. The gambler learns the perfect

response strategies. The neural net exploits deviations of the

croupier from the Nash equilibrium s2~16 by also deviating and

thus increasing its reward. If the croupier stops earlier at s2~15
the gambler continues until s1~16, trying to exceed the croupier’s

hand value (blue), whereas if the croupier stops later at s2~17 the

gambler stops already at s1~12 (green), taking advantage of the

fact that the croupier likely exceeds 21. For the case s2~16 (red),

the gambler does not learn the optimal strategy as well as for the

two others. This is due to the fact that here the true mean rewards

for the strategies s1~14,16 are close to the one for the optimal

s1~15, cf. Table 1, and cannot be distinguished based on merely

10000 samples. Instead of just looking at the strategy we hence

consider the maximally possible and the actually obtained reward

for the three croupier strategies. Fig. 2C depicts the low pass

filtered reward which approaches the theoretical optimum

indicated by the dashed lines and read out from the corresponding

columns s2~15,16,17 in Table 1. For the non-optimal croupier

strategies (s2~15,17) the maximally possible reward is significantly

higher.

Figure 1. Neuronal architecture implementing the two players. Each player i (~1,2) is represented by a population of decision making
neurons (shown 5 of each) which receive an input spike pattern Xi and generate an output spike pattern Yi . The population decision Di~+1 is
represented by a readout unit, with Di~1 being more likely when more decision making neurons fire at least one output spike. The synaptic weights
wi are adapted as a function of Xi , Yi , Di and the reward signal Ri delivered by a critic.
doi:10.1371/journal.pcbi.1002691.g001

Decision Learning in Two-Player Games
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Hence, from playing against another network and against the

croupier, we conclude that a neuronal population endowed with the

plasticity rule (1) is able to learn the optimal strategies in blackjack,

determined either by the pure Nash equilibrium, or by the

croupier’s fixed strategy. Replacement of the neural net by a TD-

learner yields similar results for both scenarios (Supporting Text S1).

pRL fits human data on blackjack. Human behavior in

blackjack was studied in [10,26], though with a deck of 32 cards.

The instruction of the subjects about the rules of the game already

induces a prior in the drawing behavior with a preference for

drawing or stopping in the case of low or high hand values,

respectively. Neither pRL nor TD can reproduce this type of

learning by insight. Moreover, the network needs first to learn the

ordering of the stimuli by trial-and-error, and hence much more

learning trials are required for the network. To still allow for a

comparison with the human data, we used the same deck of 32
cards and simulated a neural network with initial weights chosen

in such a way, that the initial strategy mimics the one of human’s

(Fig. 2D). After playing the same number of games as humans did,

the network’s final strategy agrees with the experimental data of

humans, showing the same shift to a slightly less risky drawing

behavior.

Inspector game
The inspector game [27] has been widely studied in neuroeconomics

[28]. The economic story surrounding the game is that a lazy employee

prefers not to work. An employer knows this and sometimes ‘inspects’,

but has to pay some cost ‘i’for inspection. The payoffs for employee

and employer are shown in Table 2. The inspector game shows only a

mixed Nash equilibrium in which decisions are taken stochastically

with a fixed probability. At the equilibrium, the players mix pure

strategies, each with the same payoff: had these pure strategies different

payoffs, then it would be better to just follow the pure strategy with the

highest expected payoff.

Table 1. Average bank payoff for our version of blackjack.

s1\s2 13 14 15 16 17 18 19

11 0.2982 0.3164 0.3027 0.2544 0.1689 0.0436 20.1237

12 0.1635 0.2015 0.2076 0.1791 0.1130 0.0066 20.1427

13 0.1052 0.1587 0.1806 0.1679 0.1176 0.0266 20.1077

14 0.0438 0.1134 0.1536 0.1597 0.1282 0.0560 20.0598

15 0.0119 0.0706 0.1289 0.1555 0.1450 0.0940 20.0008

16 0.0143 0.0607 0.1085 0.1557 0.1685 0.1411 0.0702

17 0.0543 0.0893 0.1254 0.1628 0.1989 0.1980 0.1539

18 0.1349 0.1598 0.1854 0.2120 0.2394 0.2651 0.2509

The values show the calculated mean gains of the bank, respectively losses of
the gambler, dependent on the strategy of the gambler (stopping to draw a
card at hand values equal or larger than s1) and the croupier (stopping at s2).
The strategies are described by the hand values from which on the players stop
to draw another card. Formatted typesetting is used to highlight the Nash
equilibrium.
doi:10.1371/journal.pcbi.1002691.t001

Figure 2. Playing blackjack with pRL converges toward pure Nash equilibrium. (A) Average strategy (+SEM) after 500 (open circles) and
10000 (filled circles) games where the gambler (blue) is a neural net as well as the croupier (black). The dotted vertical lines left of s1~15 and s2~16
show the separation line of drawing/not drawing another card for the optimal Nash strategy pair. (B) Average strategy (+SEM) after 10000 games
for a neural net as gambler playing against a croupier that follows a given strategy s2~15 (blue), 16 (red) or 17 (green). The colored dotted lines left
of s1~12,15,16 show the separation line of drawing/not drawing another card for the optimal strategy given that the croupier stops drawing at
s2~17,16,15 (from left to right). (C) Average reward (+SEM) of the gambler for the scenario described in (B). The colored dotted lines show the
maximal reachable average reward. (D) Average strategy (+SEM) over the last 100 out of a total of 880 games for a neural net (red) or human
(green) as gambler playing against a croupier that follows a given strategy s2~15. The initial weights of the network were chosen such that the
strategy in the first 100 trials (blue) mimics the strategy of humans instructed about the game rules (black).
doi:10.1371/journal.pcbi.1002691.g002

Decision Learning in Two-Player Games
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For each value of the inspection cost i, there is a unique mixed

Nash equilibrium in which the probability with which the

employee is shirking just corresponds to the inspection cost,

p(shirk)~i, and the probability with which the employer is

inspecting is p(inspect)~0:5. In this case, neither player can

improve its expected payoff by only unilaterally changing its

strategy. In fact, using p(shirk)~i, the expected payoff for the

employer is always

SR2T~p(shirk)p(inspect)(1{i)zp(work)p(inspect)

(2{i)zp(work)p(don0t inspect)2

~i p(inspect)(1{i)z(1{i)p(inspect)(2{i)z

(1{i)(1{p(inspect))2~2(1{i),

independently of p(inspect). Likewise, if p(inspect)~0:5, the

expected payoff for the employee is always SR1T~0:5, indepen-

dently of p(shirk).
pRL reproduces inspector game data and Nash

equilibria. We played with our neural network as employee

against the algorithm presented in [11] as employer, and we also

simulated two neural nets playing against each other. Fig. 3A

shows a running average over the last 20 trials of the shirk and

inspection rates for the neuronal net employee (green) and

neuronal net employer (red), overlaid with the corresponding

data for a human employee (black) playing against a human

employer (grey, data from [11]). The inspection cost was held

constant during three blocks of 150 trials and stepped from i~0:5
to 0:9 and finally to 0:3. The averaged shirk rate of the neuronal

net employee is in striking agreement with the one of the human

employee across the whole rate of inspection costs (Fig. 3B). There

is also good agreement with the experimental data for the

employee’s reward (Fig. 3C).

To check whether the good fit of the human data is due to the

gradient property alone or whether the population boost is also

necessary we considered single neurons playing against each other

(by setting the number of neurons in the population to N~1,

without changing the learning rule). In this case our learning rule

becomes equivalent to the policy gradient rule for single escape

rate neurons [29,30]. With only a single neuron learning turns out

to be too slow to match the transient behavior in the human data

(Fig. 3A), even after optimizing the learning rate (data not shown).

We have previously shown that the speeding up learning in a

population of spiking neurons is only possible with an additional

population signal modulating synaptic plasticity [22,31]. We

conclude that population learning is necessary, and that other

spike-based gradient rules which do not exploit a population signal

[15,32,33] will also be too slow.

During the 150 trials across an experimental block, the shirk

rates (but not the inspection rates) tended towards the corre-

sponding value of the Nash equilibrium (diagonal line in Fig. 3B),

and so did the employee’s reward (horizontal line in Fig. 3C),

although without reaching them. In the simulation we extended

the block size to check the asymptotic behavior. We found that for

block sizes of 5000 trials, the average shirk and the inspection rates

closely reached the Nash equilibrium (match of simulation points

with the two lines in Fig. 3D).

Despite the match of the average rates with the mixed Nash

equilibria, the running means oscillate around the corresponding

equilibria (shown in Fig. 3E for inspection cost i~0:7), as

predicted by the theory [34,35]. In the asymmetric case, when our

neuronal employee plays against the (apparently not optimal)

computer algorithm, the oscillation vanish and the employee’s

shirk rate reaches the optimal Nash equilibrium (blue), as expected

for a neuronal network endowed by synaptic modifications

following the reward gradient (Supporting Text S2). When two

reward maximizing networks play against each other, however,

each tries to exploit any deviation of the other from his Nash

equilibrium, pushing him even further away. This leads to

oscillations around the Nash equilibrium where a change in

strategy of one player is oppositely directed to the deviation from

the Nash equilibrium of the other player. In fact, when

superimposing one rate with the negative change of the other

rate, a close match is observed (Fig. 3F).

As we are studying a policy gradient algorithm, one may ask how

robust the described properties are in view of a possibly improper

biological implementation. The eligibility trace E (Eq. 8 in

Methods) depends on the presynaptic spike timing and contains a

positive term that depends itself on the postsynaptic spike timing

and a negative term depending on the postsynaptic potential. Due

to the policy gradient property, the two terms are balanced and the

eligibility trace is zero on average. To check for robustness we

performed simulations where this balance is perturbed. The above

results still qualitatively hold true if the negative term in the

eligibility trace is twice as large, or even if it is neglected completely,

yielding STDP with plasticity for pre-post spike pairing only. The

robustness can be attributed to the factor Rew in the learning rule

(Eq. 1) which averages out to 0 due to the subtraction of the reward

prediction (since Rew~R{�RR, see Eq. 5 in Methods) and hence

neutralizes any bias in the estimate of E [16].

TD-learning is inconsistent with data and Nash. To

value the match generated by our synaptic plasticity rule with

experimental and theoretical data, we also trained a TD-learner on

the inspector game. Yet, the parameter optimized TD-algorithm

roughly reproduces only the humans average shirk rate (Fig. 3B),

but less well the subjects’ rewards (Fig. 3C). More strikingly, two

opposing TD-learners simulated across the 5000 trial blocks do not

behave according to the Nash equilibrium (Fig. 3D), but adopt a

deterministic strategy within such a block (Fig. 3E). When

simulating even longer, oscillations emerge as well, but without

convergence of the long-term average to the Nash equilibrium.

There are principled reasons why TD-learning must generally fail to

find an optimum solution, and in particular a mixed Nash equilibrium.

First, TD-learning assumes that the underlying process is Markovian,

but for multiplayer games this assumption is in general not satisfied. In

fact, because the policy of the other player may change in time during

learning, the optimal decision probabilities depend on past actions.

Values which are assumed to be a function of the current action only,

may therefore be incorrectly estimated. Second, for a mixed Nash

equilibrium, TD-learning may also fail to correctly map values to

decision probabilities at the steady-state after learning. This is because

each policy imposes some predefined mapping from action values to

decision probabilities, and this adhoc mapping may not reflect the true

relationship between expected payoffs and decision probabilities

defining the Nash equilibrium. For the inspector game with inspection

Table 2. Payoff matrix of the inspector game.

employee\ employer inspect Don’t inspect

work 0.5, 2-i 0.5, 2

shirk 0, 1-i 1, 0

The variables in the left of each cell determine the employee’s payoffs, and the
variables in the right determine the employer’s payoffs for each combination of
player’s responses. ‘i’is the cost of inspection to the employer.
doi:10.1371/journal.pcbi.1002691.t002

Decision Learning in Two-Player Games
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costs i=0:5, for instance, the softmax policy, which selects action a
with probability pa!exp(bQa), where Qa is the value of action a and

b a parameter (inverse temperature) regulating the amount of

stochasticity in the decision making, does never reflect the Nash

probabilities p(shirk)~i and p(inspect)~0:5, whatever the param-

eter b is (see Supporting Text S1).

In other learning tasks, animals and humans transiently match the

choice probabilities with the average payoffs of the corresponding

actions, pa!Qa (for a discussion of probability matching see [36–

38]). In these cases too, TD-learning with softmax will not be able

to find the solutions neither, unless again all p- and Q-values are

each the same, or alternatively, the choice policy is redefined (to

pa!Qa, see [39]). For other examples where TD-learning fails in

each of the two ways of either learning the values or inferring the

choice probabilities see [7].

Not all covariance-rules lead to Nash equilibria. Covariance-

based learning rules change the synaptic strengths w according to the

covariance between reward prediction error and some measure of

neuronal activity N , SDwT!SCov(R{SRT,N)T, see e.g. [37],

where S:T denotes expectation. pRL which follows the stochastic

gradient of the expected reward, SDwT!+SRT, is a special instance

of a covariance rule where the quantity N corresponds to the eligibility

trace E (Eq. 1). Steady-states of covariance rules satisfy Herrnstein’s

matching law [37,40]. This law states that the number of times an action

is chosen is proportional to the reward accumulated from choosing that

action. Formally, na~aRacc
a , where na is the number of times an

action a is chosen, a is the action-independent proportionality constant,

and Racc
a is the reward accumulated by action a across its na choices.

Pure strategies, where only a single action is chosen, trivially

satisfy the matching property since for non-chosen actions both na

and Racc
a vanish. In contrast, stochastic strategies only satisfy

matching in the case that the selected options provide the same

average reward Racc
a =na (~1=a). The mixed (and trivially the

pure) Nash equilibrium represents a special case of matching. If in

a two-player game, for instance, player 2 adopts a mixed Nash

strategy then, by definition, player 1 receives the same average

reward (1=a) from any action (see also [38]).

Both the steady-state of a covariance rule and the Nash

equilibrium imply matching. But a steady-state of the covariance

rule does not necessarily need to be a Nash equilibrium. This can

be seen by generalizing the classical covariance rule [37] to

population learning, and applying this rule to the inspector game.

To do so we replaced the eligibility trace E in the pRL rule (Eq. 1)

by the deviation of the neuronal response c from its mean, c{�cc.

Figure 3. pRL but not TD-learning fits data and follows a mixed Nash equilibrium. (A) Choice behavior for pRL versus pRL (employee
green, employer red) and human versus human (employee black, employer gray) [11]. The cost of inspection was stepped from 0:5 to 0:9 to 0:3,
respectively, and this does also correspond to the shirk rate in Nash equilibrium (thick black lines). The inspection rate in the Nash equilibrium would
always be 0:5. (B) Average choice behavior of pRL vs pRL (dark green circles) and TD vs TD (light green circles), pRL for the employee vs computer
algorithm for the employer (blue squares), human vs human (black), human as an employee vs computer algorithm (orange) and monkey vs
computer algorithm (cyan) for 150 trials/block as function of the inspection cost. The solid line indicates the Nash equilibrium. (C) Reward as function
of the inspection cost for 150 trials/block. Coloring as in (B). pRL simulations are more similar to the experimental data than the TD simulations. (D)
Average choice behavior as in (B) but for 5000 trials/block. The inspect rates for pRL vs pRL (TD vs TD) (dark (light) red circles) and pRL vs computer
algorithm (purple squares) are shown too. The lines indicate the Nash equilibrium for the employee (diagonal) and the employer (horizontal). pRL
behaves according to the Nash equilibrium, whereas TD does not. (E) Time course of the probability to shirk with inspection cost i~0:7 for pRL vs
algorithm (blue line) and pRL vs pRL (TD vs TD) (dark (light) green line). For the latter the probability of the employer to inspect is shown too (dark
(light) red line). pRL oscillates around the Nash equilibrium (drawn lines), whereas TD completely deviates from Nash. (F) Time course of the
probability to shirk or inspect respectively with inspection cost i~0:7 for pRL vs pRL (green respectively red, solid) as in E, but shifted up for clarity
and overlaid with the negative change in the shirk rate (green dashed) and the change in the inspect rate (red dashed) to show the counteractive
behavior.
doi:10.1371/journal.pcbi.1002691.g003
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The emerging population covariance (pCOV) learning rule,

Dw~gDecc (R{�RR) (c{�cc)~RewDecc (c{�cc) , ð2Þ

with positive learning rate g and estimates �RR (see Eq. 5 in

Methods) and �cc for SRT and ScT respectively, does not follow the

reward gradient and does not reliably converge to the unique

mixed Nash equilibrium of the inspector game (Fig. 4). To keep

simulation time short we did not use spiking neurons but merely

binary neurons that produce output c~+1 with probability

Pw(c)~
1

1zexp({cwx)
for a given binary input pattern

x[f{1,1g80
. This yields an expected neural response

�cc~
P

c cPw(c)~tanh(wx=2). Notice that RewDecc can be

considered as the personalized reward for the specific neuron in

consideration: if the sign of Dec and c coincide, the population

reward signal Rew elicited in response to the population decision

can be taken as a personal reward signal for that neuron; otherwise

the neuron’s personal reward has reversed sign of Rew.

Personalizing this way the neuronal rewards within the population

solves the spatial credit-assignment problem and boosts learning

[22]. Fig. 4 (A–D) shows the results for the pCOV rule applied to

the inspector game, once with only the employee playing

according to pCOV against an employer playing according to

the algorithm presented in [11], and once for pCOV versus

pCOV. Only in a fraction of the simulated runs is the mixed Nash

equilibrium reached, while in the other runs, a deterministic (non-

Nash) strategy pair emerges.

As check for robustness we performed further simulations

showing that these negative results hold true also for other (non-

gradient) covariance rules. We considered the version where the

mean �cc is not calculated analytically but determined as a running

average (as done for �RR), and where the neuronal activity in the

covariance rule is equal to the binary output, N~c, without mean

subtraction (yielding the simple update rule Dw~RewDec).

Moreover, considering only a single neuron and taking its

response c as the behavioral decision did not qualitatively change

the results, demonstrating that the failure is not due to the

population framework (data not shown).

In [41] the author further elaborates on the relationship of

covariance based rules to the Replicator dynamics. The latter is

described by
Lpa

Lt
~�ggpa(SRDD~aT{SRT), where �ggw0 is the

effective learning rate and SRDD~aT is the average reward for
choosing action a. The effective learning rate �gg depends on the

details of the decision making network and is given in Eq.(14) of

[41]. If synaptic changes are driven by the covariance of reward

and neural activity, then according to the average velocity

approximation, learning behavior is described by the differential

equation above, but the effective learning rate �gg is not guaranteed

to be positive. Indeed, for the binary neurons one gets

�gg~g
P

i

xi

1zcosh(wx)
, which can be negative due to negative

components xi. Hence, the convergence statements in [41] do not

apply to our decision making network, and there is no

contradiction with the finding that the covariance rule fails to

reproduce the mixed Nash equilibrium. Nevertheless, in the

special case of a 0=1 coding of the inputs xi such that the effective

learning rate becomes positive, and the specific covariance rule

Dw~g(R{�RR)(c{�cc) with a single postsynaptic neuron (N~1), we

can also fit the human data (for 150 learning trials) and obtain the

oscillations around the Nash equilibrium (for 5000 trials).

Whereas we do not consider the neural mechanisms supporting

the readout of the decision, such a mechanism has been studied in

the context of matching [42]. There, the probability for decision

making is well described by a logistic function, which is also our

choice for P(DDA). For an increasing amount of stochasticity in the

decision making they report an increasing deviation from

matching towards more uniform choice probabilities. For choice

probabilities larger than 1=2 this leads to lower choice probabilities

than predicted by the matching law, a phenomenon called

undermatching. We also varied the amount of stochasticity by

changing the slope of P(DDA) as a function of A. We find that

increasing and decreasing the slope by a factor of two still robustly

leads to matching for the considered inspection costs, but when

decreasing it by a factor of ten we also observe undermatching.

Due to the stochasticity in the decision making the range of choice

probabilities our network can represent is limited. With increasing

the amount of stochasticity the range becomes smaller and

extreme probabilities close to 0 or 1 predicted by the matching law

cannot be represented. Instead, choice probabilities lie closer to

uniform randomness, i.e. undermatching occurs.

pRL fits data and Nash better than basic reinforcement

models. The Replicator equation is widely used in evolutionary

game theory and provides a good phenomenological description of

choice behavior in many repeated-choice experiments. A different

phenomenological description has been suggested in [17]. Starting

from Luce’s basic reinforcement learning (RE1, see also [43]), the

authors adapt this rule to take account of a generalization and

recency effect (RE3, Methods). They show that both the basic and

extended reinforcement learning reproduces the behavior of

humans in many different games. However, we find that these

rules poorly match human behavior for the inspector game. In

fact, for 150 trials/block both models of Erev and Roth fit the

experimental data significantly worse than pRL (Fig. 4 E and F).

After 5000 trials RE3 converged to a pure (non-Nash) strategy,

and for RE1 the inspection rate diverged away from the Nash

equilibrium of 0:5. This non-optimal equilibrium performance is

consistent with the fact that RE1 and RE3 are not gradient

procedures (see Supporting Text S3). Whether pRL fits the

behavioral data of humans also better in the other games Erev and

Roth considered remains to be tested. In any case, the models

have to cope with the fact that humans show a variety of behaviors

in two-player matrix games, although in many settings they

eventually play according to Nash (for a discussion see [44]).

Discussion

We considered a population of spiking neurons which represent

an adaptive agent in a dynamic environment including other

adaptive agents. The agent’s adaptation was implemented as

population reinforcement learning algorithm (pRL) which was

previously shown to perform stochastic gradient ascent in the

reward for partially observable Markov decision processes

(POMDPs) [7]. Here we showed with blackjack and the inspector

game that pRL can also cope with a dynamic multi-agent

environment and that the performance is comparable to human

data in both these games. In fact, when two neuronal populations

play against each other, they learn to behave according to the

optimal (but unstable) Nash equilibrium. By definition, no further

increase in an agent’s expected payoff is possible in the Nash

equilibrium by only changing its own strategy while the

environment remains stationary. In these steady-state conditions

– where the opponent’s strategy is assumed to be stationary – pRL

is proven to maximize the expected reward (Supporting Text S2).

The simulations show that the equilibrium is indeed reached by

two pRL agents playing against each other, with a pure

(deterministic) Nash equilibrium in blackjack and a mixed

Decision Learning in Two-Player Games
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(stochastic) Nash equilibrium in the inspector game. As predicted

by the theory [34,35], the strategies oscillated around the mixed

Nash equilibrium when both players used the same gradient

algorithm based on the others stationarity assumption, i.e. when

one network played against another both using pRL (with a small

learning rate). Averaging over long enough time windows, i.e. long

compared to the oscillation period, yields the Nash equilibrium

values. However, when implementing only the employee by a

gradient pRL network and the employer by a non-gradient

computer algorithm [11], the two players do not play exactly

equally well. In this case no oscillations occurred and both

converged to and stayed at the optimal Nash equilibrium.

For mathematical clarity we presented the spike-based pRL for

an episodic learning scenario. But a biologically plausible

implementation of a fully online scheme is also possible: to avoid

an explicit separation of stimuli in time, the rectangular window

function used to temporally integrate the eligibility trace (Eq. 8 in

Methods) can be replaced by an exponentially decaying window

function to get a low-pass filtered eligibility trace, and concentra-

tions of neuromodulators can be used to encode feedback about

the population decision and the global reward signal (e.g.

acetylcholine or dopamine) [22]. We considered reward delivery

immediately after stimulus presentation, but reward could also be

substantially delayed when considering a further eligibility trace

incorporating the population decision [7]. Moreover, since

learning in general speeds up with population size (up to 1-shot

learning for stimulus-response associations [31]) we expect that the

convergence for pRL towards the Nash equilibrium can be much

faster than in our example where parameters were fit to reproduce

human data.

The mixed Nash equilibrium represents a special case of

Herrnstein’s matching law [40], according to which the number of

times an action is chosen is proportional to the reward

accumulated from choosing that action. This is true both for the

pure and mixed Nash optimum. In the special case that the

current reward only depends on the current action, but not on past

actions, reward maximization always implies matching. (In fact, if

one action would yield a higher (average) payoff per choice, then

this action must be chosen with probability 1 to maximize

expected reward, and matching (na~aRacc
a ) is trivially satisfied

(since for the non-chosen action na~Racc
a ~0). If both actions yield

the same payoff Ra per choice (~Racc
a =na~1=a), then matching is

again trivially satisfied.) In turn, a reward-based learning rule

which only empirically maximizes reward in this case leads to only

an approximated matching [42]. Choice probabilities which

maximize the expected reward are trivially also fixed points of

any learning rule defined by the covariance between reward and

neuronal activity. (In fact, at the reward maximum there is no

change in neuronal activity which, in average, would lead to an

increase (and in the opposite direction to a decrease) of the

expected reward, and hence the covariance between activity and

reward must vanish.) The other direction, again, is not true: a

covariance-based rule does not necessarily lead to reward

maximization or a Nash equilibrium [37,38]. Indeed, our

Figure 4. Covariance learning rules may lead to a mixed Nash equilibrium, but also to deterministic non-Nash strategies. pRL fits
data better than basic reinforcement models. Time course of the probability to shirk (A,C) and inspect (B,D) with inspection cost i~0:7 for
pCOV vs algorithm (A,B) and pCOV vs pCOV (C,D). In each panel the horizontal lines depict the Nash equilibrium, and for 10 simulation runs
inspection and shirk rates are shown (same color in (A,B) and (C,D), respectively, correspond to the same run). Only a small fraction of all runs
converge or oscillate around the Nash equilibrium, while the other runs result in a deterministic strategy pair. The initial distribution of synaptic
weights w was Gauss with mean 0 and standard deviation 0:02. The learning rate was set to g~0:004, but g~2:10{7 did not change the proportion
of runs converging to the pure strategy. (E) Average choice behavior of pRL vs pRL (green), RE1 vs RE1 (blue), RE3 vs RE3 (red) and human vs human
(black) for 150 trials/block as function of the inspection cost. The light red circles show the average choice behavior for RE3 vs RE3 and 5000 trials/
block. Individual runs converged to a pure strategy, hence the shown averages over 200 runs reflect the percentage of runs converging to a pure
shirk strategy. (F) Reward as function of the inspection cost for 150 trials/block. Coloring as in (E). The solid lines indicate the Nash equilibrium.
doi:10.1371/journal.pcbi.1002691.g004
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simulations of the inspector game with the canonical covariance-

based plasticity rules show that these rules do not necessarily lead

to the mixed Nash equilibrium, but instead can result in

deterministic (non-Nash) strategies. Similarly, basic reinforcement

rules studied in the context of economics and human decision

making [17] are neither compatible with the mixed Nash

equilibrium for the inspector game.

The performance of spike-based pRL is also superior to TD-

learning [2] which is often discussed in the neuro-economical

context [1]. With the parameter values for which TD-learners

came closest to human data (although without matching them as

closely as pRL), the mixed Nash equilibrium in the inspector game

was not reached within the long learning times. Instead, TD-

learner first adopted a deterministic strategy, transiently switched

their behavior, and swapped back to the same deterministic

strategy. We attributed this mismatch to a general failing of TD-

learning in correctly mapping action values to choice probabilities

in probabilistic decision making tasks. TD-learning with the

softmax choice policy, in particular, fails when matching of choice

probabilities with average payoff is required [40].

Different generalizations have been considered to approach the

shortcomings of algorithms in socio-economic games. TD-learning

has been extended to not only assign values to its own decisions,

but to pairs of own and opponent decisions. This enables the

learning of minimax strategies where reward is maximized for the

worst of the opponents actions [45]. While for zero-sum games

minimax may realize a mixed Nash equilibrium, it results in a

deterministic strategy in the inspector game: minimizing the

maximal loss implies for the employee to always work (to prevent

being caught while shirking), and for the employer to always

inspect (to prevent undetected shirking). Another approach is to

separately learn its own and the opponents action values and then

calculate the Nash equilibrium [46], but such explicit calculations

do not seem to be the typical human behavior in socio-economic

interactions. Instead, it is tempting to consider pRL with long

eligibility traces which, as it performs policy gradient in POMDPs

[7], should find cooperative strategies with, on average, higher

than Nash payoffs for all agents. For the inspector game such a co-

operative strategy is that the employer should let the employee

sporadically shirk (say with probability E) without inspection, but

with the common agreement that shirking will not prevail (leading

to average payoffs
1

2
(1zE) and 2(1{E) for the employee and

employer, respectively).

Although under the specific experimental conditions of the

inspector game humans did not show cooperation, they often do so

in other game-theoretic paradigms, as e.g. in the prisoner’s

dilemma, and hence deviate from the Nash equilibrium (for a

review see [47]). It remains a challenge for future modeling work

to capture such cooperative behavior. Likely, this will involve

modeling the prediction of other player’s reactions in response to

ones own actions, as considered in the theory of mind [48] and as

being a hallmark of successful socio-economic behavior.

Given the difficulties of modeling genuine social behavior, and

the difficulties humans effectively have in stacked reflexive

reasoning, the assumption of the opponent’s stationarity consid-

ered here appears as a reasonable approximation for decision

making even in complex situations. In view of its success in

matching behavioral and theoretical data we may ask how far

human decision making is in fact determined by cognitive

reasoning, or whether decisions should rather be attributed to

automated neuronal processes steered e.g. by pRL (which can also

encompass input from a cognitive module as it is suggested for the

production rules in the ACT-R theory, [18]). In fact, daily

experience tells us that decisions are often more appropriate when

we listen to our gut feeling, while we tend to merely add

justifications post-hoc. Or put in Schopenhauer’s words, ‘‘that in

spite of all his resolutions and reflections he does not change his

conduct’’ [49].

Methods

Model details
Focusing on one neuron we denote by X its input, which is a

spike pattern made up of M spike trains, and by Y its output spike

train. The membrane potential can be written as

u(t)~u0z
XM
i~1

wi

X
s[Xi

E(t{s){
X
s[Y

k(t{s): ð3Þ

The postsynaptic kernel E(t) and the reset kernel k(t) vanish for

tƒ0. For tw0 they are given by

E(t)~
1

tM{tS

e{t=tM {e{t=tS

� �
and k(t)~

1

tM

e{t=tM :

For the resting potential we use u0~{1 (arbitrary units). Further,

tM~10ms is used for the membrane time constant and

tS~1:4ms for the synaptic time constant. Action potential

generation is controlled by an instantaneous firing rate w(u) which

increases with the membrane potential. So, at each point t in time,

the neuron fires with probability w(u(t))dt where dt represents an

infinitesimal time window (we use dt~0:2ms in the simulations).

Our firing rate function is

w(u)~kebu,

with k~0:01 and b~5 (parameter values taken from [29], see also

[19]).

We consider a population of N~100 neurons and an input

layer of size M~80 for each player that is represented by a neural

net. We assume that each population neuron synapses onto a site

in the input layer with probability of 80%, leading to many shared

input spike trains between the neurons. The population response is

read out by the decision making unit based on a spike/no-spike

code. We introduce the coding function c(Y n), with c(Y n)~{1, if

neuron n does not spike, otherwise c(Y n)~1. The population

activity A being read out by the decision making unit is:

A(Y)~
1ffiffiffiffiffi
N
p

X
n

c(Y n):

Note that such a formal summation could be implemented in

terms of a neuronal integrator (forming a ‘line attractor’) which

continuously integrates excitatory and inhibitory input and keeps

the neuronal activity at a constant level in the absence of input

[50]. Using this activity readout, the behavioral decision D~+1 is

made probabilistically, with likelihood P(D~1DA) given by the

logistic function

P(D~1DA)~
1

1zexp({A)
, ð4Þ

and P(D~{1DA) being the counter probability. The normaliza-

tion of the activity A with
ffiffiffiffiffi
N
p

ensures that Var(A)~O(1), thus

being of same order as the noise in the decision readout.

Decision Learning in Two-Player Games

PLOS Computational Biology | www.ploscompbiol.org 9 September 2012 | Volume 8 | Issue 9 | e1002691



We now describe the terms, modulating synaptic plasticity in

Eq. (1). The reward feedback Rew encodes the reward prediction

error, as observed in experiments [20],

Rew~g(R{�RR): ð5Þ

Here �RR is a running mean estimate of the expected reward,
�RR/(1{l)�RRzlR, where we set l~0:1. The parameter g is the

positive learning rate which, for notational convenience, we

absorb into the reward signal. In all pRL simulations we used the

value g~400. Both values l and g (rounded) were chosen to

minimize the Mean Squared Error (MSE) between the average

model and human data (MSE~0:0027 for the shirk rate and

MSE~0:0028 for the employee’s reward in the inspector game).

All other parameter values were taken from [7].

The decision feedback Dec is given by

Dec~
D

1zexp(DA)
, ð6Þ

which is the derivative of log P(DDA), see Eq. (4), with respect to

A; so decision feedback measures how sensitive the decision is to

changes in activity.

As shown in [29], the probability density, Pw(Y ), that a neuron

actually produces the output spike train Y in response to the

stimulus X during a decision period lasting from t~0 to t~T
satisfies:

ln Pw(Y )~
X
s[Y

ln w(u(s)){

ðT

0

dtw(u(t)) : ð7Þ

The derivative of ln Pw(Y ) with respect to the strength of synapse i
is known as characteristic eligibility in reinforcement learning [51].

For our choice of the firing rate function one obtains for the last

term in (1)

E~
L
Lwi

ln Pw(Y )~

ðT

0

dt
X
s[Y

d(t{s){kebu(t)

 !
b
X
s[Xi

E(t{s) :ð8Þ

In all the simulations initial values for the synaptic strength were

picked from a Gaussian distribution with mean zero and standard

deviation equal to 4, independently for each afferent and each

neuron. In the Supporting Text S2 we show that the plasticity rule

(1) composed of the factors (5, 6, 8) and the decision c follows the

stochastic gradient of the expected reward.

TD-learning
For TD-learning we used the SARSA control algorithm [2]

which estimates the values of state-action pairs (s,a). At each point

in time, the value estimates Qa(s) are updated according to

Qa(s)/Qa(s)za R{Qa(s)ð Þ:

Here a is similar to a learning rate and has values between 0 and 1.

R is the reward immediately obtained after performing action a. In

the case of blackjack it is defined as zero if the game is not over

and the player chooses to draw another card, otherwise it is

determined by the payoffs of the considered game. When in state

s, the next action D is chosen using softmax, i.e. according to the

probability P(D~a)!exp(bQa(s)). In all simulations we used the

rounded values a~0:004 and b~50 as they minimized the MSE

between averaged model and human data (MSE~0:0048 for the

shirk rate and MSE~0:0110 for the employee’s reward in the

inspector game). Note that in both TD-learning and pRL we

adapted the same number of free parameters (TD: a and b; pRL: l
and g), making it possible to directly compare the quality of the fit.

Basic reinforcement models
In both Roth-Erev models [17] the probabilistic choice rule is

parametrized using propensities qi. The probability pk that a

specific player (who’s index is omitted) plays his kth pure strategy

is pk~
qkX

l
ql

.

RE1 model. The propensity of the chosen action k is

incremented by the received reward Rk, qi/qizRkdik, where

dik denotes the Kronecker delta. The initial propensities are set to

qi~sX , where X is the average reward for that player under

uniformly distributed pk’s, and the strength parameter s is the one

parameter that is optimized.

RE3 model. In addition to the strength parameter s, the

generalization and forgetting parameters E and w are introduced.

The propensities are updated according to

qi/(1{w)qizRk(1{E)dikzRk E(1{dik) :

The parameters were chosen to minimize the mean squared error

(MSE) between the average model and human data

(MSE~0:0188 (RE1) and 0:0116 (RE3) for the shirk rate and

MSE~0:0081 (RE1) and 0:0060 (RE3) for the employee’s reward

in the inspector game).

Blackjack details
In blackjack we assume an infinite number of card decks.

Independently of the history, the drawing probability therefore

remains constant, with a probability to draw a card with value 10

being
4

13
, and the probability to draw any other value from 2 to 11

being
1

13
. For a strategy determined by the stopping value s we

calculated analytically the probability distribution of hand values

Ps(v) after drawing the last card. The drawing process is iterated

for those hand values that are smaller than s until there is only

probability mass on hand values greater than or equal to s.

Because the lowest card value on the desk remains always 2,

drawing i times in a row yields a lowest possible hand value of 2i.

Hence up to qs=2r cards are drawn in order to obtain a hand

value v greater or equal to s. Let us denote the value of the ith card

by vi and its probability distribution by Q(vi),

Q(vi)~

1

13
for vi[f2,3,:::,9,11g

4

13
for vi~10

0 else:

0
BBBB@

To obtain the probability distribution Ps(v) we sum up the

probabilities of all possible combinations to draw kƒqs=2r cards

that yield hand value v, with the condition that the sum of the first

k{1 drawn cards is smaller than s, such that a kth card is actually

drawn under the stopping strategy.
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Ps(v)~
0Pqs=2r

k~1

P11
v1,:::,vk~2 Q(v1) � � �Q(vk) II

(
for vvs

Pk
i~1 vi~v

� �
II
Pk{1

i~1 vivs
� �

else

where II is the indicator function which is one if its argument is

true and zero else. The product of the Q(vi) is the joint probability

that the first card has value v1, the second v2 and so on. The first

indicator function ensures that all k drawn cards sum up to v, the

second that k cards are drawn, i.e. the sum of the first k{1 cards

has to be smaller than the stopping value s, because otherwise no

further card would be drawn. For instance in the case of s~15 and

16 one obtains the distributions in Table 3.

Denoting the hand value of the gambler by v1 and that of the

croupier by v2 the payoff of the bank is

R2(v1,v2)~
z1 for v1ƒv2ƒ21 or v1w21

{1 else

�

Averaging of R2 with respect to the joint distribution

Ps1,s2
(v1,v2)~Ps1

(v1)Ps2
(v2) yields the entry in the average payoff

matrix Table 1 for the strategy pair (s1,s2). For instance for

(s1~15,s2~16), SR2(v1,v2)TP15,16(v1,v2)~
P

v1,v2 P15(v1)P16(v2)

R2(v1,v2)~0:1555.

We defined the drawing probabilities in Fig. 2 for a hand value

at a certain game number g as the frequency with which another

card has been drawn upon the last 20 presentations prior to g of

the corresponding stimulus. The evolution of the average reward

R̂Rg in time in Fig. 2C are the low pass filtered reward sequences,

R̂Rg~(1{l)R̂Rg{1zlRg where Rg is the reward in the g-th game

and l~0:002 was used. The initial value R̂R0 was calculated

assuming a random 50% choice behavior prior to learning.

The initial weights mimicking the prior strategy of instructed

humans were obtained by training our network to make a decision

with a certain probability. This is possible by adapting pRL to

perform regression (as will be published elsewhere).

Inspector game details
The evolution of the rates in time in Fig. 3E are the low pass

filtered decision sequences, e.g. pt(shirk)~(1{l)pt{1(shirk)
zldt where dt~1 if the employee shirks in trial t, otherwise

dt~0. We used a value of l~0:02 and assumed again an initial

random 50% choice behavior. The rate change in Fig. 3F was

determine by binning the obtained time course of the rate into bins

of width 20, calculating the mean of each bin, and the differences

between succeeding bins. The result was further low pass filtered

once more with an exponential running mean (l~0:1) to reduce

the noise.

Supporting Information

Text S1 We present further results for temporal-difference

learning and elaborate on its failure to learn mixed Nash

equilibria.

(PDF)

Text S2 We show how the plasticity rule presented in the main

text is based on a gradient ascent procedure maximizing the

average reward.

(PDF)

Text S3 We demonstrate that the heuristic rules of Erev and

Roth [17] are no gradient procedures.

(PDF)
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