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High-throughput sequencing is enabling remarkably deep surveys of genomic variation. It is now possible to completely
sequence multiple individuals from a single species, yet the identification of variation among them remains an evolving
computational challenge. This challenge is compounded for experimental organisms when strains are studied instead of
individuals. In response, we present the Joint Genotyper for Inbred Lines (JGIL) as a method for obtaining genotypes and
identifying variation among a large panel of inbred strains or lines. JGIL inputs the sequence reads from each line after
their alignment to a common reference. Its probabilistic model includes site-specific parameters common to all lines that
describe the frequency of nucleotides segregating in the population from which the inbred panel was derived. The
distribution of line genotypes is conditional on these parameters and reflects the experimental design. Site-specific error
probabilities, also common to all lines, parameterize the distribution of reads conditional on line genotype and realized
coverage. Both sets of parameters are estimated per site from the aggregate read data, and posterior probabilities are
calculated to decode the genotype of each line. We present an application of JGIL to 162 inbred Drosophila melanogaster lines
from the Drosophila Genetic Reference Panel. We explore by simulation the effect of varying coverage, sequencing error,
mapping error, and the number of lines. In doing so, we illustrate how JGIL is robust to moderate levels of error. Supported
by these analyses, we advocate the importance of modeling the data and the experimental design when possible.

[Supplemental material is available for this article.]

With recent advances in high-throughput sequencing technology,

sequencing a genome can be accomplished affordably and with

great speed. Consequently, it has become possible to survey geno-

mic variation at unprecedented resolution, and many such studies

are under way (e.g., The 1000 Genomes Project Consortium 2010;

Li et al. 2010; Yi et al. 2010). Despite the ease with which massive

quantities of sequence reads can now be obtained, interpretation

of the data is nontrivial. Errors in sequencing and assembly may

masquerade as genomic variation, and biases in these processes

can complicate the resolution of heterozygous genotypes. By ne-

cessity, novel analysis tools are being developed with these chal-

lenges in mind.

In particular, for population genomic studies in which mul-

tiple individuals are sequenced, joint analysis has proven to be

a successful strategy for resolving genotypes and identifying seg-

regating genetic variation (The 1000 Genomes Project Consortium

2010; Le and Durbin 2010; DePristo et al. 2011; Li 2011). Provided

that the sequenced individuals are related in some way (e.g.,

a family or a population sample), joint inference can be used to

leverage the dependence between individual genotypes. The ra-

tionale behind joint inference is intuitive: Knowing that one in-

dividual has an A allele increases the likelihood that a relative,

however distant, also has an A. This feature is particularly useful

when many individuals are sequenced at low coverage, because the

aggregate coverage still permits an accurate description of variation

at the population level. Knowledge of the population, in turn, may

improve the accuracy with which each individual’s genotype can

be resolved.

Whereas population genomics considers individuals within

a population, cancer genomics targets a population of cells within

an individual. For example, the latter might apply high-through-

put sequencing technology to a tumor sample toward identifying

variation with respect to the normal genotype of an affected in-

dividual. Although the technologies facilitating population and

cancer genomics are largely the same, each field relies on distinct

tools for data analysis. In particular, methods specific to cancer

genomics must respect the fact that allele frequencies within a so-

matic tumor sample need not follow the germline expectation of

strict homozygosity (0%/100%) or heterozygosity (50%). Several

approaches doing so are in use already (Koboldt et al. 2009; Goya

et al. 2010), with several more reported to be under development

(Ding et al. 2010).

Each of the methods referenced above shares a common

motivation in applications to human genomics; however, high-

throughput sequencing technology is transforming the genomic

studies of other species as well. Sometimes the methods developed

in response to human studies apply equally well to other organ-

isms, but this is not always the case. For example, an often dis-

tinguishing characteristic of non-human genomics is that a strain

is studied rather than a single individual. By design, the individuals

comprising a strain are genetically very similar, giving meaning to

the concept of a strain’s genotype. On the other hand, in most

cases, a strain is not isogenic, implying that some degree of genetic

variation remains. In that sense, a strain is not unlike a tumor

sample, because while the strain is viewed as an individual, there is

a population that underlies it.

It is becoming increasingly common for multiple strains to be

studied simultaneously, for example, to map the quantitative trait

loci responsible for a particular phenotype (Aylor et al. 2011; Cao

et al. 2011). A prerequisite for such studies is to identify and char-

acterize genetic variation, which is consistent with the goals of

population genomics. High-throughput sequencing promises the

unbiased investigation of large strain panels, but only once each

strain’s genotype has been accurately resolved. Following the logic

of human population studies, if the strains comprising a panel are
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related in some way, there should be some benefit in simulta-

neously decoding the genotypes of each strain. But, following the

lesson of cancer genomics, it must be appreciated that a strain is

a population and not an individual.

This study considers the problem of joint genotypic inference

on a large panel of strains. The work was motivated by challenges

encountered in the Drosophila Genetic Reference Panel (DGRP)

(Mackay et al. 2012), a collection of 192 inbred D. melanogaster lines

(‘‘strains’’). The DGRP lines were derived from a common Raleigh,

NC population by 20 generations of full-sib mating (Fig. 1). The

offspring of the sib pair at generation 20 and their descendants in

perpetuity comprise the inbred line. Sequencing of the DGRP lines

was done primarily on the Illumina GAII platform, and crucially

what was sequenced for each line is DNA from a large pool of flies

(between 500 and 1000 flies) (see Fig. 2). From these DNA pools, we

sought to obtain genotypes simultaneously for each inbred line

while respecting the fact that each line is itself a population. Be-

cause we know precisely how the lines are related, we were able to

incorporate the DGRP experimental design. In what follows we

describe our probabilistic model and its implementation as the

Joint Genotyper for Inbred Lines (JGIL). We demonstrate how JGIL

performs on data from the DGRP, and we report the results of

a simulation study designed to interrogate how performance varies

with coverage, sequencing error rate, mapping error rate, and the

number of lines in the analysis.

Genotypes for inbred lines

The effect of inbreeding is to reduce the genetic variation within

each DGRP line so that the majority of sites are fixed. At such

positions, the genotype of the line is simply the genotype of any

one individual; however, for sites that harbor residual variation,

what is meant by the line’s genotype is unclear. Our model of re-

sidual variation and our corresponding definition of ‘‘genotype’’

are directly based on the inbreeding scheme (Figs. 2, 3; Table 1). Specifically, we take advantage of the fact that residual variation in

the line is reflective of residual variation in the sib pair mated in

generation 20 (excluding the contribution of new mutations) by

relating the genotype of the line to those of this sib pair. We make

two simplifying assumptions, namely, that (1) at most, two alleles

are present among the progenitors of any one line (i.e., generation

0, although we permit more than two alleles to be segregating in

the initial population); and (2) the transmission of alleles from the

G20 sib pair to their inbred line (see Fig. 2) is not distorted. These

assumptions allow us to define 22 discrete ‘‘line genotypes’’ (see

Table 1) and assign probabilities to each (see Methods) based on

the inbreeding design and the composition of the Raleigh pop-

ulation (as given by p below).

Joint genotypic inference

Restricting attention to one genomic site, consider m lines with

genotypes G1; . . . ;Gm (collectively G) and respective sets of cov-

ering reads R1; . . . ;Rm (collectively R). Let u be a parameter vector

that models aspects of the sequencing process and of the in-

dividuals themselves. The advantage of joint inference lies in using

all of the data R1; . . . ;Rm to obtain a better estimate of u than would

be possible when considering each individual separately.

We analyze each genomic position separately, and the values

taken by the parameter vector u are unique to each position. The

vector u = ðpA; pC; pG; pT ; eA; eC; eG; eT Þ= ðp; eÞ includes eight param-

eters. The entries of p sum to 1 and describe the position-specific

nucleotide frequencies in the common population from which the

Figure 1. Experimental design for DGRP creation and sequencing. Each
DGRP line was founded by a mated female collected from the Raleigh,
North Carolina Farmer’s Market. Each subsequent generation was created
by crossing a pair of male and female progeny from the previous gener-
ation. The DGRP lines were produced by 20 generations of full-sib in-
breeding. For each line, high-throughput sequencing was performed on
DNA that was extracted from a pool of 500–1000 flies.

Figure 2. Schematic of model for site-specific joint genotypic inference.
The philosophy of JGIL is for the model to mirror the experimental design.
The founding females and their implicit mates are sampled from a com-
mon population that is described by population-level parameters. The
experimental design specifies the probabilistic dependency between the
genotypes of these initial flies and those of the pooled inbred samples that
are ultimately sequenced. Technical and bioinformatic errors are modeled
as a site-specific phenomenon that applies equally to all lines. This allows
‘‘line effects’’ (i.e., genotypes) and ‘‘nucleotide effects’’ (i.e., errors) to be
disentangled.
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inbred lines were derived. The entries of e describe the position-

specific probabilities of obtaining a read with an erroneous base of

A, C, G, or T, respectively. Thus, u parameterizes two generative

probability distributions for each line i: (1) Pr Gijuð Þ= Pr Gijpð Þ,
which gives the distribution of the line’s genotype Gi given the

population frequencies p; and (2) Pr RijGi;uð Þ= Pr RijGi; eð Þ, which

gives the distribution of the line’s reads Ri given its genotype Gi and

error profile e. Note that while e is specific to each genomic site, it

does not vary with the position that reads cover a given site. Thus, e

models mapping error and context-dependent sequence error, but

not variability in sequence quality due to read position.

Estimation strategy

We estimate u by maximum likelihood. The joint probability of the

read data R across all lines is given by

Pr R = rjuð Þ =
Ym
i = 1

+
22

g = 1

Pr Ri = rijGi = g; eð ÞPr Gi = gjpð Þ

and we seek û = argmaxuL ujRð Þ = argmaxuPr Rjuð Þ. We do so using the

Expectation-Maximization algorithm (Dempster et al. 1977). We

envision two layers of missing data, namely, the genotypes G and

error indicator variables for each read, which we will call Y (see Fig. 3;

Methods). While the algorithm only guarantees the discovery of a lo-

cal maximum of the likelihood surface, for this application it appears

as though the global optimum is being found whenever the initial

choice of u0 is reasonable. Nearly exact analytical solutions to the

maximization step (i.e., u1 = argmaxuEG;YjR;u = u0 log Pr R;G;Yjuð Þ½ �)
are given in the Methods section. An analysis of the approximation

error is given in Supplemental Figure 1.

Maximum a posteriori genotypes

Upon obtaining a maximum likelihood estimate û of the pa-

rameter vector u, the posterior probability of each genotype

can be computed and is proportional to Pr Gi = gjRi = ri; û
� �

.

Maximum a posteriori (MAP) genotypes are assigned as

ĝi = argmaxgPr Gi = gjRi = ri; û
� �

.

Genotype quality scores

Quality scores are assigned to each called genotype according to

the phred scale (Ewing and Green 1998). Specifically, if the prob-

ability of the MAP genotype is P, then we report its quality as

Q = � 10 log10 1� Pð Þ.

Results
We begin with a summary of how JGIL performs on the Illumina

data generated as part of the DGRP project. We evaluated this

performance by means of three independent comparisons. First,

because 29 of the DGRP lines considered here were also sequenced

on the 454 Life Sciences (Roche) platform, we were able to compare

the consistency of genotype calls across technologies. Second,

because a pair of duplicate lines was sequenced, we were able to

compare the consistency of genotype calls across biological/tech-

Table 1. Encoding of the 22 possible ‘‘genotypes,’’ summarized as 10 states

1 2 3 4 5 6 7 8 9 10

A C G T A+C (M) A+G (R) A+T (W) C+G (S) C+T (Y) G+T (K)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A 4 0 0 0 3 2 1 3 2 1 3 2 1 0 0 0 0 0 0 0 0 0
C 0 4 0 0 1 2 3 0 0 0 0 0 0 3 2 1 3 2 1 0 0 0
G 0 0 4 0 0 0 0 1 2 3 0 0 0 1 2 3 0 0 0 3 2 1
T 0 0 0 4 0 0 0 0 0 0 1 2 3 0 0 0 1 2 3 1 2 3

Each entry Mij in the 4 3 22 matrix M records the number of i alleles (A = 1, C = 2, G = 3, T = 4) in genotype j. The 22 columns of M are what we
call ‘‘genotypes’’ and are further collapsed into 10 states that describe the nucleotides segregating within a line at a site. The states are (1) A, adenine; (2)
C, cytosine; (3) G, guanine; (4) T, thymine; (5) M, amino [A and C]; (6) R, purine [A and G]; (7) W, weak [A and T]; (8) S, strong [C and G]; (9) Y, pyrimidine
[C and T]; (10) K, keto [G and T].

Figure 3. Detailed model and estimation framework for one line at one
site. Frequencies of A, C, G, and T in the population govern the distri-
bution of parental genotypes in generation 0 (AA 3 AC in the figure). The
distribution of parental genotypes at generation 20, conditional on the
genotypes at generation 0, is specified by the Markov chain described in
Methods. It is assumed that this cross produces many offspring in the
absence of segregation distortion so that the nucleotide frequencies
among the offspring match those of the parents. The sequencing reads,
which are the observed data, are composed of a random sample of these
nucleotides (with replacement) along with errors whose frequencies are
given by e. The unobserved, or missing, data are composed both of the
parental genotypes at generation 20 (here G = 1 for AA 3 AA) (cf. Table 1)
and indicators (Yi = 0; 1) that record the error status of each read. For
example, Y3 = 1 in the figure because the T is an error, which is clear when
the ‘‘genotype’’ G = 1 is known, provided mutation is precluded. While
each line has its own observed and missing data, the global parameters p
and e are common to all lines.
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nical replicates. Third, because a previous study used Sanger se-

quencing to target five ;1-kb regions of the X chromosome in all

of the DGRP lines, we were able to compare a subset of the JGIL

genotype calls to this gold standard.

Analysis of the DGRP data

JGIL was used to genotype the 162 inbred D. melanogaster lines in

Freeze 1 of the DGRP for which Illumina sequences were available

(Mackay et al. 2012). A second set of 40 lines, including 29 of these

162, was sequenced on the 454 platform, and from these JGIL

produced a second set of genotype calls. The 29 lines sequenced on

both technologies form the basis of our first comparison.

Specifically, for each of the 29 lines, we genotyped ;119 Mb

of euchromatic DNA on the five major chromosome arms (X, 2L,

2R, 3L, 3R). For each line at each site, the MAP genotype was

reported as one of the 10 states in Table 1 provided it received

a quality score of 20 and there was greater than zero coverage;

otherwise, the genotype was assigned an ‘‘N.’’ Genome-wide,

when a genotype was reported for both technologies, the agree-

ment between them was 99.97%. In only 0.33% of cases, the

Illumina data produced an N when the 454 data yielded a called

genotype. Owing in part to lesser coverage, the 454-based call was

an N in 2.09% of cases when a call was made from Illumina data.

The SNP sets from both technologies were also highly con-

cordant. Both identified roughly the same number of SNPs (;2.8

million), and the vast majority were in common (;2.5 million).

Recognizing that a single genotyping error can yield a false-posi-

tive SNP, we stratified the concordance between technologies

according to minor allele frequency. As expected, the concordance

is lower when the minor allele is rare; upon excluding the single-

ton class, both technologies identify the same SNP well more than

90% of the time.

JGIL is unique in modeling the four nucleotide frequencies

rather than the frequency of reference and alternate alleles. This

allows the identification of sites at which three alleles are present

among the lines, as well as sites at which there exist two alleles

distinct from the reference. We found 30,456 such sites in com-

mon between the two call sets, which represents >1% of all SNPs.

Equally important, JGIL is able to make correct genotype calls in

these unusual but not so infrequent cases. The incidence of such

sites (30,456 out of 119,029,689, or 0.026%) is commensurate with

the frequency of discordance between the two call sets (0.03%),

suggesting that a failure to model them will substantially elevate

the error rate.

Overall, the concordance across technologies between geno-

types and between SNP sets suggests that JGIL is performing well.

As further validation, we next compared to a pair of putative rep-

licates on the Illumina platform, namely, lines RAL_554 and

RAL_555. RAL_554 and RAL_555 appear to be replicates of one

another, but this was not established until the sequencing of both

was complete. Comparing the genotype calls for these two lines

thus provides a measure of the error rate one should expect due to

sampling and technical variability. Irrespective of quality, the

overall agreement between MAP genotypes was 99.95%. To gauge

the effect of our quality threshold (Q = 20), we classified each site

according to the minimum quality of the two genotype calls being

compared. We observed that for 99.75% of all sites, both genotypes

were assigned Q $ 20, and among these sites the calls agreed

>99.99% of the time. Among the remaining 284,693 sites com-

prising the lower-quality class, the agreement was only 84.06%.

This suggests that genotype quality scores empirically increase

with the probability of the genotype being correct. To quantify this

relationship, we looked at empirical quality as a function of esti-

mated quality (again, the minimum of the two scores). The cor-

relation between these quantifies the agreement between what is

observed [empirical quality, measured as �10 log10 1� accuracyð Þ]
and what is expected (based on JGIL posterior probability); as

shown in Figure 4, that correlation is r = 0.98. That said, the slope of

the line relating these two quantities is substantially <1 (b̂ = 0.57),

suggesting that JGIL quality scores are overestimating the empiri-

cal quality by a predictable amount. For example, the threshold of

Q = 20 [Pr(error) = 0.01] discussed above appears to equate to an

empirical quality closer to 14 [Pr(error) = 0.04]. The strong linear

relationship between the two (Fig. 4) suggests that recalibration

should be possible provided a training subset of genotypes is

known in advance. However, even in the absence of recalibration,

it is clear that JGIL quality scores are very reliable indicators of

accuracy.

The comparisons above establish the reproducibility of JGIL

genotype calls across technologies and replicates. Collectively, they

suggest that JGIL is highly accurate, but neither constitutes valida-

tion in the strictest sense. Thus, we turned to a third comparison

based on targeted Sanger sequence data. Specifically, we obtained

data for each DGRP line from five previously sequenced regions

on the X chromosome (Arya et al. 2010). Taken together, these

five regions (9,108,929–9,109,735 bp, 19,029,113–19,029,901

bp, 20,287,749–20,288,836 bp, 20,289,014–20,289,991 bp,

20,290,640–20,291,880 bp) yielded a validation set composed of

nearly 5000 bp per line.

Assuming the Sanger sequence data to be correct, we sought

to quantify JGIL’s performance as before. There were 607,776 line/

site combinations for which a Sanger call was available; the Illu-

mina-based JGIL genotype was in agreement in 607,447 of these

cases, yielding an accuracy of 99.95%. This includes JGIL calls with

quality scores below 20; these were few, and their accuracy was

78.79%. It is possible for a JGIL genotype call to attain a high

posterior probability in the absence of any coverage. For example,

if across many lines with nonzero coverage there appears to be

no variation, JGIL would predict (via its probabilistic model) that

lines with no coverage likely share a genotype with the covered

Figure 4. Empirical quality versus estimated quality. The genotype calls
for replicate lines RAL_554 and RAL_555 were compared after stratifica-
tion by minimum quality score (estimated quality, x-axis). Within each
stratum, the proportion of sites for which the two calls agreed was cal-
culated and converted to a quality (empirical quality, y-axis). The re-
gression of empirical quality on estimated quality (black line) is highly
significant (R2 = 0.9596; p » 0). Quality scores were truncated at 40 and do
not appear in the plot; the empirical quality among all sites with estimated
quality Q $ 40 was 47 (data not shown).
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lines. The implicit assumption is that the

absence of coverage is stochastic, but it is

easy to imagine scenarios (e.g., a deletion)

in which it is biological. We mitigate the

latter case at the expense of the former by

masking uncovered sites as N regardless

of the probability of the MAP genotype.

Between low-quality calls and uncovered

sites, 6510 JGIL calls were masked in the

validation set, representing close to 1% of

the total. Among these, had we instead

reported the MAP genotype, it would have

been correct according to the Sanger data

nearly 99% of the time.

Thus far we have assumed the vali-

dation set to be correct. However, because

JGIL appears to be highly accurate, the

Sanger error rate cannot be ignored. Be-

cause we expect this rate to be low, errors

in the validation set are unlikely to distort

measurements of genotype accuracy. But,

because a single error in any line is

enough to falsely classify a site as variable,

even small error rates can strongly distort

statistics regarding SNP detection. Rea-

soning that most errors would transform

invariant sites to singleton SNPs, we re-

stricted attention to variable sites in the

validation set for which two or more lines

harbored the less frequent allele. There

were 90 such sites present, and JGIL iden-

tified 83 of them. This suggests a false-

negative rate of just below 8%, which

may in part explain why some SNPs in

the initial comparison were private to

one of the two technologies. False posi-

tives will also contribute, and we can

quantify their incidence as well. Among the 4757 monomorphic

sites in the Sanger data, JGIL identified 10 SNPs, which equates to

a false-positive rate of 0.2%.

Each of the above comparisons is evidence that JGIL is per-

forming well. Sometimes this performance is the result of a clear

signal in the mapped reads; other times, however, JGIL is able to

reason through data that are, in qualitative terms, confusing.

Generally speaking, three features allow JGIL to accommodate

unusual and aberrant sites. First, because JGIL estimates a site-

specific allele frequency vector p, it is able to accommodate sites at

which more than two alleles are segregating within the sample.

This cannot be accomplished in a biallelic model in which only

ancestral and derived bases are considered. Second, because JGIL

estimates a site-specific error probability vector e, it can properly

genotype sites whose reads are contaminated with a low level of

mapping error. An example of this is given in Figure 5A. Shown is

a summary of the Illumina and 454 read data at position 8802 on

chromosome 2L, from which it is apparent that 18 of the 28 lines

have Illumina coverage for a C nucleotide that is not corroborated

by 454. JGIL estimates from the Illumina data that p̂ = 1;0;0;0ð Þ
and ê = 0;0:067;0;0ð Þ, essentially reasoning out that every C is an

error. For every line, the posterior probability of A is effectively 1,

and JGIL calls this site as invariant.

In more extreme cases, such as that of position 18818 on

chromosome 3R, the degree of error in the data may be too much

for JGIL to overcome. As Figure 5B shows, the C nucleotide is

ubiquitous among the lines, and for several of the lines there is

no coverage of A at all. On the other hand, whenever reads with

A are present for a line, they are present in greater number

than those with C. JGIL estimates from the Illumina data that

p̂ = 0:87;0:13;0;0ð Þ and ê = 0;0:24;0;0ð Þ, indicating that there is

some confusion over the presence of C (as evidenced by the dot

product of p̂ and ê being substantially positive). For the four lines

that have no coverage for A (365, 399, 705, 714), JGIL makes a C

call, although there is some posterior support for an A call in each

case. For the remaining 24 lines, JGIL calls an A, which the 454 data

suggest is probably correct. Importantly, despite the conflicting

signals in the data, the method is not misled into calling rampant

residual heterozygosity at this site. Thus, while the contamination

is sufficient to mislead JGIL on a subset of the genotype calls, the

estimated error probabilities can rescue the calls of lines for which

the mapping error is lesser. This is the third feature of JGIL: Because

the experimental design is modeled through Pr Gjpð Þ, the method

is less prone to calling joint genotypes that are wildly inconsistent

with the expectation of 20 generations of inbreeding. JGIL will still

identify rare sites at which there appears to be residual heterozy-

gosity in many lines, but for it to do so, the signal must be strong

and not more easily attributable as mapping error.

To explore these observations formally, we turned to a series

of simulation studies. In what follows, we illustrate and quantify

Figure 5. Two examples of JGIL applied to the DGRP. (A) Data for chromosome 2L, position 8802
generated on two sequencing platforms for 28 DGRP lines. Each vertical bar summarizes the data for one
line from both the Illumina GAII (oriented upward) and the Roche 454 machines (oriented downward).
The height of the bar indicates coverage and is partitioned into counts of A (gray) and C (black). Each bar
is labeled with the index of its corresponding line. Note that every 454 read shows an A, strongly
suggesting that the Illumina C reads are erroneous. (B) As in panel A for chromosome 3R, position
18818. Based on the Illumina data, JGIL assigns to four of the lines (365, 399, 705, 714) a homozygous C
genotype, but this is not supported by the 454 data.
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how the performance of JGIL responds to varying coverage, sequenc-

ing error, mapping error, and the number of lines in the analysis.

Simulation results

We first show how genotyping error rate decreases as the number of

lines being genotyped grows. We then demonstrate the robustness

of JGIL to moderate mapping error. Finally, we interrogate the utility

of JGIL for population genomics by quantifying its ability to ascer-

tain SNPs and estimate allele frequencies. Throughout this section,

we use a Poisson model of coverage and uniform model of error.

We begin by illustrating the quantitative benefits of joint

genotyping. Figure 6 plots genotyping error rate against sequenc-

ing error rate for nine combinations of coverage (two, five, 10) and

number of lines (two, five, 10). For a given sequencing error rate

and fixed coverage, it is clear that the genotyping error rate de-

creases as the number of lines increases. This decrease is directly

attributable to the simultaneous inference of allele frequencies and

error probabilities; moreover, it becomes more dramatic at higher

sequencing error rates. Intuitively, JGIL borrows strength across lines

to disentangle signal (i.e., genotypes) from noise (i.e., error). This

feature becomes even more pronounced in the face of mapping error.

Previously, Figure 5 summarized two DGRP sites for which

estimating error probabilities across lines led to robust genotype

calls despite considerable mapping error. Supplemental Figure 2

presents a simulation study of the same phenomenon in which

mapping error was simulated for varying numbers of lines and

coverage. Supplemental Figure 2A plots the genotyping error rate

observed at coverage 2. The frequency of mismapped reads was

set as a percentage of the expected coverage for the true allele;

for example, 50% represents an expected coverage of 1 for the

erroneous base. Remarkably, even at minimal coverage, five lines

appear to be sufficient to mitigate substantial mapping error

(Supplemental Fig. 2B). Just as in Figure 5, JGIL is able to proba-

bilistically identify the mismapped nucleotides and diminish their

contribution to the genotype calls. For absolute levels of mapping

error, e.g., comparing 50% error at coverage 2 to 20% error at cov-

erage 5 and 10% error at coverage 10, higher coverage of the true

allele leads to a lower genotyping error rate. If, however, the mis-

mapped reads are derived from another location in the sequenced

genome, then it may be more reasonable to compare across relative

levels of mapping error. Here, the relationship appears to be more

complicated. At least under a naive Poisson model, a high relative

mapping error, say 90%, has the potential to be more problematic

when the coverage is higher. Faced with the consistent signal of two

nearly equally frequent alleles, JGIL will assume that there is ubiq-

uitous residual heterozygosity at the site. This scenario occurs more

often at coverage 10 than at coverage 2, leading to the seemingly

counterintuitive result shown in Supplemental Figure 2.

Thus far we have focused on individual call quality by attempt-

ing to quantify genotyping error rates as a function of specified

covariates. We next sought to quantify the performance of JGIL on

a per-site basis rather than on a per-call basis, with the goals of SNP

detection and allele frequency estimation in mind (Lynch 2009).

We used simulation to characterize SNP ascertainment bias, as well

as to measure any bias in allele frequency estimates, as a function of

the true allele frequency, the error rate, and coverage. The first two

rows of Supplemental Figure 3 summarize a study in which 100 lines

were genotyped from reads of average depth two (left column), five

(middle column), and 10 (right column). The top row reports how

often among 10,000 replicates a SNP went undetected given

a specified error rate (between 0.01 and 0.1 inclusive) and a speci-

fied minor allele frequency (between 0.01 and 0.1 inclusive, cor-

responding to between one and 10 lines). It is evident and not

surprising that singletons are difficult to detect at low coverage. It

is also clear, however, that either an increase in coverage or an

increase in minor allele frequency is sufficient to allow rare SNPs to

be detected. As the figure shows, this holds true even as the error

rate increases. The middle row of the figure quantifies bias in allele

frequency estimation under the same simulation conditions.

Again, for low coverage, the bias is appreciable, but here the bias

increases with minor allele frequency. This observation is artifac-

tual in that, in the absence of covering reads, there is more a priori

support and hence more a posteriori support for the major allele

than for the minor allele. If one filters on either posterior probability

or realized coverage, then the trend toward increasing bias goes away.

The bottom row of Supplemental

Figure 3 contrasts the remainder of the

figure in that there is assumed to be no

minor allele. Thus, whereas the top row

concerns false negatives, the bottom row

considers false positives. Each simulation

specified the expected coverage (two,

five, 10), the error rate (from 0.01 to 0.10),

and the number of lines to be analyzed

(from five to 50); for each combination,

the figure reports the proportion of

10,000 replicate simulations in which

JGIL mistakenly called a SNP. It is clear

that there is an appreciable false-positive

rate at low coverage for moderate sequenc-

ing error. Moreover, this error rate evidently

increases with the number of lines. As the

number of lines grows, more chances

arise for a line to be covered exclusively

by erroneous alleles. The probability of

such an event is higher at low coverage

and higher as the error rate increases. The

effect is similar to that of the mapping

example in Figure 5B for lines 365, 399,

Figure 6. Genotyping error rate as a function of sequencing error rate, coverage, and sample size. At
a single site, sequencing read data were simulated for either two (square), five (circle), or 10 (triangle)
lines assumed to be homozygous for the nucleotide A. These were considered in combination with
simulated coverage of either two reads (red), five reads (blue), or 10 reads (black). For sequencing error
rates ranging from 0.01 to 0.20, the JGIL genotyping error rate was calculated across 10,000 replicate
simulations.
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705, and 714; if the covering reads are exclusively wrong, JGIL cannot

help but be misled. On the other hand, from the figure, it appears

that, for moderate coverage, sporadic sequencing error does not

contribute much to the false-positive rate. But note that the same

cannot be said for systematic errors (e.g., mapping or sequencing

chemistry bias) such as those considered in Supplemental Figure 2.

Discussion
Improvements in sequencing technology are facilitating in-

creasingly deep studies of genomic variation. Sometimes the unit of

study is not a single individual but rather a strain within which the

genetic diversity is minimal. To capture within-strain variation, it is

common to pool the DNA of many individuals for sequencing, cre-

ating a mixture of genotypes that represent the strain. It was in this

context that we developed JGIL to identify variation among a large

panel of strains. We introduced a framework for simultaneously

genotyping multiple strains by jointly analyzing their sequence reads.

We showed how the nature of the data and the design of the exper-

iment could be incorporated into a single probabilistic model. We

implemented this model as JGIL for the DGRP, and we showed that it

produced highly accurate genotypes in the absence of heuristics.

Despite this focus, our framework addresses concerns that are general

and fundamental to the sequencing of inbred lines and strains. JGIL

was tailored to the DGRP only in how the probability Pr Gjuð Þ was

structured; the number of generations can already be varied, and

extensibility to other experimental designs is straightforward.

Because JGIL did not use heuristics on top of its probabilistic

model, its treatment of sequence data is both sophisticated and

naive. Sophisticated aspects of the method include its treatment

of experimental design and its approach to modeling nucleotide

frequencies and errors. These conferred several benefits in the DGRP

analysis. First and foremost, JGIL was not misled into overestimating

the number of sites at which each line harbors residual variation.

The incidence of ‘‘heterozygotes’’ would have been much higher

had the lines been viewed as individuals, had they been considered

in isolation, or had they been considered in the absence of the ex-

perimental design. Second, JGIL was able to identify and accurately

assign genotypes at sites where three alleles were present between

the lines and the reference. Third, JGIL appears able to mitigate some

degree of mapping error, and its parameters can be used to quanti-

tatively flag sites where the data appears qualitatively confusing.

Other aspects of JGIL may certainly be considered naive. For

example, JGIL considers each site in isolation, thereby disregarding

any information encoded in neighboring sites. It is well appreci-

ated that haplotype information generally has the potential to

improve genotyping accuracy (see, e.g., Nielsen et al. 2011). On the

other hand, just as the meaning of a strain genotype is compli-

cated, so too is the meaning of a strain haplotype, and when DNA

is pooled before short-read sequencing, much of the haplotype

signal is lost. JGIL may also be considered naive in its ignorance of

other types of genetic variation such as indels and copy number

variants. Our approach takes as input the result of a reference-

guided assembly, and as such its ability to ascertain genotypes is

predicated on the fidelity of mapped reads. Indels complicate

mapping in several ways, leading to both false negatives (e.g.,

proximal nucleotide variants missed because of a failure to map

correctly) and false positives (e.g., artificial nucleotide variants

created by reads that are incorrectly mapped). This is a limitation

that JGIL shares with any method that conditions on the mapped

reads; however, it may be mitigated somewhat by applying post

hoc filters to flag sites where the alignment appears dubious.

We believe that the naive aspects of JGIL are more than

compensated for by its sophistications. In particular, we emphasize

the importance of modeling the data and the experimental design,

and we advocate that when possible, Pr Gjuð Þ should be specified

with these issues in mind. None of this is to the exclusion of

complementary approaches that improve data quality and/or in-

ference. In our application to the DGRP, for instance, we relied on

the GATK package to improve the JGIL input, and we certainly

envision that others will apply post hoc filters to the JGIL output.

Our purpose here was to introduce a probabilistic model specifi-

cally designed to genotype a panel of strains and to show that it

could be implemented to achieve highly accurate genotype calls.

Methods

Defining and encoding genotypes
We define the genotype of a line as the allelic content of its final
full-sib mated pair (see Fig. 1). For example, if in one line both of
these flies were AA homozygotes (as one might expect after 20
generations of inbreeding), we call and code the genotype for the
line as (4,0,0,0), meaning 4 A alleles and 0 alleles of C, G, and T
respectively. Alternatively, if this last generation of full-sib mating
features an AC 3 AA cross, the genotype is then (3,1,0,0). As
a simplification, we have reduced the number of possible line ge-
notypes to 22 (see Table 1) by assuming that no more than two
nucleotides will be represented in this cross for any one line. We
denote the 4 3 22 matrix of possible genotypes in Table 1 as M.

Sequencing and data preprocessing

Each line was sequenced on the Illumina platform to at least 123

coverage; reads ranged from 36 bp to 110 bp in length. Lines se-
quenced on the 454 machine had a minimum of 53 coverage with
the majority above 103, with reads ranging from 200 bp to 400 bp
in length. Details for each line are given in Mackay et al. (2012). The
bwa software (Li and Durbin 2009) was used to align the sequencing
reads for each line to the D. melanogaster reference sequence 5.13
(obtained from FlyBase). The GATK package (McKenna et al. 2010)
was used to recalibrate and locally realign the bam files; recalibra-
tion was seeded with a liberal list of putative variants obtained via
AtlasSNP (Shen et al. 2009). Reads with a mapping quality below
10 were discarded prior to variant calling. Bases with base quality
below 25 were also removed from consideration. DGRP commu-
nity resources, including the lines, sequences, read alignments,
and SNPs are publicly available as detailed in Mackay et al. (2012).

Modeling the inbreeding process through Pr(Gjp)

Full-sib inbreeding is an iterative sampling procedure in which the
genotypes at generation n + 1 depend on those in generation n. The
process follows a Markov chain whose initial state, the genotypes
at generation 0, has a probability distribution specified by the
population allele frequency vector p (Robertson 1952). For ex-
ample, the probability that the G0 cross is AA 3 AA is simply
p4

A, while the probability that the G1 cross is AA 3 AA is
p4

A + p3
A 1� pAð Þ + 1=4ð Þp2

A 1� pAð Þ2. The latter expression is more
complicated because an AA 3 AA G1 cross can result from three G0

genotypic configurations: (1) AA 3 AA, (2) AA 3 AX, or (3) AX 3

AY, where ‘‘X’’ and ‘‘Y’’ represent any nucleotides other than A. The
complexity of these probabilities coupled with our desire for an
efficient implementation led us to make some benign simplifying
assumptions. In particular, because the chance of any one line
retaining more than two alleles at a site after 20 generations of
inbreeding is negligible, we made the assumption that there exist
no more than two alleles in the G0 parentals.
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Under the assumption that no more than two alleles are
present in the G0 of any one line, the number of possible genotypic
configurations is 22 (enumerated in Table 1). Once the two alleles
have been specified, say A and a, only six of the 22 configurations
are relevant: (1) AA 3 AA, (2) AA 3 Aa, (3) AA 3 aa, (4) Aa 3 Aa, (5)
Aa 3 aa, and (6) aa 3 aa. The initial probabilities of these states
depend on p, and the distribution of parental genotypes at gen-
eration n + 1 given those at generation n can be represented by a
6 3 6 Markov transition matrix Q:

Q =

1 0 0 0 0 0
1=4 1=2 1=4 0 0 0
0 0 0 1 0 0

1=16 1=4 1=8 1=4 1=4 1=16
0 0 0 1=4 1=2 1=4
0 0 0 0 0 1

2
6666664

3
7777775

This says, for example, that the probability that the G5 cross is
AA 3 Aa given that the G4 cross is Aa 3 Aa is Q4;2 = 1=4. The dis-
tribution of parental genotypes at G20 given the distribution at G0

(i.e., the founding parents sampled from the population) can be
found from Q20.

The Markov chain Xn : n = 0;1; . . . ;20f g described by Q has
two absorbing states, namely, state 1 (AA 3 AA) and state 6 (aa 3

aa). In other words, if the G0 parents are homozygous for the same
allele so that the Markov chain begins in an absorbing state,
then the chain will remain in the same state through X20. Let
t = minn Xn = 1 or Xn = 6f g denote the first time that the chain en-
ters an absorbing state. Then Pr t > 20jX0 = sð Þ is the probability
that residual heterozygosity remains after 20 generations of in-
breeding when the G0 parents have genotypes described by state s.
It turns out that Pr X20 = 2jt > 20;X0 = s 2 2;3;4;5f gð Þ ffi 3=10 in-
dependent of the initial state. Similarly, the values for X20 = 3;4;5
are 1=20;7=20;3=10, respectively. We use the full-sib inbreeding
coefficient F20 to approximate Pr t > 20ð Þ independent of the initial
state. F20 can be calculated using the recurrence relation
Ft + 2 = 0:25 + 0:5ð ÞFt + 1 + 0:25ð ÞFt, from which F20 = 0:9863 is obtained
(Crow and Kimura 1970).

Using these approximations, we can calculate Pr Gi = gjpð Þ for
each of the 22 genotypes shown in Table 1 through

Pr X20 = sjpð Þ = +
6

z = 1

Pr X20 = sjX0 = z; t > 20ð Þ

3 Pr t > 20jX0 = zð ÞPr X0 = zjpð Þ

+ +
6

z = 1

Pr X20 = sjX0 = z; t # 20ð Þ

3 Pr t # 20jX0 = zð ÞPr X0 = zjpð Þ

We approximate these probabilities with the v defined in the
section entitled ‘‘Updating equations for the EM.’’

Modeling the sequencing process through Pr(RjG; e)

Recall that there are Ni reads for line i. Assuming some arbitrary
order for the reads, let Rk

i denote read k for line i. Then

Pr Ri = rijNi;Gi = g; eð Þ =
YNi

k = 1

Pr Rk
i = rk

i jGi = g; e
� �

=
YNi

k = 1

Y4
j = 1

Mij

4
1� e: + ej

� �
Pr rk

i
= j; no errorð Þ

+ 1�Mij

4

� �
e: � ej

� �
Pr rk

i
= j; errorð Þ

2
66664

3
777751 rk

i
= jf g

;

where e: is used to denote the sum of the entries in e. Note that we
have explicitly modeled the realized coverage Ni as fixed rather
than random.

Data augmentation and the expected log-likelihood

We have described a probabilistic model for Pr Rjp; eð Þ, where R
is the 4 3 m matrix of read counts at a site across lines and p and e
are the site-specific population frequencies and error probabilities,
respectively. To estimate the parameters via maximum likelihood,
we must find p̂; êð Þ = argmaxp;eL p; ejRð Þ = argmaxp;ePr Rjp; eð Þ,
which by direct maximization would be challenging. Instead,
we appeal to the missing data previously described. Specifically,
we take as missing data the unobserved 1 3 m vector of geno-
types G and the m unobserved indicator vectors Yi of length
1 3 Ni.

We can write

Pr R = rjp; eð Þ =
Ym
i = 1

+
22

g = 1

Pr Ri = rijGi = g; eð ÞPr Gi = gjpð Þ:

Now, Pr Gi = gjpð Þ is a function of the inbreeding design, and its
derivation is detailed above. The remaining term Pr Ri = rijGi = g; eð Þ
can be expressed with the help of the read indicators as we now
describe. For k = 1; . . . ;Ni, define

Yi
k =

0; if read k of line i has the correct base
1; if read k of line i has an error

:

�

Then upon augmenting the read data with the indicators, we
have

Pr Ri = ri;YijGi = g; eð Þ =
YNi

k = 1

Y4
j = 1

Mjg

4
1 � e: + ej

� �� �1�Yi
k

3 1 �
Mjg

4

� �
e: � ej

� �� �Yi
k

1 rk
i

= jf g

Augmenting with read indicators and genotypes, we have

Pr R = r;G;Yjp; eð Þ=
Ym
i = 1

Pr Gi = gijpð Þ
YNi

k = 1

Y4
j = 1

Mjgi

4
1� e: + ej

� �� �1�Yi
k

3 1�
Mjgi

4

� �
e: � ej

� �� �Yi
k

1 rk
i

= jf g

So the augmented log-likelihood is

l ujR = r;G;Yð Þ= +
m

i = 1

log Pr Gi = gijpð Þ

+ +
m

i = 1

+
Ni

k = 1

+
4

j = 1

1� Yi
k

� �
log

Mjgi

4
1� e: + ej

� �� �	

+ Yi
k log 1� Mjgi

4

� �
e: � ej

� �� �
1 rk

i
= jf g

i

and for the EM we seek the parameter values for p; e that maximize
its expectation with respect to the distribution G;YjR;u�. Solu-
tions to the maximization are given below.

Updating equations for the EM

Below we describe how our estimate of u is updated from u0 to u1 in
one iteration of the EM. Let 1 denote a vector or matrix of ones,
and let I denote the identity matrix. We use p0 and e0 to denote the
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previous estimates in u0 and treat each as a 4 3 1 column vector.
The operator 8 denotes the Hadamard product of two matrices.

Let F20 be as described above and define the 22 3 1 vector
of genotypic probabilities v as follows. For i = 1; . . . ;4, vi =

p0
i

� �2
1� F20ð Þ+ p0

i F20. These are the homozygous probabilities
based on the nucleotide frequencies in the initial population. For
segregating A and C, we use v5 = v7 = 3=5ð Þp0

1p0
2 1� F20ð Þ and

v6 = 4=5ð Þp0
1p0

2 1� F20ð Þ; v8 through v22 are specified similarly for
the remaining segregating pairs (see Table 1). Note that the co-
efficients 3=5 and 4=5 arise from the X20 probabilities from the
Markov chain described above.

Let A = 14 3 22� 1
4 M

� �
8e11322 and B = 1

4 M
� �

8 1431� 1434� I4ð Þeð Þð
11322Þ be 4 3 22 matrices whose rows and columns index nucle-
otides (A, C, G, T) and genotypes (1–22), respectively. Let J be the
L 3 22 matrix whose entries are defined as

Jij = vj

Y4
k = 1

Akj + Bkj

� �Rki :

Let H be the m 3 22 matrix obtained from J by normalizing
each of its rows to sum to one (i.e.,

Hij =
Jij

+22
x = 1 Jix

Þ:

The m rows of H correspond to each of the m inbred lines and
report posterior probabilities for each of the 22 genotypes (see
Table 1). The 1 3 22 vector 11 3 mH contains the expected number
of lines of each genotype. Let K be the 4 3 22 matrix obtained
from M through Kij = ØMij=3ø. Then the updated 4 3 1 vector of
nucleotide frequency estimates p� is given by

p� =
KHT1m 3 1

11 3 4KHT1m 3 1

:

Finally, let S be the 4 3 22 matrix whose entries are

Skj =
Akj

Akj + Bkj
; if Akj + Bkj > 0

0; otherwise
:

(

Then the updated 4 3 1 vector of error probability estimates e� is
given by

e� =
S8 RHð Þ
� �

122 3 1

11 3 4R1m 3 1
:

Software access

JGIL is available for download at http://www4.ncsu.edu/;eastone2/
software.
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