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Abstract: Background: While early life exposures such as mode of birth, breastfeeding, and antibiotic
use are established regulators of microbiome composition in early childhood, recent research suggests
that the social environment may also exert influence. Two recent studies in adults demonstrated
associations between socioeconomic factors and microbiome composition. This study expands
on this prior work by examining the association between family socioeconomic status (SES) and
host genetics with microbiome composition in infants and children. Methods: Family SES was
used to predict a latent variable representing six genera abundances generated from whole-genome
shotgun sequencing. A polygenic score derived from a microbiome genome-wide association study
was included to control for potential genetic associations. Associations between family SES and
microbiome diversity were assessed. Results: Anaerostipes, Bacteroides, Eubacterium, Faecalibacterium,
and Lachnospiraceae spp. significantly loaded onto a latent factor, which was significantly predicted
by SES (p < 0.05) but not the polygenic score (p > 0.05). Our results indicate that SES did not predict
alpha diversity but did predict beta diversity (p < 0.001). Conclusions: Our results demonstrate that
modifiable environmental factors influence gut microbiome composition at an early age. These results
are important as our understanding of gut microbiome influences on health continue to expand.

Keywords: socioeconomic status; infant; childhood; microbiome; stress

1. Introduction

The human gut microbiota play an important role in a broad range of physiological
functions, including immune system maturation, metabolic and inflammatory processes,
and the central nervous system [1–3]. Microbial diversity is influenced by a combination of
environmental and host genetic factors and is associated with several complex diseases [4].
Various environmental factors influence inter-individual variation in the gut microbiota
structure and function during childhood, including mode of birth (vaginal or caesarean
section), initiation and duration of breastfeeding, antibiotic exposure, indoor and outdoor
environment, pet exposure, and diet [5,6].

While the human gut microbiome composition is strongly shaped by various environ-
mental factors, there is also evidence for host genetic influence [7]. Early underpowered
studies suggested that monozygotic twins were no more similar in gut microbiota than
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dizygotic twins, suggesting very little, if any, genetic influence [8,9]. However, more recent
studies incorporating larger twin samples from the TwinsUK cohort show a small but sta-
tistically significant effect of genetics on microbiome composition [10,11]. Studies in mice
further demonstrate the role of host genetic influence on microbiome composition [12–14].
Importantly, molecular genetic studies [15] and multiple genome-wide association studies
(GWAS) have demonstrated that host genetics moderately influence microbial composition
in humans [16–21]. Together, these studies demonstrate the existence of human genes with
alleles that contribute to microbiome composition.

As our understanding of environmental and genetic influences on gut microbiome
composition continue to grow, recent research suggests the social environment may also
play a role in regulating the gut microbiome [22]. Research linking the social environ-
ment to the gut microbiome mostly stems from animal models focused on the impact
of social interactions and psychosocial stress. Studies in primates suggest that social re-
lationships influence gut microbiome composition through microbial sharing between
individuals [23–26]. In addition to direct microbial sharing, psychosocial stressors may
also affect microbiome structure [27,28]. Animal studies demonstrate that psychological
stressors, such as novel housing, social disruption, restraint stress, and early life stress,
affect microbial community compositions [29–31]. Prenatal maternal stress and interrup-
tion of maternal care have also been shown to impact the gut microbiota of offspring in
mice [25,30,32–34]. Collectively, this body of evidence suggests an association between
social factors and the microbiome, encouraging studies of these relations in humans.

Research to date on social factors and the microbiome in humans is limited. Socioeco-
nomic status (SES) is a factor that reflects economic resources such as education, income,
and occupation. As SES is related to living conditions, psychosocial stress, and nutrition,
it is likely that SES plays a major role in influencing the gut microbiome [35,36]. A study
of forty-four healthy adults found that lower neighborhood-level SES in Chicago, Illinois
was associated with reduced alpha-diversity, greater abundance of taxa associated with
the genus Bacteroides, and lower abundance of taxa associated with the genus Prevotella in
the gut microbiota [37]. Bowyer et al. (2019) extended this work using a large sample of
adult twins in the United Kingdom. This study found associations between individual and
area-level income and relative abundance of operational taxonomic units (OTUs) in the
gut microbiome [38]. They also found individual and area-level incomes were linked to
microbial composition and lower alpha diversity [38]. However, much less research has
investigated the relationships between SES and gut microbiome composition in children.

These two studies are an important first step in describing associations of SES and
the microbiome. The current study extends this work by testing the associations between
family SES with relative abundance of genera and diversity in the gut microbiome of
infants and children while controlling for potential genetic associations. We use genera
previously associated with SES in adults [38] in a structural equation model framework.
Genetic associations were controlled for with polygenetic scores (PGS) generated from the
most recent and largest microbiome GWAS findings [20]. Although cross-sectional data
cannot be used to demonstrate causality, structural models yield fit indices that represent
the fit of the data to the hypothesized model.

2. Materials and Methods
2.1. Demographics and Family SES

Demographic and socioeconomic characteristics (child age, child sex, parental edu-
cation, and birth type) were collected by parental-report. Family SES was measured by
averaging paternal and maternal education [39]. Education levels were coded as follows:
Less Than Seventh Grade = 1; Junior High School = 2; Partial High School = 3; High School
Graduate = 4; Partial College or Specialized Training = 5; College Graduate = 6; Graduate
Training = 7. Written consent was obtained from parents or legal guardians in accordance
with ethics approval from the host institution’s Institutional Review Board.
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2.2. SNP Microarray and Polygenic Scores (PGS)

Saliva was collected from participants in the lab using Oragene (DNA Genotek, Ot-
tawa, ON, Canada) saliva collection kits. DNA was extracted with a standard isolation kit
(DNA Genotek’s PT-L2P-5). Sample yield and purity were assessed spectrophotometrically
using NanoDrop ND-1000 (ThermoScientific, Wilmington, DE, USA) methods. Genotyp-
ing of the Multi-Ethnic Global Array (MEGA, >1.7 million markers) run on an Illumina
iScanSystem (Illumina, San Diego, CA, USA) was conducted at the Translational Genomics
Research Institution (TGen, Phoenix, AZ, USA). Initial genotype definitions were based
on auto-clustering all samples that had call rate >0.98 using the GenomeStudio software
(2.0). Following genotype calling on all samples, VCF files were imported to the TOPMed
Imputation Server [40] and built with the hg38 reference for whole genome imputation
followed by a liftover to build hg19 for PGS.

PGS were generated according to standardized, published methods [41]. In summary,
using the ‘’P/A” variants discovered by Hughes et al. (2020), the count of each effect allele
was multiplied by the natural log of the odds ratio for that allele and then summed across
all SNPs for each individual. The sum of all allelic effects represents the PGS.

2.3. Stool Sample Collection and Handling

Stool samples were collected by parents in OMR-200 tubes (OMNIgene GUT, DNA
Genotek, Ottawa, Ontario, CA, USA), stored on ice, and brought within 24 h to the labora-
tory in RI where they were immediately frozen at −80 ◦C. Stool samples were not collected
if the infant had taken antibiotics within the last two weeks. Samples were transported to
Wellesley College (Wellesley, MA, USA) on dry ice for further processing.

2.4. DNA Extraction and Sequencing of Metagenomes

Nucleic acids were extracted from 200 µL of each stool sample using the RNeasy
PowerMicrobiome kit automated on the QIAcube (Qiagen, Germantown, MD, USA), ex-
cluding the DNA degradation steps. Cell lysing steps were performed using the Qiagen
PowerLyzer 24 Homogenizer (Qiagen, Germantown, MD, USA) at 2500 speed for 45 s,
then samples were transferred to the QIAcube to complete the protocol, and extracted
DNA was eluted in a final volume of 100 µL. Extracted DNA was sequenced at the Inte-
grated Microbiome Resource (IMR, Dalhousie University, NS, Canada) [42]. To sequence
metagenomes, a pooled library (max. 96 samples per run) was prepared using the Illumina
Nextera Flex Kit for MiSeq and NextSeq (a PCR-based library preparation procedure)
from 1 ng of each sample where samples were enzymatically sheared and tagged with
adaptors, PCR amplified while adding barcodes, purified using columns or beads, and
normalized either using Illumina beads or manually. Samples were then pooled onto a
plate and sequenced on the Illumina NextSeq 550 platform using 150 + 150 bp paired-end
“high output” chemistry, generating ~400 million raw reads and ~120 Gb of sequence. The
average sequencing depth per sample was 7,738,479. Samples were deposited in NCBI
Genbank under Bioproject PRJNA695570.

2.5. Analyzing Metagenomes

Metagenomic data were analyzed using bioBakery workflows with all necessary
dependencies and default parameters [43]. Briefly, KneadData (v0.7.10) was used to trim
and filter raw sequence reads, and to separate human and 16S ribosomal gene reads
from bacterial sequences in fecal samples. Samples that passed quality control were
taxonomically profiled to the genus level using MetaPhlAn (v3.0.7) [44]. Full taxonomic
breakdown at the genus level showing top ten microorganisms can be found in Figure 1.
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2.6. Structural Equation Modeling

Using the lavaan [45] package in R [46], a latent variable path model within the
structural equation modeling (SEM) framework was used to investigate relationships
between family SES and the gut microbiome in infants and young children. SEM is
a multivariate method where complex relationships between exposures and outcome
variables can be estimated simultaneously in a single model, with error measured separately.
A latent variable path model is a statistical model of hypothesized relationships among a
set of latent and observed variables. In statistics, latent variables are variables that are not
directly observed but are rather inferred from other directly measured variables. Latent
variables represent “shared” variance, or the degree to which variables “move” together,
therefore, variables that have no correlation cannot result in a latent construct. The use
of latent variables can serve to reduce the dimensionality of data since many observable
variables can be aggregated into a single latent variable.

The underlying theoretical framework includes assumptions about the causality of
relationships suggested by the literature such that early environmental exposures influence
microbiome structure. The latent variable SEM can easily incorporate covariates such as
sex, age, birth type, and sequencing depth to examine their influences on the underlying
microbiome composition. Relationships are estimated by solving regression-style equa-
tions based on a variance-covariance matrix and all correlations between variables are
modeled [47]. This is an advantage in handling microbiota relative abundance data since
profiles derived from sequencing data are inherently relative and correlated [48,49]. While
SEM is still a relatively novel statistical approach with microbiome data, others have had
success with it [50,51]. Taxonomic breakdown of the genera assessed in this study can be
found in Figure 2.

Participant data were chosen based on available microbiome data. For SEM, all other
variables were subjected to full information maximum likelihood (FIML) estimation, which
has been shown to be superior compared to listwise deletion, pairwise deletion, and similar
response pattern imputation [52]. The basic premise of FIML is that instead of imputing
the values of missing data, we estimate missing values by determining the value that
maximizes the likelihood function based on the sample data that we have.

Model goodness of fit (GOF) was evaluated jointly by two commonly used fit indices,
root mean square error of approximation (RMSEA) and the standardized root mean square



Microorganisms 2021, 9, 1608 5 of 12

residual (SRMR). GOF was considered acceptable if the RMSEA and SRMR were less than
0.08 [53,54].
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2.7. Microbiome Diversity

Alpha diversity measure (Shannon index) was calculated for each individual using
the R package vegan. Bray–Curtis dissimilarities, the distances to group centroids, were
used as measures of beta diversity, using the function vegdist within vegan. Permutational
multivariate analysis of variance (PERMANOVA) was performed with the family SES
variable (9999 permutations) within vegan to test associations.

3. Results
3.1. Sample Characteristics

A summary of sample descriptive statistics can be found in Table 1.

Table 1. Sample descriptive statistics.

Variable N Mean (SD) or % Range

Metagenomics 588 - -
Age (years) 315 4.5 (3.63) 1 m–15 y

Sex (Female) 547 45% -
Socioeconomic status

(SES) 434 4.2 (1.87) 1–7

PGS 358 0.36 (1.42) −2.72–2.79
Birth type 370 69% (Vaginal) -

Race 406

60.6% White; 26.8%
Mixed; 7.6% African

American; 1.2%
Asian; 1.2% Native

American; 2.5%
Declined

-

–Alpha-Diversity
(Shannon) 588 2.05 (0.56) 0.09–3.02

3.2. SES and Relative Abundance

The primary aim of the present study was to examine the relations between SES
with childhood microbiome abundance and diversity. To test these predictions, we used
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the lavaan package in R, a structural equation modeling program. As a first step in our
analyses, we tested a measurement model with one latent variable, indicated by the relative
abundance of the genera Akkermansia, Anaerostipes, Bacteroides, Blautia, Eubacterium, Faecal-
ibacterium, Lachnospiraceae, Prevotella, and Streptococcus. The initial model was based on
the predefined theoretical framework and then trimmed by dropping indicators that were
not statistically significant, specifically Akkermansia, Prevotella, Streptococcus, and Blautia
from the model to improve model fit. The revised model fit the data well (RMSEA = 0.068,
SRMR = 0.036), was a significant improvement from the first model (χ2∆[22] = 332.43,
p < 0.00001), and provided a basis for further model testing. All loadings were significant
(all p’s < 0.01).

Next, we added SES, PGS, child sex, child age, birth type, and sequencing depth as
predictors of the microbiome latent variable. The hypothesized model fit the data well
(CFI = 0.811; RMSEA = 0.062, SRMR = 0.047; Figure 1). SES was a significant predictor of
the latent microbiome factor (β = 0.135, p < 0.05). PGS was not a significant predictor of the
microbiome latent factor (p > 0.05). Of all the covariates, only child age was a significant
predictor (β = 0.604, p < 0.001). The full model and results can be found in Figure 3.
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Figure 3. Latent Variable Path Model-Socioeconomic Status (SES) and Microbiome. Gut microbiome genera previously
associated with SES in adulthood load onto a single latent variable which is predicted by SES and age in young chil-
dren. The shapes in the graph represent variables where squares are observed variables and circles are latent variables.
The single headed arrows are regression effects, solid lines indicates a significant path and dashed line indicates non-
significance. Unstandardized estimates are above the standardized estimates, which are in parentheses. * p < 0.05,
** p < 0.001. RMSEA = 0.062; SRMR = 0.047.

3.3. Alpha Diversity

Using a linear regression model, we tested if Shannon index (alpha diversity) was
predicted by SES with the covariates of child’s age, child’s sex, birth type, and sequencing
depth. SES was not a significant predictor of the Shannon index (p > 0.05). Of all the covari-
ates, as expected, only child age was a significant predictor of alpha diversity ((β = 0.061,
p < 0.001).

3.4. Beta Diversity

Examining intra-individual (beta) microbiome diversity, we found significant differences
across SES for Bray–Curtis dissimilarity (F(1, 432) = 8.46, p = 0.0001; R2 = 0.0192; Figure 4).
This suggests a difference in microbiota community composition across SES levels.
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largest variance. Data points represent individual beta-diversity values and have been colored by
SES score to visualize the relationship between SES and beta-diversity. F(1, 432) = 8.46, p = 0.0001;
R2 = 0.0192; Stress value = 0.17.

4. Discussion

Although studies have investigated the relation between SES and gut microbiome in
adults and many studies have investigated different lifestyle factors and the gut micro-
biome in early infancy [5,6,55–57], knowledge on the associations between SES and gut
microbiome in young children is lacking. This study focused on evaluating the associations
between family SES and child genetics with the bacterial community structure of the gut
microbiome in a cohort of infants and children. Using SEM, we found similar relationships
between SES and composition of the gut microbiome at the genera level to the composition
reported in previous studies of adults [37,38].

Using genera associated with SES in adulthood, we tested the association between
nine microorganisms and SES in a latent variable path model. We found Anaerostipes,
Bacteroides, Eubacterium, Faecalibacterium, and Lachnospiraceae all significantly load onto a
single latent factor that was predicted by SES and by child’s age. The average relation
across our sample between SES and microbiome was 0.15 (Figure 3). Parents with higher
years of education had children who scored higher on the latent microbiome factor. That is,
they were higher on Faecalibacterium, Eubacterium, Anaerostipes, and Lachnospiraceae, and
lower on Bacteroides. These results align well with previous studies that found associations
with adult individual—or area—SES with relative abundance of these genera.

Of note, the genera Faecalibacterium had the highest factor loading (0.68). The genus
Faecalibacterium belongs to the family of Ruminococcaceae. F. prausnitzii, a species belong-
ing to this genera, is considered a key marker for a healthy gut and has the ability to
produce butyrate, a short chain fatty acid, by consuming acetate [58,59]. Butyrate is an
energy source for the colonic epithelium and plays a major role in gut physiology and has
several beneficial effects for health including protection against pathogens, modulation
of immune system, and reduction of cancer progression [60]. One study in six-year-olds
found non-smoking mothers, vaginal birth, and high family SES were all associated with
increased relative abundance of Faecalibacterium [61]. Together, with the findings of this
study, this suggests that Faecalibacterium abundance may be susceptible to a wide range
of environmental factors. Therefore, Faecalibacterium abundance may be one biological
pathway in which early environmental influences shape disease vulnerability through life.

Alpha diversity captures the diversity of species, or the evenness and richness of
microbial composition [62]. Reduced alpha diversity has been associated with brain-based
disorders in adulthood such as Alzheimer’s disease and major depressive disorder, and
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in children with attention-deficit/hyperactivity disorder (ADHD) [63–65]. We found that
alpha diversity increases with age, as has been shown in other studies [66,67]. However,
our results showed no association between family SES and the overall composition of the
gut microbiome in infants and young children (alpha diversity). This is consistent with
another study that reported no association between family SES and alpha diversity in
six-year-olds [61]. These findings depart from two studies in adults that found family and
neighborhood-level SES were associated with alpha diversity in adults [37,38]. Interestingly,
this pattern of findings suggests that microbiome alpha diversity may not be sensitive
to the impact of SES until a later developmental stage. However, we did find that SES
significantly predicts beta-diversity, as measured by Bray–Curtis dissimilarity, suggest-
ing gut microbiome diversity is influenced by family SES in childhood to some degree.
These findings may have important implications for understanding how interventions in
childhood could help prevent the eventual impact of SES on microbiome diversity and
subsequent health.

Interest in the interplay between host genetics and the gut microbiome is increasing,
with many GWAS studies to date [16–21]. Polygenic scores are calculated by summing the
number of risk alleles, which are weighted by effect sizes derived from GWAS results [41].
Polygenic studies have demonstrated modest prediction for many complex phenotypes
including blood pressure [68,69], height [70], diabetes [71], obesity [72], ADHD [73], de-
pression [74], and schizophrenia [75]. A recent study found the polygenic score for arthritis
was associated with the presence of Prevotella spp. in the microbiome [76]. Using the
most recent and largest-to-date microbiome GWAS study [20], we calculated individual
PGSs. We did not find an association between the PGS and microbiome composition in
children, suggesting that SES may have more impact than genetics at this age. However,
there are multiple explanations for this null finding. One of the major reasons may be
the limited number of microorganisms assessed in this study, perhaps the PGS may be
associated with genera not included here. Another interesting possibility is that the genetic
influence on microbiome composition may have a specific developmental window. In
other words, a PGS based on a GWAS conducted in adults may not be associated with
microbiome composition in childhood. In addition, other factors such as ethnic differences
between studies, gene-environment interactions, and dissimilarity in sequencing methods,
might also make it difficult to detect a genetic association with microbiome composition in
this study.

There are some limitations of the current study to address. As we only had two
indicators of family SES, we used a manifest composite variable rather than a latent factor
in the model. Use of a manifest variable representing family SES likely underestimated
the association with microbiome, as it included measurement error. Using maternal and
paternal education as a measure of SES may have imperfect representation of this complex
variable. Future studies should consider incorporating other indicators of family SES such
as income, occupation, and area-level metrics. Further, we did not have access to diet
variables such as food quantity/quality or diversity, which could be driving the associations
observed with SES. Since SES is associated with a variety of lifestyle factors such as
medication use, pet ownership [5], psychosocial stress [77], and host environment [9,78],
we are unable to determine which of these factors is driving associations with microbiome
metrics. Associations found with SES in this study were small in magnitude. This may
be due to the restricted SES range in our volunteer longitudinal cohort which are known
to be biased towards higher SES households. While detailed information on the history
of antibiotic use is missing in this study, we did exclude any participants who reported
antibiotic use within two weeks prior to collection.

5. Conclusions

Our results demonstrate that modifiable environmental factors, such as SES, may
influence gut microbiome composition at an early age. Further, our results suggest that
host genetics are not associated with the taxa tested in early life. These results are important
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as the understanding of gut microbiome-host health relationships continue to expand.
Our future research will explore if children’s microbiome mediates the well-established
relationships between SES and children’s academic and health functioning.
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18. Wang, J.; Thingholm, L.B.; Skiecevičienė, J.; Rausch, P.; Kummen, M.; Hov, J.R.; Degenhardt, F.; Heinsen, F.-A.; Rühlemann, M.C.;
Szymczak, S.; et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing
the gut microbiota. Nat. Genet. 2016, 48, 1396–1406. [CrossRef] [PubMed]

19. Turpin, W.; GEM Project Research Consortium; Espin-Garcia, O.; Xu, W.; Silverberg, M.S.; Kevans, D.; Smith, M.I.; Guttman, D.S.;
Griffiths, A.; Panaccione, R.; et al. Association of host genome with intestinal microbial composition in a large healthy cohort.
Nat. Genet. 2016, 48, 1413–1417. [CrossRef] [PubMed]

20. Hughes, D.A.; Bacigalupe, R.; Wang, J.; Rühlemann, M.C.; Tito, R.Y.; Falony, G.; Joossens, M.; Vieira-Silva, S.; Henckaerts, L.;
Rymenans, L.; et al. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses.
Nat. Microbiol. 2020, 5, 1079–1087. [CrossRef] [PubMed]

21. Xu, F.; Fu, Y.; Sun, T.-Y.; Jiang, Z.; Miao, Z.; Shuai, M.; Gou, W.; Ling, C.-W.; Yang, J.; Wang, J.; et al. The interplay between host
genetics and the gut microbiome reveals common and distinct microbiome features for complex human diseases. Microbiome
2020, 8, 1–14. [CrossRef] [PubMed]

22. Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress 2017, 7, 124–136.
[CrossRef] [PubMed]

23. Moeller, A.H.; Foerster, S.; Wilson, M.L.; Pusey, A.E.; Hahn, B.H.; Ochman, H. Social behavior shapes the chimpanzee pan-
microbiome. Sci. Adv. 2016, 2, e1500997. [CrossRef]

24. Amato, K.R.; Van Belle, S.; Di Fiore, A.; Estrada, A.; Stumpf, R.; White, B.; Nelson, K.E.; Knight, R.; Leigh, S. Patterns in Gut
Microbiota Similarity Associated with Degree of Sociality among Sex Classes of a Neotropical Primate. Microb. Ecol. 2017, 74,
250–258. [CrossRef]

25. Amaral, W.Z.; Lubach, G.R.; Proctor, A.; Lyte, M.; Phillips, G.J.; Coe, C.L. Social Influences on Prevotella and the Gut Microbiome
of Young Monkeys. Psychosom. Med. 2017, 79, 888–897. [CrossRef]

26. Tung, J.; Barreiro, L.; Burns, M.; Grenier, J.-C.; Lynch, J.; Grieneisen, L.E.; Altmann, J.; Alberts, S.C.; Blekhman, R.; Archie, E.A.
Social networks predict gut microbiome composition in wild baboons. eLife 2015, 4, e05224. [CrossRef]

27. Bailey, M.T. Psychological Stress, Immunity, and the Effects on Indigenous Microflora. Microb. Endocrinol. Interkingdom Signal.
Infect. Dis. Health 2016, 874, 225–246. [CrossRef]

28. Grzywacz, J.; Almeida, D.M.; Neupert, S.D.; Ettner, S.L. Socioeconomic Status and Health: A Micro-level Analysis o Exposure
and Vulnerability to Daily Stressors. J. Health Soc. Behav. 2004, 45, 1–16. [CrossRef]

29. Tannock, G.W.; Savage, D.C. Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal
tract. Infect. Immun. 1974, 9, 591–598. [CrossRef] [PubMed]

30. Bailey, M.T.; Dowd, S.; Galley, J.D.; Hufnagle, A.R.; Allen, R.G.; Lyte, M. Exposure to a social stressor alters the structure of the
intestinal microbiota: Implications for stressor-induced immunomodulation. Brain, Behav. Immun. 2011, 25, 397–407. [CrossRef]
[PubMed]

31. Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.-N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the
hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 2004, 558, 263–275. [CrossRef]

32. O’Mahony, S.M.; Marchesi, J.; Scully, P.; Codling, C.; Ceolho, A.-M.; Quigley, E.M.; Cryan, J.; Dinan, T. Early Life Stress Alters
Behavior, Immunity, and Microbiota in Rats: Implications for Irritable Bowel Syndrome and Psychiatric Illnesses. Biol. Psychiatry
2009, 65, 263–267. [CrossRef]
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