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In this study, we present a non-invasive solution to identify patients with coronary artery

disease (CAD) defined as >50% stenosis in at least one coronary artery. The solution

is based on the analysis of linear acceleration (seismocardiogram, SCG) and angular

velocity (gyrocardiogram, GCG) of the heart recorded in the x, y, and z directional

axes from an accelerometer/gyroscope sensor mounted on the sternum. The database

was collected from 310 individuals through a multicenter study. The time-frequency

features extracted from each SCG and GCG data channel were fed to a one-dimensional

Convolutional Neural Network (1D CNN) to train six separate classifiers. The results from

different classifiers were later fused to estimate the CAD risk for each participant. The

predicted CAD risk was validated against related results from angiography. The SCG z

and SCG y classifiers showed better performance relative to the other models (p < 0.05)

with the area under the curve (AUC) of 91%. The sensitivity range for CAD detection was

92–94% for the SCG models and 73–87% for the GCG models. Based on our findings,

the SCGmodels achieved better performance in predicting the CAD risk compared to the

GCG models; the model based on the combination of all SCG and GCG classifiers did

not achieve higher performance relative to the other models. Moreover, these findings

showed that the performance of the proposed 3-axial SCG/GCG solution based on

recordings obtained during rest was comparable, or better than stress ECG. These

data may indicate that 3-axial SCG/GCG could be used as a portable at-home CAD

screening tool.

Keywords: seismocardiography, gyrocardiography, coronary artery disease (CAD), cardiac mechanical activity,

angiography

1. INTRODUCTION

Heart disease is the number one leading cause of death worldwide, with coronary artery disease
(CAD) accounting for about 44% of these deaths (GBD 2017 Disease and Injury Incidence and
Prevalence Collaborators, 2018). CAD defines a family of diseases caused by build-up plaque in
coronary arteries, blood vessels running over the surface of the heart to supply oxygenated blood
to the myocardium. The plaque, made up of fat, cholesterol, calcium, and other substances in the
blood, gradually hardens and narrows the arteries. Plaque build-up may cause permanent artery
occlusion leading to acutemyocardial infarction. As a result, it is of extreme importance to diagnose
CAD in its early stages, before myocardial infarction occurs.
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In most cases, assessment and diagnosis of CAD start
after the patient experiences symptoms such as chest pain,
shortness of breath, and fatigue. In such cases, the patients
are first referred for rest and stress electrocardiography (ECG)
test. Subsequently, further tests such as coronary computed
tomography angiography (CCTA) or coronary angiography are
used to localize where the occlusion has occurred (Ashley and
Niebauer, 2004).

While rest and stress ECG tests are extensively used for
the diagnosis of CAD, in many cases, diagnosis using only the
morphological changes of ECG is not straightforward, especially
when the disease is in an early stage of development. On a rest
ECG, the presence of ST-segment elevations suggests that the
patient is most likely suffering from ST-elevation myocardial
infarction. However, some patients are suffering frommyocardial
infarction who do not exhibit ST elevations on an ECG. During
an ECG stress test, a 12-lead ECG is recorded to assess the
heart’s ability to respond to external stress induced by exercise
or intravenous pharmacological stimulation. When the heart is
under stress, developing plaque may induce changes in the ECG,
mostly as either depression or an elevation of the ST segment. An
exercise ECG is non-invasive, inexpensive, and widely available
and despite its low sensitivity of 60%-70% (Al-Shehri et al., 2011;
Benjamin et al., 2018), it is still the primary choice for most cases
of suspected CAD.

Cardiac imaging such as coronary angiography or CCTA
offers greater sensitivity and specificity than an exercise test.
Cardiac imaging is currently the gold standard for the diagnosis
of CAD, but it can be expensive and not widely available. In the
case of angiography, it is invasive, introduces dye into the body,
and may involve harmful radiation (Al-Shehri et al., 2011).

A monitoring device that non-invasively and accurately
screens cardiac function could improve early detection of
coronary artery stenosis before it develops into ischemia
or myocardial infarct. This would lead to improved health
status among individuals and, subsequently, fewer medical
complications. In this study, we examined a methodology
for detecting CAD with a sensor designed to measure chest
vibrations induced bymechanical activity of the heart during rest.

The heart, in each cardiac cycle, twists forward and taps
the chest wall. This induces chest vibrations which can be
measured with a joint accelerometer-gyroscope mounted
on the sternum. The accelerometer non-invasively captures
the linear acceleration, or seismocardiogram (SCG), of
the chest while the gyroscope records the angular velocity
or gyrocardiogram (GCG).

An SCG is commonly recorded dorsoventrally using an
accelerometer placed on the sternum close to the xiphoid
process. SCG was initially recommended, in the early 1960s, for
monitoring heart rate variability (Baevskii et al., 1964). In the late
80s and early 90s, SCG was used as a technology for measuring
the myocardium motion during ventricular contraction, and
during early and late ventricular filling (Salerno and Zanetti,
1990, 1991). A study conducted by Crow et al. suggested that
the fiducial points of the dorsoventral SCG were associated
with aortic and mitral valve opening and closure events (Crow
et al., 1994) which were further investigated in a recent study

(Dehkordi et al., 2019b). In studies conducted in 1990 and 1991,
SCG was suggested as a non-invasive technology for detecting
coronary artery disease (Salerno et al., 1990, 1991). In a study
done by Salerno et al., the seismographic changes associated with
coronary artery stenosis were investigated in 35 patients during
coronary angioplasty (Salerno and Zanetti, 1991). The findings
were consistent with the hypothesis that the SCG changes were
due to ischemic changes in ventricular wall motion.

Several studies were later conducted to assess the ability
of exercise SCG for detecting CAD. Salerno et al. studied the
morphology of exercise SCG in patients with >50% coronary
artery stenosis (Salerno et al., 1992). Changes in the morphology
of SCG before and immediately after exercise were reported
as being significant during isovolumetric contraction up to the
occurrence of aortic valve opening. Their findings suggested that
exercise SCG in conjunction with 12-channel ECG improved the
sensitivity of detection of coronary artery stenosis compared to
ECG alone. These findings were later confirmed by the work of
Korzeniowska-Kubacka et al. (2005).

More recently, GCG has been introduced as a non-invasive
method for capturing the angular velocity of the chest induced
by heart rotation using a gyroscope placed on the sternum. The
angular velocity of the chest can be described as the rate of
angular displacement of the chest in terms of the speed of rotation
and the axis about which it is rotating. A uni-axial gyroscope
measures the angular velocity acting along a single measuring
axis while a 3-axial gyroscope, formed by three orthogonal uni-
axial gyroscopes, measures the angular velocity along the x-
axis, y-axis, and z-axis. GCG has been investigated as a new
technology for indicating the valvular opening and closing points
and consecutively for measuring the cardiac timing intervals
(Jafari Tadi et al., 2016, 2017; Dehkordi et al., 2020).

In a recent study (Dehkordi et al., 2019a), we developed a
machine-learning algorithm to automatically detect CAD using
the same database as the one (Salerno et al., 1992). The database
consisted of the SCG signals recorded from 185 individuals
at rest and immediately after exercise. We implemented two
separate models for identifying individuals with CAD using
the rest and exercise SCG. The models were validated against
related results from angiography. For the rest model, accuracy
was 74%, and sensitivity and specificity were estimated as 75 and
72%, respectively. For the exercise model, accuracy, sensitivity,
and specificity were 81, 82, and 84%, respectively. Both rest
and exercise models were able to detect CAD with comparable
accuracy, sensitivity, and specificity. Performance of exercise
SCGwas found to be better when compared to stress-ECG, which
is identical to stress-echocardiography and CCTA. However,
similar to the exercise ECG, the exercise SCG would be restricted
to medical facilities; therefore, in the current study, we are
investigating the ability of the rest SCG/GCG to detect CAD.

The purpose of the current investigation was to assess whether
the analysis of combined SCG and GCG recordings can improve
the detection of CAD without the need to stress the heart. We
designed and conducted a multicenter study and collected a
new database consisting of 3-axial SCG and GCG signals from
individuals with and without CAD.We implemented six separate
classifiers using features extracted from 6-channel data of SCG
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and GCG. The results from different classifiers were later fused to
predict the final CAD risk for each patient. The predicted CAD
risk was then validated against related results from angiography.

2. MATERIALS AND METHODS

2.1. Data Set
2.1.1. Participants

In total 326 individuals were recruited for this study. The dataset
was collected during a multi-center study conducted in Zurich,
Switzerland, and in Vancouver, Canada.

In Zurich, 157 patients (age: 63.71 ± 11.5, 30 females) were
recruited for this study. The patients were suspected of having
CAD and were referred to the University Hospital of Zurich for
catheter coronary angiography. The occlusion of more than 50%
in at least one coronary artery was considered as CAD. Among
the 157, 7 participants (4.4%) were excluded from the study due
to lack of information from angiography, very poor quality ECG,
SCG, or GCG signals, or unwillingness to continue the study.
On the remaining 150 participants, 126 patients were diagnosed
with significant CAD by coronary angiography while in 24 out
of 150 patients no significant CAD was reported. The protocol of
this study was approved by the University Hospital of Zurich; the
study was carried out following the Swiss legal requirements and
procedures involving human participants with written informed
consent from all subjects.

In Vancouver, 169 healthy, male and female adults between
19 and 85 years of age (age: 42.7 ± 15.7, 85 females) were
recruited for this study. Participants with a known history of
cardiovascular, respiratory, or major musculoskeletal injuries
were excluded from recording. Participants were later scanned
with echocardiography to detect any visible cardiac anomalies
including valvular regurgitations, pre-existing congenital heart
disease, and abnormal motion of the myocardium. Among the
169, 11 participants (6.5%) were excluded from the study due
to very poor quality ECG, SCG or GCG signals, unwillingness
to continue the study or abnormal motion of myocardium (1
person). The remaining 158 were labeled as non-CAD. This study
was carried out following the recommendations of Simon Fraser
University policies and procedures involving human participants
with written informed consent from all subjects. The protocol
was approved by the Office of Research Ethics at Simon Fraser
University, Vancouver, Canada.

2.1.2. Data Acquisition

To measure the heart’s mechanical motion, a low-noise 3-
axial micro-electro-mechanical (MEMS) joint accelerometer-
gyroscope sensor (ASC GmbH, ASC IMU 7.002LN.0750,
Germany) was used to record SCG and GCG. The dynamic range
of the accelerometer and gyroscope were set ± 2 g and ±75
◦s−1 with an RMS noise of 7µgHz−1/2 and 0.02 ◦s−1Hz−1/2,
respectively. The sensor was mounted on the sternum with the
x-axis pointed laterally from left to right, the y-axis pointed
from head to foot, and the z-axis pointed from back to front
while participants lay supine. Simultaneously, a reference two-
lead ECG (iWorx Systems, Inc., IX-BIO8-SA, NH, USA) was
recorded. All recordings were conducted with the iWorx data

acquisition system (iWorx Systems, Inc., IX-416, NH, USA),
sampled at 1 kHz with 16-bit resolution (Figure 1).

All data recordings in Vancouver were performed at the
Aerospace Physiology Lab at Simon Fraser University, Canada.
In Switzerland, data collection was conducted in the Institute
of Diagnostic and Interventional Radiology of the University
Hospital Zurich.

2.2. Data Processing
Data analysis was performed in three main steps: 1) feature
extraction, 2) model training, and 3) ensemble learning and
validation (Figure 2).

In the first step, after preprocessing, each SCG and GCG
channel of data was segmented into the cardiac cycles using
the ECG Q. For each cycle, a two-dimensional matrix of time-
frequency features was extracted using the synchrosqueezing
transform and was later flattened to a one-dimensional grayscale
vector. In the model training step, the sets of grayscale vectors
extracted from six SCG/GCG channels were separately fed to
a one-dimensional Convolutional Neural Network (1D CNN)
to get six different classifiers [three classifiers for SCG channels
(CADscg_x, CADscg_y, and CADscg_z) and three classifiers for
GCG channels (CADgcg_x, CADgcg_y, and CADgcg_z)]. In the last
step, the results from different classifiers were fused to estimate
the final CAD risk for each patient. The leave-one-subject-out
cross-validation was employed to validate the solution.

2.2.1. Preprocessing

A zero-phase high-pass Butterworth filter with an order of 5 and
the cut-off frequency of 0.5 Hz was applied to the SCG and GCG
signals to remove baseline wander. Subsequently, the average was
removed, and the signals were normalized between –1 and 1. All
signals were downsampled to 250 Hz using a Chebyshev Type I
filter with the order of 8.

2.2.2. Feature Extraction

For extracting features from SCG/GCG signals, the following
steps were taken (Figure 2A):

1. The onset of left ventricular depolarization (the onset of QRS
complex on ECG, and in particular the ECG Q) were detected
using the Pan-Tompkin algorithm (Pan and Tompkins, 1985).
The ECG Q points were used to segment the SCG and GCG
signals into cardiac cycles.

2. Due to heart rate variability, the cardiac cycles had different
lengths and consequently different numbers of samples. All
cycles were linearly interpolated, taking place at 250 equally
spaced points to have the cycle with the same size.

3. After interpolation, 10 consecutive interpolated cycles
were concatenated to get a time series of the length
of 2,500 samples.

4. A time-frequency transform called synchrosqueezing
transform (SST) (Daubechies et al., 2011) was used to
determine the frequency components of each time series at
each time sample. SST is a combination of wavelet analysis
and a reallocation method that sharpens the time-frequency
representation by allocating its points to other locations in
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FIGURE 1 | (A) From top to bottom: ECG, SCG x, y, and z, and GCG x, y, and z signals captured simultaneously. The fiducial points MC, AO, AC, and MO were

marked on SCG z. MC and MO points correspond to mitral valve closure and opening; AC and AO points correspond to the aortic valve closure and opening. (B) The

position and the direction of the 3-axial micro-electro-mechanical (MEMS) joint accelerometer-gyroscope sensor.

the time-frequency plane (Thakur et al., 2013). Applying the
SST resulted in a plane, T, of the size of 178 by 2,500.

5. T was divided into 10 matrices of size 178 by 250. As such,
each matrix represented the time-frequency components of
one cycle. Later the information related to the frequencies
greater than 40 Hz were discarded, resulting in the matrices
of size 150 by 250.

6. Each matrix was averaged in time and frequency dimensions
using the moving windows of 5 and 10 samples, respectively,
which reduced the size of matrices to 30 by 25. The length
of the moving widows has been tuned in the validation data
set using a grid search strategy. The matrices were converted
to the intensity images that contained values in the range
0 (black) to 1 (white); the images were later flattened into
vectors of size 750. These vectors were used to train and
validate the one-dimensional Convolutional Neural Network
(1D CNN) classifiers.

2.2.3. Deep Learning Approach

2.2.3.1. 1D CNN Architecture
An architecture based on the one-dimensional Convolutional
Neural Network (1D CNN) was proposed for training the

classifiers (Figure 3). The standard CNN, also called 2D CNN,
was initially introduced as a deep learning architecture for
analyzing image data. The CNN extracts the spatial features of the
data by using sliding kernels. In 2D CNN, the kernels slide in two
dimensions while the kernels in 1D CNN slide in one dimension.
It makes the 1D CNN a powerful tool for analyzing time-series
data which has spatial characteristics only in one dimension.

The proposed model contained three convolutional blocks,
two fully connected layers, and a Softmax layer as the
output prediction layer. The convolutional block consisted of a
convolutional layer, an activation layer with Rectified Linear Unit
(ReLU) function, and amax-pooling layer. A batch normalization
layer was added to the first convolutional block after ReLU
activation to normalize the input layer. A dropout layer was
applied to the second and third conventional blocks (Figure 3).

The first conventional layer had 32 filters, and the second and
third conventional layers each had 16 filters. The kernel size in all
layers was set to 10. The pooling layers with the kernel sizes of two
were added to downsample the convolutional output. The output
of conventional blocks was flattened to one long vector and
passed through two fully connected layers. Each fully connected
layer contained 1,000 nodes, a ReLU activation function, and a
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FIGURE 2 | (A) Different steps of methodology (B) Ensemble learning.

FIGURE 3 | 1D CNN architecture proposed for training the classifiers.

dropout layer of rate 0.5. The Softmax function in the last layer
was used to estimate the prediction probability over the two
classes of CAD and non-CAD.

2.2.3.2. Training
The leave-one-subject-out method was employed to train the
models and evaluate their performance. First, the dataset was

split into Train (features of N-1 participants) and Test (features
of 1 participant). After that, we kept aside the Test set and
randomly assigned 80% of the Train dataset as the actual Train
set and the remaining 20% as the Validation set. The 1D CNN
was then iteratively trained and validated on these different sets
N times. The training was carried on using the adaptive moment
estimation (Adam) optimizer and the binary cross-entropy as the
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loss function. The performance of models was evaluated on the
Validation set for 100 epochs, and the best model with the highest
accuracy on the Validation set was chosen. This model later was
applied to the data of the Test dataset to predict the probability of
belonging to the CAD class. This probability is called predicted
CAD risk.

2.2.3.3. Ensemble Learning
The predictions from different classifiers were combined to
estimate the final CAD risk for each patient (Figure 2B).
The classifiers CADall_axes, CADscg_axes and CADgcg_axes

were formed from averaging the predicted risk estimated
from all six classifiers, three SCG classifiers (CADscg_x,
CADscg_y, CADscg_z) and three GCG classifiers (CADgcg_x,
CADgcg_y, CADgcg_z), respectively.

2.2.3.4. Performance Evaluation
The performance of the classifiers was evaluated in terms of
area under the receiver operating characteristic curve (AUC),
F1-score, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV). In addition, for each
model, the discrimination slope was estimated as the difference
in the average predicted probabilities between two classes of
CAD and non-CAD.

3. RESULTS

The AUCs for all models were estimated to measure the
overall performance of the classifiers (Table 1). The individuals
with an overall predicted risk greater than 0.5 were classified
as CAD. Accordingly, the F1-score, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) were estimated.

Considering AUC and F1-score, the CADscg_z and CADscg_y

showed better performance relative to the other models (p-value
< 0.05). Considering NPV, CADscg_axes demonstrated the best
performance. In general, the SCG models (CADscg_x, CADscg_y,
CADscg_z , CADscg_axes) perform better in identifying CAD from
non-CAD compared to the GCG models (CADgcg_x, CADgcg_y,
CADgcg_z , CADgcg_axes). The CADall_axes using the data from all

channels would not achieve higher performance relative to the
other models (Table 1).

Among all models, CADscg_y and CADscg_z have attained the
greatest discrimination slope of 0.65 (Figure 4, Table 1).

4. DISCUSSION

We have proposed a novel and non-invasive solution for
identifying the patients with more than 50% occlusion in at least
one coronary artery by analyzing the heart’s mechanical activity.
The human heart rotates along its long axis in two different
directions on the base and apex, causing a very complicated
twist and wringing during each cycle. The proposed solution
analyzed both the linear acceleration (SCG) and angular velocity
(GCG) and in three different axes (x, y, and z) to examine the
effect of coronary artery disease in both the heart motion and
the heart twist. SCG and GCG were recorded using a joint 3-
axial accelerometer/gyroscope inertial measurement unit (IMU)
sensor mounted on the chest. Six different deep learning models
were developed using the SCG/GCG data channels to predict
the CAD risk for each participant. In addition, CADall_axes,
CADscg_axes, and CADgcg_axes models were developed from the
fusion of all six SCG/GCG models, three SCG models, and
three GCG models, respectively. The performance of the models
was validated against the gold standard, angiography. The
performance of the models in terms of AUC and F1-score was
also compared to each other to examine the ability of each data
channel of SCG/GCG or their combination in detecting CAD.
The models delivered the AUC, and F1-score ranged from 0.83
to 0.92 and 0.78 to 0.86, respectively.

The finding of this study showed that the models based on
the three SCG data channels (CADscg_x, CADscg_y, CADscg_z ,
CADscg_axes) in general perform better in identifying CAD
compared to the GCG models (CADgcg_x, CADgcg_y, CADgcg_z ,
CADgcg_axes). It may imply that the change in vibration
characteristics (time-frequency) due to coronary artery disease
is more significant in the linear acceleration data than the
rotational velocity recorded from the sternum. Among SCG
models, CADscg_y and CADscg_z demonstrated almost the same

TABLE 1 | Overall classification performance for the 6-channel model (CADall_axes ), the 3-channel SCG (CADscg_axes), the 3-channel GCG (CADgcg_axes), three one-channel

SCG (CADscg_x , CADscg_y , CADscg_z ), and three one-channel GCG (CADgcg_x , CADgcg_y , CADgcg_z ).

Model AUC (95% CI) F1_score Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) Discrimination slope

CADall_axes 0.92 (0.89–0.96) 0.85 96% (93–99) 76% (70–83) 76% (69–82) 96% (93–98) 0.54

CADscg_axes 0.93 (0.90–0.96) 0.84 98% (95–99) 74% (67–80) 74% (67–81) 97% (95–99) 0.61

CADgcg_axes 0.89 (0.85–0.93) 0.84 90% (85–96) 78% (71–84) 76% (70–82) 91% (87–96) 0.46

CADscg_x 0.88 (0.84–0.92) 0.81 94% (90–98) 72% (65–79) 72% (65–79) 94% (90–98) 0.56

CADscg_y 0.94 (0.90–0.98) 0.86 94% (90–98) 78% (72–84) 77% (71–84) 95% (91–98) 0.65

CADscg_z 0.91 (0.88–0.94) 0.85 92% (88–97) 78% (72–84) 78% (71–84) 92% (88–97) 0.65

CADgcg_x 0.86 (0.82–0.91) 0.81 73% (65–81) 82% (77–89) 76% (69–84) 80% (74–86) 0.45

CADgcg_y 0.83 (0.79–0.88) 0.78 81% (74–88) 73% (66–79) 70% (62–77) 83% (77–89) 0.42

CADgcg_z 0.83 (0.79–0.88) 0.79 87% (81–93) 72% (65–79) 71% (63–78) 88% (82–93) 0.5

The F1-score, accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were estimated for the threshold of 0.5.
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FIGURE 4 | Box plots of predicted risk of individuals with and without CAD estimated 6-channel model (CADall_axes ), the 3-channel SCG (CADscg_axes), the 3-channel

GCG (CADgcg_axes), three one-channel SCG (CADscg_x , CADscg_y , CADscg_z ), and three one-channel GCG (CADgcg_x , CADgcg_y , CADgcg_z).

performance with the highest values for AUC and F1-score (0.92
and 0.86, respectively). However, the model based on the three-
channel SCG (CADscg_axes) provided the greatest value for NPV.
NPV is the probability that a person with a negative test result
(non-CAD, in this study) is truly free of disease. High NPV
achieved by CADscg_axes may suggest this model as the most
reliable one for screening CAD, among others.

The CADall_axes model, which was an ensemble of all six
models, would not achieve higher performance relative to the
other models. A study conducted by Dehkordi et al. (2020)
suggested that using SCG and GCG recordings together could
provide the opportunity to estimate cardiac time intervals more
accurately and make it possible to calculate the Tei Index as an
indicator of myocardial performance. However, the results of this
study may suggest that combining the analysis of GCG and SCG
would not provide better performance in detecting CAD.

In our recent study (Dehkordi et al., 2019a), we implemented
two separate models for identifying individuals with CAD using
the rest and exercise SCG. The AUC was estimated as 0.77
and 0.91 for the rest and exercise models, respectively. For the
rest model, accuracy was 74%, and sensitivity and specificity
were estimated as 75 and 72%, respectively. For the exercise
model, accuracy, sensitivity, and specificity were 81, 82, and 84%,
respectively. In the current study, the SCG and GCG recordings
were obtained during the rest, and the trained models of
CADall_axes, CADscg_axes, CADscg_y, and CADscg_z still achieved
better performance with the higher AUC (ranged from 0.91
to 0.93), accuracy (ranged from 82% to 85%), and sensitivity
(ranged from 92 to 98%) relative to the same metrics reported
for both rest and exercise SCG in our previous study (Dehkordi
et al., 2019a). However, the model based on the exercise SCG
revealed higher specificity (84%) compared to those reported for
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CADall_axes, CADscg_axes, CADscg_y, and CADscg_z (ranged from
72 to 78%). It suggests that the exercise SCG provided better
performance in correctly identifying people without CAD. In
other words, exercise SCG provided a higher true negative rate.

In our previous study, the analyses of ECG showed that for
the patients with >50% stenosis in at least one coronary artery,
the sensitivity of exercise ECG was 70%, and for the patients
without significant coronary artery stenosis, the specificity for
exercise ECG was 55%; total accuracy of exercise ECG was 65%.
Comparing these results shows that the CADall_axes, CADscg_axes,
CADscg_y, and CADscg_z models provided better performance in
identifying patients with CAD compared to the exercise ECG.

Performance of the models we trained in this study is
comparable with the performance of coronary computed
tomography angiography (CCTA). Sensitivity and specificity
of CCTA are stated to be between 85 and 90% and 64 and
90%, respectively. However, CCTA has a very high negative
predictive value, especially in low to intermediate-risk subjects
(Al-Shehri et al., 2011). Furthermore, CCTA is only available
in specialized centers and it is by far more expensive compared
to SCG examination.

An evidence-based analysis of more than 120 publications
was recently conducted to determine the accuracy of stress
echocardiography with regard to CAD. Overall pooled sensitivity
of 80% (95% CI: 0.77–0.82) and specificity of 84% (95% CI:
0.82–0.87) were reported using coronary angiography as the
reference standard (Medical Advisory Secretariat, 2010). The
models we trained in this study showed higher sensitivity (92–
98%) to those reported for the stress echocardiography. The stress
echocardiography, though, revealed higher specificity (84%)
compared to those reported for SCG and GCG models (ranged
from 72 to 78%). However, in our opinion, recording SCG is
more convenient than performing a stress echocardiography.
Furthermore, analysis of SCG recordings is much easier than
interpreting echocardiographic images.

The performance of the CAD models based on SCG and
GCG are higher compared to those calculated for the exercise
ECG. Several studies showed that the sensitivity of the exercise
ECG ranged between 68 and 75% (Al-Shehri et al., 2011;
McLellan and Prior, 2012) and the specificity ranged from
70 to 77% (McLellan and Prior, 2012). Besides, there is a
considerable drawback that an exercise ECG test can only be
performed by a trained physician. In contrast to the exercise
ECG, a rest SCG can be recorded by individuals without the
medical background.

The results of previous studies (Salerno et al., 1992; Dehkordi
et al., 2019a) showed that an exercise SCG provided better
performance in identifying patients with CAD compared to
the exercise ECG. However, similar to an exercise ECG, an
exercise SCG would be restricted to medical facilities under
the supervision of a trained physician (e.g., a cardiologist) due
to the risk of stress-induced cardiac events. The findings of
the current study show that the performance of the proposed
solution based on the 3-axial SCG/GCG recordings obtained
during rest is comparable with the performance of an exercise
SCG suggesting a solution that is amenable for portable at-home
screening of CAD.

In our future studies, we aim to address the following
limitations of the current study: (a) analysis of stenosis
with different degrees of occlusion. In the current study, we
investigated the possibility of identifying patients with stenosis
>50% in at least one coronary artery. In a future study, we will
investigate the possibility of early detection of the individuals
with coronary artery stenosis of a 25% occlusion rate, (b) Also,
we will investigate the potential of SCG/GCG in localizing
the coronary occlusion, (c) In this study, we used the fusion
technique to get the final CAD risk probability for each patient.
This generally indicates that ourmodels assume thatmost cardiac
cycles are affected by coronary artery disease. However, we need
to further investigate the effect of coronary artery disease on the
individual cardiac cycles to see how the disease manifests itself
in each axis of vibration, (d) Within a subject, the morphology
and also the frequency components of the SCG/GCG recordings
varied from one cycle to another. This variation could be
mainly due to the effects of breathing (Tavakolian et al., 2008).
In the future study, we would like to examine the effects of
coronary artery disease on the morphology of SCG/GCG cycles
in the inspiration and expiration periods separately, (e) In the
future study, instead of training an original model for detecting
the coronary arteries, we will use a pre-trained CNN model.
This technique, known as transfer learning, will improve the
generalization and eliminate the need for a huge labeled data set
for training a model.

DATA AVAILABILITY STATEMENT

The datasets generated for this study will not be made
publicly available. Currently, this data set is in the possession
of Heart Force Medical Inc. However, the authors have the
intention to make the data set publicly available in the near
future. The features extracted from the signals are available
by request.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved byOffice of Research Ethics at Simon Fraser University,
Vancouver, Canada and University Hospital of Zurich. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

PD processed the data, designed and developed the models,
analyzed the results, prepared the figures, and drafted the
manuscript. EB provided his medical expertise in designing
the models and statistical processing, analyzed the results
and also revised the manuscript critically for content. KT,
ZX, and AB analyzed the results and revised the manuscript
critically for content. FK-K contributed to the design and
development of the models and revised the paper critically for
content. All authors contributed to the article and approved the
submitted version.

Frontiers in Physiology | www.frontiersin.org 8 December 2021 | Volume 12 | Article 758727

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Dehkordi et al. Detecting CAD Using SCG and GCG

REFERENCES

Al-Shehri, H., Small, G., and Benjamin, J. W. (2011). Cardiac CT, MR,

SPECT, ECHO, and PET: what test, when? Appl. Radiol. 40, 13–22.

Available online at: https://appliedradiology.com/articles/cardiac-ct-mr-spect-

echo-and-pet-what-test-when?agilitychannel=website

Ashley, E. A., and Niebauer, J. (2004). Cardiology Explained. London: Remedica.

Baevskii, R. M., Egorov, A. D., and Kazarian, L. A. (1964). The Method of

Seismocardiography. Kardiologiia 18, 87–89.

Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A.

R., Cheng, S., et al. (2018). Heart disease and stroke statistics-2018 update:

a report from the American Heart Association. Circulation 137, e67–e492.

doi: 10.1161/CIR.0000000000000558

Crow, R., Hannan, P., Jacobs, D., Hedquist, L., and Salerno, D. (1994).

Relationship between seismocardiogram and echocardiogram for events in

the cardiac cycle. Am. J. Noninvasive Cardiol. 8, 39–46. doi: 10.1159/0004

70156

Daubechies, I., Lu, J., and Wu, H. T. (2011). Synchrosqueezed wavelet transforms:

an empirical mode decomposition-like tool. Appl. Comput. Harmon Anal. 30,

243–261. doi: 10.1016/j.acha.2010.08.002

Dehkordi, P., Bauer, E. P., Tavakolian, K., Zakeri, V., Blaber, A. P., and

Khosrow-Khavar, F. (2019a). Identifying patients with coronary artery

disease using rest and exercise seismocardiography. Front Physiol. 10:1211.

doi: 10.3389/fphys.2019.01211

Dehkordi, P., Khosrow-khavar, F., Di Rienzo,M., Inan, O. T., Schmidt, S. E., Blaber,

A. P., et al. (2019b). Comparison of different methods for estimating cardiac

timings: a comprehensive multimodal echocardiography investigation. Front.

Physiol. 10:1057. doi: 10.3389/fphys.2019.01057

Dehkordi, P., Tavakolian, K., Jafari Tadi, M., Zakeri, V., and Khosrow-Khavar,

F. (2020). Investigating the estimation of cardiac time intervals using

gyrocardiography. Physiol. Meas. 41, 055004. doi: 10.1088/1361-6579/ab87b2

GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018).

Global, regional, and national incidence, prevalence, and years lived with

disability for 354 diseases and injuries for 195 countries and territories, 1990-

2017: a systematic analysis for the global burden of disease study 2017. Lancet

392, 1789–1858. doi: 10.1016/S0140-6736(18)32279-7

Jafari Tadi, M., Lehtonen, E., Pankaala, M., Saraste, A., Vasankari, T., Teras,

M., et al. (2016). Gyrocardiography: a new non-invasive approach in the

study of mechanical motions of the heart. Concept, method and initial

observations. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2016, 2034–2037.

doi: 10.1109/EMBC.2016.7591126

Jafari Tadi, M., Lehtonen, E., Saraste, A., Tuominen, J., Koskinen, J., Teräs, M.,

et al. (2017). Gyrocardiography: a new non-invasive monitoring method for the

assessment of cardiac mechanics and the estimation of hemodynamic variables.

Sci. Rep. 7, 1–11. doi: 10.1038/s41598-017-07248-y
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