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ZIP (ZRT/IRT-like Protein) and CDF (Cation Diffusion Facilitator) are two large 
metal transporter families mainly transporting zinc into and out of the cytosol. 
Several ZIP and CDF transporters have been characterized in mammals and various 
model organisms, such as yeast, nematode, fruit fly, and zebrafish, and many 
candidate genes have been identified by genome projects. Unexpected functions of 
ZIP and CDF transporters have been recently reported in some model organisms, 
leading to major advances in our understanding of the functions of mammalian 
counterparts. Here, we review the recent information on the sequence similarity 
and functional relationship among eukaryotic ZIP and CDF transporters obtained 
from the representative model organisms. 
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Introduction 
Zinc is an essential trace element for living organ- 
isms, because it is required for the catalytic activity 
of numerous metalloenzymes ( 1 )  and can also serve 
as a key structural component of a large number of 
zinc-dependent proteins ( 2 , 3 ) .  Zinc homeostasis in 
the cells, therefore, is achieved through the coordi- 
nate regulation of zinc influx, efflux, and distribution 
to intracellular organelles ( 4  ). Zinc transporters have 
essential functions in such processes and a number of 
zinc transporters have been identified in many organ- 
isms (4-7). 

Zinc transporters are largely classified into two 
metal transporter families, the ZIP (ZRT/IRT-like 
Protein) and CDF (Cation Diffusion Facilitator) fam- 
ilies ( 4 , 5 ,  7). In bacteria, the ABC transporters and 
P-type ATPases have been shown to function as zinc 
transporters ( 8 ) ,  but neither of them plays a physio- 
logical role in zinc transport in eukaryotes (5). The 
ZIP and CDF families are also assigned as solute car- 
rier 39 (SLC39A) and SLC3OA families (9, l U ) ,  and 
both seem to have a very ancient origin because they 
are identified in diverse organisms from archeae and 
eubacteria to eukaryotes ( 5 ) .  ZIP family transporters 
function in zinc influx into the cytosol, while CDF 
family transporters mobilize zinc in the opposite di- 
rection. All members of both families are thought to 
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transport zinc across the biological membranes, but 
certain proteins are speculated to  transport other 
metals such as iron, nickel, and manganese as a ma- 
jor substrate. In fact, ZIP and CDF transporters have 
been shown to transport these metals as physiologi- 
cally important substrates in certain plants (11-13), 
and manganese not zinc is described as a more selec- 
tive substrate of ZIP8/BIGMlO3 in the competitive 
assay of cadmium uptake ( 1 4 ) .  

Recently, interesting functions of ZIP and CDF 
transporters have been found in various organisms. 
A comprehensive deliberation on these functions to- 
gether with integrative comparison of the sequence 
similarity within each ZIP and CDF transporter fam- 
ily would provide a clue to speculate functions of the 
uncharacterized ZIP and CDF proteins and to  elicit 
further functions of the characterized ones. Here we 
review the physiological and cellular functions of ZIP 
and CDF transporters with emphasis on these mat- 
ters. The plant ZIP and CDF proteins are referred to 
other reviews ( 1  5-1 7 ) .  

ZIP Transporters 

Arrangement of ZIP proteins found in 
the genome sequences of the represen- 
tative model organisms 

To date, fourteen ZIP proteins have been molecularly 
characterized or identified in humlan and mouse ( 4 , 9 ) .  
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Similarity and Relationship Among ZIPS and CDFs 
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Fig. 1 A dendrogram showing the sequence similarity and the class of subfamily of human ZIP and CDF (ZnT) family 
members. The dendrogram was generated by using the GENETYX-MAC software, and the class of subfamily follows 
the assignment by Gaither and Eide ( 5 ) .  The class of members of the LIVl/LZT subfamily lacking the initial histidine 
in the HEXPHEXGD motif is indicated as LIVl/LZT* subfamily. [This figure has been modified from Kambe et al 
( 4 )  with permission from Birkhauser Publishing, Basel, Switzerland.] 

The ZIP family is divided into subfamilies I, 11, 
LIVl/LZT, and gufA, based on their degrees of 
sequence conservation (5 ,18)  (Figure 1). The LIV1/ 
LZT subfamily is characterized by having a met- 
alloprotease motif (HEXPHEXGD) around the 
membrane-spanning domain V. Although the initial 
histidine in the HEXPHEXGD motif is thought to  be 
requisite for the zinc transport activity of LIVl/LZT 
transporters, ZIP8/BIGMlO3 and ZIP14 lacking it 
have zinc transport activity (19-22). ZIP proteins 
are predicted to have eight membrane-spanning do- 
mains with a membrane topology in which the N- 
and C-terminal ends are located outside the plasma 
membrane, and have a cytoplasmic His-rich loop be- 
tween membrane-spanning domains I11 and IV, which 
is thought to  function as a zinc-binding site. However, 
ZIP11, ZIP12, and ZIP13 lack the His-rich loop. 

Table 1 shows the ZIP proteins found in the 
genome sequences of human, mouse, chicken, ze- 
brafish, fruit fly, nematode, and yeast according to 
the similarity to the human ZIP proteins. As shown 
in Table 1, most LIVl/LZT proteins in the indicated 
organisms are arranged to  each human LIVl/LZT 
member except in yeast, where the LIVl/LZT pro- 
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tein is only found as the homologous protein to 
ZIP7/KE4. In LIVl/LZT subfamily, ZIP12 and ZIP4, 
ZIP8/BIGMlO3 and ZIP14, ZIPlO and ZIPG/LIVl, 
or ZIP13 and ZIP7/KE4 are similar (Figure l), but 
not completely homologous. For example, ZIP12 lacks 
the His-rich loop between membrane-spanning do- 
mains I11 and IV while ZIP4 has; ZIP13 lacks his- 
tidine residues in N-terminal portion and between 
membrane-spanning domains I1 and 111, or I11 and IV, 
but ZIP7/KE4 has many histidine residues in these 
portions. ZIP8/BIGMlO3 and ZIP14, or ZIPlO and 
ZIPG/LIVl have a high identity (48% or 38% iden- 
tity, respectively) and are homologous in the length 
of amino acid sequence, the property of the His-rich 
loop, and the distribution of histidine residues in their 
sequences (19,23). The expression of only one or 
the other of ZIP8/BIGMlO3 and ZIP1.4 in nematode, 
or ZIPlO and ZIPG/LIVl in fruit fly and nematode, 
may be sufficient for the biological function, judg- 
ing from the genome sequences (Table 1). Compared 
with LIVl/LZT subfamily, ZIP11 subfamily has simi- 
lar amino acid length, topology, and subcellular local- 
ization (at the plasma membrane) (4 ,5 ,24) .  Inter- 
estingly, the numbers of homologous proteins of ZIP1, 
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ZIP2, or ZIP3 found are: one in chicken and zebrafish, 
two in yeast, and six in nematode (Table l), which 
may be linked to the fact that nematode has extra 
CDF proteins (see Table 2 and below). All eukaryotes 
have proteins with similarity to ZIP9 of ZIP1 subfam- 
ily or ZIP11 of gufA subfamily, which suggests that 
they may have retained important functions during 
evolution. 

Interesting characteristics of ZIP trans- 
porters obtained from the model organ- 
isms 

An interesting function of ZIPG/LIVl was found in 
zebrafish ( 2 5 ) .  Zebrafish ZIPG/LIVl is essential for 
epithelial-mesenchymal transition (EMT), which is 
one of the central events of embryonic development, 
organ and tissue remodeling, and cancer metastasis, 
by regulating the nuclear localization of the zinc- 
finger transcription factor Snail, a master regulator 
of EMT, because it represses the transcription of E- 
cadherin ( 2 5 ) .  The expression of zebrafish ZIP6/LIV1 
is dependent on STAT3, which is required for the cell 
migration, and this characteristic is conserved in hu- 
man and mouse ZIPG/LIVl (25 ) .  As ZIPG/LIV1 was 
identified as an estrogen-regulated gene in breast can- 
cer cells (26) and was shown to be significantly asso- 
ciated with the spread of breast cancer to  the lymph 
nodes (27),  the presented function of ZIPG/LIVl is 
very interesting in that it may be a novel therapeutic 
target for improving tumor therapy (28). 

FOI, a homologous protein of ZIPlO in fruit fly, 
can act as a zinc transporter (29),  and is required 
for both germ cell ensheathment and gonad morpho- 
genesis in order to control germ cell migration with- 
out affecting gonad cell identity (30). It controls the 
level of E-cadherin in the gonad that is essential for 
the cell-cell adhesion (31). FOI was reported as the 
closely related protein to ZIPG/LIVl (30),  but its se- 
quence is the most homologous to ZIPlO (Table 1). 
ZIPlO and ZIPG/LIVl are homologous in amino acid 
sequence (38% identity) and the property of many 
histidine residues in the His-rich loop or N-terminal 
portion, therefore they are likely to have very similar 
functions. Either of them may function as a backup 
system if expressed simultaneously. 

Another LIVl/LZT protein, Catsup, a fruit fly 
ZIP7/KE4 orthologue, down-regulates tyrosine hy- 
droxylase activity (32).  Interestingly, IAR1, an Aru- 
bidopsis ZIP7/KE4 homologue, is supposed to regu- 
late auxin conjugate hydroxylase activity by export- 

ing inhibitory metal (zinc) out of the secretory path- 
way (33). Actually, ZIP7/KE4 is localized to  the en- 
doplasmic reticulum (ER) and the Golgi apparatus 
(34,35) and transport zinc out of the Golgi appara- 
tus (35). Since the expression of mouse ZIP7/KE4 
cDNA complements the defects of iarl mutant (33), 
ZIP7/KE4 and all of its orthologues may export zinc 
out of the secretory compartments to fine-tune the 
activity of zinc-requiring enzymes and other metal- 
requiring enzymes like hydroxylases. 

In yeast, a high-affinity zinc uptake transporter, 
Zrt 1, is rapidly endocytmed from plasma membrane 
through a ubiquitin-mediated mechanism and de- 
graded in vacuoles in response to high levels of extra- 
cellular zinc (36,37).  This type of posttranslational 
distribution operates in mammalian ZIP proteins; not 
only in the Zrtl homologous proteins ZIP1 and ZIP3 
(38,39) but also in the LIVl/LZT protein ZIP4 more 
clearly (40,41).  These characteristics of ZIP trans- 
porters indicate that the traffic of ZIP proteins in 
response to  extracellular zinc would be essential for 
physiological and cellular zinc homeostasis. 

CDF Transporters 

Arrangement of CDF proteins found in 
the genome sequences of the represen- 
tative model organisms 

To date, ten CDF proteins designated as ZnT (Zn 
Transporter) proteins of human or murine origin 
have been molecularly ' characterized or identified 
(7 ,10,42) .  CDF transporters are divided into three 
subgroups, CDF subfamilies I, 11, and 111, based on 
their sequence similarities ( 5 ) .  Most eukaryotic mem- 
bers are assigned to  subfamilies I1 and I11 ( 5 )  but 
ZnT9/HUEL and its homologous proteins are clas- 
sified into CDF subfamily I (Figure l), which contains 
mostly prokaryotic members from both eubacterial 
and archeael sources ( 5 ) .  There are sequence similar- 
ities among ZnT2, ZnT3, ZnT4, and ZnT8, between 
ZnTl and ZnT10, and between ZnT5 and ZnT7 (Fig- 
ure l), which suggests that these closely related pro- 
teins have similar functions in the cells. CDF trans- 
porters have the same predicted membrane topol- 
ogy of six membrane-spanning domains with both N- 
and C- terminal ends thought to reside intracellularly 
and a cytoplasmic His-rich loop between membrane- 
spanning domains IV and V, although ZnT5 and its 
homologous proteins have a long N-terminal portion 
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with extra membrane-spanning domains (43). In 
ZnT6 and its orthologues, the His-rich loop is not rich 
in histidine residues but retains serine residues instead 
( 4 4 ) .  In ZnTlO and its orthologues, the loop lacks 
histidine residues but bears a long loop rich in serine 
and basic amino acid residues (42). The His-rich loop 
is thought to function as a metal-binding site and is 
shown to have essential functions (45) .  ZnTS/HUEL 
has a cation efflux domain (pfam01545); therefore, it 
has been assigned to the CDF family (7, I U ) .  How- 
ever, ZnTS/HUEL and its homologous proteins have 
significant homology to the DNA-binding domain and 
the nuclear receptor interaction motif (46) .  Fur- 
thermore, ZnTS/HUEL is predominantly localized to 
the cytoplasm and translocates to the nucleus in a 
cell cycle-dependent manner (46) .  Thus, whether 
ZnTS/HUEL belongs to the CDF family remains open 
to question. 

The CDF proteins found in the human, mouse, 
chicken, zebrafish, fruit fly, nematode, and yeast 
genome sequences are arranged in Table 2 according 
to the similarity to human ZnT proteins as in Ta- 
ble 1. Compared with ZIP proteins, CDF proteins in 
the indicated organisms are arranged to each human 
ZnT member except for ZnT3. ZnT3 is specifically 
expressed in the brain, which suggests that ZnT3 has 
important neural functions in mammals (4'7'). Since 
the zinc transported by ZnT3 into the synaptic vesi- 
cles is implicated in P-amyloid plaque formation (48 ) ,  
the expression level of ZnT3 may be an important fac- 
tor in the incidence of Alzheimer's disease. 

The sequences of ZnT5 and ZnT6 are found si- 
multaneously in all organisms except for fruit fly (Ta- 
ble 2), which is consistent with their characteristic to 
form hetero-oligomeric complexes (49) .  In fruit fly, 
the ZnT7 homologous protein is found (Table 2). As 
ZnT5 and ZnT7 have similar functions in the secre- 
tory pathway (see below and ref. 45),  the expres- 
sion of either ZnT5 (with ZnT6) or ZnT7 would be 
sufficient in fruit fly, nematode, and yeast. 

Mftl and Mft2, which were identified as mito- 
chondrial iron transporters in yeast ( S O ) ,  and SUR7, 
which is the nematode CDF protein involved in Ras 
signaling ( 5 1 ) ,  are not classified into human mem- 
bers because of low homology and different subcellu- 
lar localization and functions (Table 2). Nematode 
has five more CDF proteins that fail to show simi- 
larity to human members (Table 2). Further inves- 
tigation is needed to identify their functions and the 
relationship between these unclassified CDF proteins 
and mammalian members. 

Interesting characteristics of CDF 
transporters obtained from the model 
organisms 

Like the ZIP proteins, interesting CDF functions 
have been found in the model organisms. In yeast, 
Msc2 and Zrgl7 form hetero-oligorneric complexes 
and have essential functions to maiintain homeosta- 
sis in the ER by transporting zinc into the ER (52).  
They are counterpart proteins of ZnT5 and ZnT6, 
although Msc2 is homologous to ZnT5 only in the 
C-terminal portion including six menibrane-spanning 
domains (43,53) and Zrgl7 is the distant homologue 
of ZnT6 (52).  The hetero-oligomeric formation of 
ZnT5 and ZnT6 has been evidenced by using chicken 
DT40 cells deficient in ZnT5, ZnT6, and ZnT7 (49) .  
ZnT7 is homologous to ZnT5 in cation efflux domains 
(pfam01545), but it fails to form hetero-oligomeric 
complexes with ZnT6 (unpublished data), instead, 
it forms homo-oligomeric complexes (49) .  In verte- 
brates, these two different zinc transport complexes, 
ZnT5/ZnT6 hetero-oligomeric complexes and ZnT7 
homo-oligomeric complexes, operate to activate zinc- 
requiring enzymes like alkaline phosphatases that are 
synthesized and activated by binding with zinc in 
the secretory pathway (49) .  Moreover, since Msc2 
and Zrgl7 are involved in the unfolded protein re- 
sponse (UPR) because the mutant yeast strains lack- 
ing neither or either of the genes are defective in 
the ER-associated degradation (ERAD) and show the 
increased UPR under Pow-zinc conditions (52,54 ) , 
ZnT5, ZnT6, ZnT7, and their orthologues may have 
such functions. In fact, zinc deficiency can up- 
regulate the UPR in mammalian cells (54) .  

CDF1, a nematode ZnTl orthologue, positively 
regulates the Ras-Raf-MEK-ERK signal transduction 
by promoting zinc efflux and reducing the concentra- 
tion of cytosolic zinc (55 ,56 ) .  CDFl binds to Raf-1 
and promotes the biological and enzymatic activity of 
Raf-1 (57). This interaction occurs between the intra- 
cellular C-terminal tail of CDFl and the N-terminal 
regulatory portion of Raf-I. ZnTl complements all of 
these characteristics of CDFl (55 ,57 ) .  As the bind- 
ing of ZnTl to Raf-1 is inhibited by zinc (57), it is 
plausible that ZnTl lowers the cytosolic zinc, which 
promotes its binding to Raf-1 and facilitates Raf-1 ac- 
tivation. However, it has not been elucidated whether 
the mammalian Ras-mediated signaling pathway is 
fine-tuned by ZnTl in physiological condition. 

The divergent CDF protein in nematode, SUR7, 
which is probably localized to the ER, also positively 
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regulates Ras signaling through modulating the ac- 
tivity of k4nase suppressor of Ras (KSR; ref. 5 1 ) ,  
suggesting that other CDF proteins may regulate Ras 
signaling in nematode. In fact, the toc-1 protein 
(ZC395.3) that  shows homology to  ZnT6 is reported 
to  be involved in Ras signaling (51). The toc-1 pro- 
tein seems to have essential functions of supplying 
zinc to  proteins in the secretory pathway by form- 
ing hetero-oligomeric complexes with the ZnT5 ortho- 
logue protein (Y105E8A.3), because the ZnT7 gene is 
not found in the nematode genome sequence (Table 
2). The putative hetero-oligomeric complexes may 
have important functions in Ras signaling in nema- 
tode. 

Conclusion 
Various roles of ZIP or CDF transporters have been 
clarified, but further studies are needed to  fully elu- 
cidate their physiological functions. A comprehen- 
sive comparison of similarities and differences in the 
functions and regulations in transcription, transla- 
tion, trafficking, and turnover of homologous pro- 
teins of ZIP and CDF among mammals and other 
organisms should help elucidate the true role of each 
transporter in zinc homeostasis. By elucidating which 
of the redundant transporters is the principal or 
the backup, and identifying which transporter forms 
homo-oligomeric complexes or hetero-oligomeric com- 
plexes to  express zinc transport activity, we should be 
able to  ultimately solve the intriguing question why 
living organisms including humans need so many zinc 
transporters to  survive. 
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