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Abstract

This paper proposes an approximate string matching with k-mismatches when calculating

the generalized edit distance. When the edit distance is generalized, more sophisticated

string matching can be provided. However, the execution time increases because of the

bundle of complex computations for calculating complicated edit distances. The computa-

tional costs for finding which steps or edit distances are over k-mismatches cannot be signif-

icant in the generalized edit distance metric. Therefore, we can reduce the execution time

by determining steps over k-mismatches and then skipping them. The diagonal step calcula-

tions using the pruning register skips unnecessary distance calculations over k-mismatches.

The overhead of control statements and reordered memory accesses can be amortized by

skipping multiple steps. Even though the proposed skipping method requires additional

overhead, the proposed scheme’s practical embodiments show that the execution time of

string matching is reduced significantly when k is small.

Introduction

In the field of computer science, information retrieval is a fundamental problem. Notably,

string matching is essential to digital information retrieval. String matching searches the

sequence of characters or pattern to determine whether the pattern matches with an input

sequence or not. In exact string matching, when a pattern is the same as an input sequence, it

determines that the pattern is matched with the input sequence. On the other hand, approxi-

mate string matching evaluates the similarity between the input sequence and pattern based

on its metric. With sophisticated data analysis and various applications, the approximate string

matching can get more attention in the big-data era [1–6].

The similarity between two strings can be quantitated by the minimum number of basic

operations that makes an input sequence equal to the target pattern. Traditionally, approxi-

mate string matching assumes that the insertion, deletion, replacement, and transposition of

characters in a string make the difference [1, 7]. They are used as basic operators to calculate

the distance between the input sequence and target pattern. In the Levenshtein distance calcu-

lation, string matching can be simplified because each basic operator has the unified cost of

one. When estimating the distance between two strings. the Hamming distance [8] calculation

counts ‘1’ bits after applying bitwise exclusive-OR.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0251047 May 4, 2021 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kim H (2021) A k-mismatch string

matching for generalized edit distance using

diagonal skipping method. PLoS ONE 16(5):

e0251047. https://doi.org/10.1371/journal.

pone.0251047

Editor: Hans A. Kestler, University of Ulm,

GERMANY

Received: April 18, 2020

Accepted: April 20, 2021

Published: May 4, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0251047

Copyright: © 2021 HyunJin Kim. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All code files are

available from the GitHub database (https://github.

com/analog75/ED).

Funding: The author received no specific funding

for this work.

https://orcid.org/0000-0001-5017-3995
https://doi.org/10.1371/journal.pone.0251047
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251047&domain=pdf&date_stamp=2021-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251047&domain=pdf&date_stamp=2021-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251047&domain=pdf&date_stamp=2021-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251047&domain=pdf&date_stamp=2021-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251047&domain=pdf&date_stamp=2021-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251047&domain=pdf&date_stamp=2021-05-04
https://doi.org/10.1371/journal.pone.0251047
https://doi.org/10.1371/journal.pone.0251047
https://doi.org/10.1371/journal.pone.0251047
http://creativecommons.org/licenses/by/4.0/
https://github.com/analog75/ED
https://github.com/analog75/ED


On the other hand, the semantics or relationship between subsequences make approximate

string matching sophisticated. For example, a human can feel that pattern “catch” is more sim-

ilar to input sequence “cotch” than to input sequence “ctch” although the Levenshtein distance

from pattern “catch” is one for both two input sequences, respectively. Therefore, a more com-

plicated edit distance metric can be adopted, categorized into the generalized edit distance [9,

10] or the normalized edit distance [11, 12]. However, when complex functions generalize the

edit distance, significant computational resources are required. When calculating the edit dis-

tance between input sequence and pattern, the edit distance between each input subsequence

and subpattern is needed, which is called step. Moreover, in the traditional sequential dynamic

programming [13], all steps should be calculated in order, which is a very time-consuming job

due to the data dependency in calculating steps. Several mathematical approaches can show

better computational complexity [14, 15]. However, the overhead of control statements and

reordered memory accesses is not considered for practical applications. The parallel string

matching methods have been researched using the parallelism equipped in GPU (Graphics

Processing Unit) [7, 16–24] and FPGA (Field Programmable Gate Array) [25–29], where the

parallel programming requires multiple computational resources. However, sequential string

matching based on a processing unit is still an attractive and fundamental topic in many prac-

tical applications. Our study reduces the execution time of the sequential approximate string

matching when performed by a processing unit.

Naively, in a step calculation, if its data-dependent previous steps have over k-mismatches,

the evaluation of operators with these previous steps over k can be skipped. However, in the

Levenshtein distance metric, the overhead ratio for finding whether data-dependent steps are

over k-mismatches is relatively high. In previous theoretical approaches [14, 15], this overhead

is not considered, so their implementations cannot have better performance than that of the

dynamic programming-based method [13] in the Levenshtein distance metric. With the gener-

alized edit distance, more sophisticated string matching can be confirmed. The execution time

increases because of the bundle of complex computations for performing complex edit calcula-

tions. Therefore, if the step calculation that is expected to be over k can be skipped, the total

execution time can be significantly reduced, which motivates our research.

This paper proposes an approximate string matching with k-mismatches for the edit dis-

tance metric. Our research is motivated that when previous steps are over k, the information

can be used to skip unnecessary step calculations. This paper focuses on the practical embodi-

ment of our method and its evaluation. Without finding which data-dependent previous steps

are over k, the diagonal step calculations using the pruning register can skip unnecessary step

calculations over k-mismatches. Each bit in the pruning register contains the information of

step calculations to be skipped. Even though there is an additional overhead of control state-

ments and reordered memory accesses, skipping multiple steps at a time can reduce execution

time significantly. For realistic experiments, generalized edit distance metrics are assumed

based on the similarity in shapes and keyboard character positions. The proposed string

matching and other dynamic programming methods are coded and then evaluated using the

generalized edit distance metrics. Despite additional overhead in the diagonal step calculations

and pruning register accesses, experiments show that the proposed skipping method can

reduce the execution time of approximate string matching when k is small.

Preliminaries

Edit distance in approximate string matching

In string matching, an input sequence is compared with the pattern, and then the difference

between the input sequence and pattern is reported. Unlike exact string matching, the
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similarity is quantified in the approximate string matching. The distance between the input

sequence and pattern refers to the calculation result based on the distance metric adopted in

string matching.

In [1], for strings Xi = x1, x2, . . .,xi−1, xi and Yj = y1, y2. . .,yj−1, yj where characters xa; yb 2 C
for 1� a� i and 1� b� j, the distance between Xi and Yj denoted as D(Xi, Yj) is the mini-

mum number of edit operations to make Xi and Yi the same. The distance D(Xi, Yj) should

satisfy:

• D(Xi, Yj) = 0 if and only if Xi = Yj

• D(Xi, Yj)> 0 when Xi 6¼ Yj

• D(Xi, Yj) = D(Yj, Xi).

Besides, for a given string Zk = z1, z2, . . .,zk−1, zk where zc 2 C for 1� c� k, the edit dis-

tance satisfies the condition of D(Xi, Zk)� D(Xi, Yj) + D(Yj, Zk) called triangle inequality.

Significantly, the Levenshtein distance [30] is the most popular edit distance metric in

string matching, so the edit distance has been interchangeably used with the Levenshtein dis-

tance sometimes. However, because the edit distance can include several meanings of other

metrics different from the Levenshtein distance metric, this paper denotes that the Levenshtein

distance metric adopts simple operators with the cost of one.

We define input subsequence Xα of input sequence Xi and subpattern Yβ of pattern Yj for 1

� α� i and 1� β� j, as follows:

Definition 1 For strings Xα = x1, x2, . . .,xα−1, xα, and Yβ = y1, y2, . . .,yβ−1, yβ, when subscripts
α� i and β� j, Xα and Yβ are the input subsequence and subpattern of input sequence Xi and
pattern Yj, respectively.

For input subsequence Xα and subpattern Yβ, when the initial edit distance D(X0, Y0) is 0,

the minimum edit distance D(Xα, Yβ) is formulated as follows:

DðXa;YbÞ ¼ min

DðXa� 1;Yb� 1Þ þ substitutionðxa; ybÞ

DðXa� 1;YbÞ þ deletionðxaÞ

DðXa;Yb� 1Þ þ insertionðybÞ:

8
>>><

>>>:

ð1Þ

Black arrows 1, 2, and 3 in Fig 1(a) mean substitution, deletion, and insertion operators,

which correspond to cost functions substitution(xα, yβ), deletion(xα), and insertion(yβ) in Eq

(1), respectively. The function substitution(xα, yβ) means the cost of substituting xα of Xα into

yβ of Yβ. The function deletion(xα) provides the cost of deleting xα from X. On the other hand,

the function insertion(yβ) means the cost of inserting yβ to the end of Yβ−1.

For example, let’s assume that X3 = “bat” and Y3 = “bad” with α = β = 3. In this case, by

substituting x3(‘t’) with y3(‘d’) in X3 in substitution(x3, y3), the converted X3 can be the same as

Y3, which adds the cost of substitution(‘t’, ‘d’) to D(“ba”, “ba”). When D(“ba”, “bad”) is given,

character x3(‘t’) is removed from “bat”, and the given D(“ba”, “bad”) is required to convert

“ba” to “bad”. Therefore, the cost of deletion(‘t’) is added to calculate D(“bat”, “bad”). When D
(“bat”, “ba”) is given, after attaching y3 = ‘d’ to “ba”, D(“bat”, “bad”) can be calculated, which

means that the cost of insertion(‘d’) should be added.
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Therefore, the minimum edit distance for X3 = “bat” and Y3 = “bad” formulated as D(“bat”,

“bad”) is calculated on Eq (1) as:

Dðbat; badÞ ¼ min

Dðba; baÞ þ substitutionðt; dÞ

Dðba; badÞ þ deletionðtÞ

Dðbat; baÞ þ insertionðdÞ:

8
>>><

>>>:

ð2Þ

The Levenshtein distance metric simplifies the cost of each operator into 1 or 0, which

makes the Levenshtein distance calculation very simple. Fig 1(b) illustrates an example of the

Levenshtein distance matrix. In Fig 1(b), input subsequence “ca” can be the same as subpattern

“cat” after attaching “t” to the end of input subsequence “ca”. When using the insertion opera-

tor, an input subsequence can be equal to the subpattern. Substitution and deletion operators

are also applied to the input sequence to match with the pattern. In Fig 1(b), the rightmost bot-

tom cell is numbered as 4, which is the final Levenshtein distance between input sequence

“ccatese” and pattern “catch”.

We denote the edit distance between input subsequence and subpattern as step. In a tra-
versal, the steps included in the traversal are calculated in order. The traversal method deter-

mines the order of calculating steps.

Fig 1. An example of the Levenshtein distance matrix for input sequence “ccatese” and pattern “catch” (a)

operators (b) Levenshtein distance matrix.

https://doi.org/10.1371/journal.pone.0251047.g001
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Generalized edit distance

Unlike the Levenshtein distance, the generalized edit distance adopts more sophisticated cost

functions in Eq (1). Depending on the operator type, Cost functions can output other values

different from 1 or 0. If the cost of one deletion operation increases twice as much as that of

one substitution operation, it follows as:

substitutionðxa; ybÞ ¼ 2 � deletionðxaÞ: ð3Þ

For example, the similarity in character shapes can be used in another generalized distance

metric. Because ‘h’ is similar to that of ‘b’ in shape, a human can feel that input sequence

“catcb” is more similar to pattern “catch” than input sequence “catco”. In this case, the similar-

ity can be estimated by the substitution operator in the generalized edit distance metric. In

another example, the misspelling can happen depending on the character positions in a key-

board. In the US computer keyboard, ‘q’ has a high possibility of being mistyped as ‘w’ because

the key of ‘w’ is located next to that of ‘q’. However, the shape of ‘p’ is totally different from

that of ‘w’, so that other functions are needed to quantify the difference between key positions.

Besides, the generalized edit distance can consider the pattern length. Intuitively, we feel that

the difference between “ca” and “cat” is expected to be greater than that between “catasrophe”

and “catastrophe” even though the difference from both cases is caused by one deleted charac-

ter ‘t’. Therefore, the costs from the insertion and deletion operations can be inversely propor-

tional to the pattern length. In this case, condition D(Xα, Yβ) = D(Yα, Xβ) cannot be met when

the costs for insertion and deletion operations are different from each other. In conclusion, the

generalized edit distance metric requires more complicated operations. Besides, these general-

ized edit distance metrics can adopt fractions to represent the distance.

Fig 2 shows an example of the edit distance matrix using the generalized edit distance met-

ric based on the similarity in shape and pattern length. We assume that the costs of deletion

and insertion operators are fixed as 0.76. For the substitution operation, different values are

added depending on character shapes. In Fig 2, because characters ‘c’ and ‘e’ seem to be similar

in shape, substitution(‘c’, ‘e’) = 0.42. On the other hand, for the cases with characters ‘a’ and ‘h’,

substitution(‘a’, ‘h’) = 1.20. Unlike Fig 1, each step’s distance has a fraction in Fig 2, so that the

generalized edit distance calculation needs fractional operations. As these operators need com-

plex computations, the evaluation of each operator requires an additional computational

overhead.

k-mismatch string matching

A k-mismatch approximate string matching is defined as:

Definition 2 In k-mismatch string matching, for input sequence Xi and pattern Yj, when D
(Xi, Yj)� k, Xi matches Yj.

Term k denotes the threshold for determining whether Xi is matched with Yj or not.

Because the cost of any operation is a positive value, Eq (1) can be modified for k-mismatch

string matching with input subsequence Xα and subpattern Yβ as:

DðXa;YbÞk ¼ min

DðXa� 1;Yb� 1Þk þ substitutionðxa; ybÞ when DðXa� 1;Yb� 1Þk � k

DðXa� 1;YbÞk þ deletionðxaÞ when DðXa� 1;YbÞk � k

DðXa;Yb� 1Þk þ insertionðybÞ when DðXa;Yb� 1Þk � k:

8
>>><

>>>:

ð4Þ

In Eq (4), when the edit distance of a data-dependent previous step (D(Xα−1, Yβ−1)k, D(Xα
−1, Yβ)k, and D(Xα, Yβ−1)k) is over k, there is no need to evaluate its operation for calculating D
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(Xα, Yβ)k. However, an additional overhead is required to find whether its data-dependent pre-

vious steps are over k or not.

Proposed diagonal string matching using pruning register

Motivations

From Eq (4), when the edit distance of data-dependent previous steps (D(Xα−1, Yβ−1), D(Xα−1,

Yβ), D(Xα, Yβ−1)) over k-mismatches is pre-known, we determine whether its related operation

is needed or not. Our motivation starts from the fact that unnecessary step calculations over k-

mismatches can be skipped depending on data-dependent previous steps. In the existing

dynamic programming-based method, the distance matrix is filled by calculating edit distances

between input subsequences and subpatterns, so that the data-dependent previous steps are

accessed in the edit distance matrix.

Fig 3 is the conceptual figure that illustrates overhead ratios of conditional statements for

finding data-dependent previous steps according to the computational overhead for perform-

ing operations (substitution, insertion, and deletion). In a simple edit distance metric such as

Fig 2. Example of generalized edit distance matrix for input sequence “ccatese” and pattern “catch”.

https://doi.org/10.1371/journal.pone.0251047.g002
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the Levenshtein distance, each operation only compares characters and makes binary output,

so that several operations are performed in the pipelining [31]. If there is any conditional

jump, these predicted instructions of many operations can be cancelled, which degrades the

performance. In other words, it is expected that the conditional jump for skipping evaluations

cannot reduce the total execution time. The overhead ratio of conditional statements for find-

ing whether a data-dependent previous step is over k is too high. Therefore, in a simple edit

distance metric, there could be no benefits by skipping evaluations in range (a) of Fig 3.

On the other hand, when the edit distance metric requires more computational resource to

evaluate complicated operators, the skipping method can be useful. As the computational

resources for performing each operator increase, the overhead ratio of conditional statements

becomes very small. In range (c), it can be better to skip each operator evaluation when finding

its data-dependent previous steps over k. In range (b), the overhead of conditional statements

and operator evaluations is not negligible. If the remaining iterations can be skipped in the

loop for calculating each step, many operator evaluations can be reduced. The implementation

of dynamic programming [13] using a nested loop cannot provide such functions.

Therefore, we propose a new string matching method for skipping the remaining iterations

for the distance metric. In the following, the problem definition is discussed in detail, and the

proposed diagonal skipping method is explained.

Problem definition

Fig 4 shows examples of calculating steps and their traversals considering data dependency

between steps, in which Fig 4(a) shows simple vertical traversals. In vertical traversal, steps on

the next column depend on those on the previous column for substitution and insertion opera-

tors. Therefore, after calculating steps on a column, steps neighbouring on the right column

Fig 3. Overhead ratios of conditional statements according to computational overhead for performing

operations.

https://doi.org/10.1371/journal.pone.0251047.g003
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can be calculated. Besides, for the deletion operator, the traversal should proceed from top to

bottom. This dynamic programming considers data dependency between its neighbouring

steps that exists from Eq (1) [13]. After calculating steps in a traversal, the vertical traversal is

performed on the right column. Therefore, when n and m are denoted as the input sequence

and pattern lengths, the computational complexity can be O(mn).

Several approximate string matching algorithms have been studied to reduce the dynamic

programming’s computational complexity [14, 15]. In general, several previous works about k-

mismatch string matching enhance the throughput of string matching for the long input string

such as network traffic data [2] and DNA sequences [4, 5]. Therefore, multiple occurrences of

the pattern are searched in the long input string, where string matching with input subse-

quences can be considered. For example, when input sequence and pattern are “baseball

player” and “catastrophe”, the Levenshtein distance between subsequence “base” and pattern

“catastrophe” is 10. Considering the distance of 10, if k< 10, input subsequence “baseball”

cannot be matched. Then, another string matching with another subsequence “player” begins.

In this case, the calculation of the edit distance matrix cannot be avoidable. This paper pro-

poses a new method that reduces the execution time of obtaining the edit distance matrix for

k-mismatches.

Diagonal traversal and skipping method

Our method adopts the diagonal traversal to skip unnecessary step calculations over k-mis-

matches. Unlike the vertical traversal performed on each column, the diagonal traversal calcu-

lates steps across columns. Even though the work in [14] proposes the diagonal evaluation

Fig 4. Step calculations in edit distance matrix; (a) vertical traversals: (b) diagonal traversals.

https://doi.org/10.1371/journal.pone.0251047.g004
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based on reordered data structure, the step calculations are not skipped for k-mismatch string

matching.

In Fig 4(b), diagonal traversals are illustrated, where an arrow illustrates the order of steps

calculated in each traversal. Fig 4(b) describes that the upper right step is calculated before the

lower left step in a diagonal traversal. It is denoted that t is the index of a traversal, and the tra-

versals indicated by arrows traversal(t − 2), traversal(t − 1), and traversal(t) are performed in

order. The calculations of steps on a diagonal traversal traversal(t) do not have data depen-

dency with each other. Each step calculation of traversal(t) has data dependency with three

steps of traversal(t − 1) and traversal(t − 2). For substitution operation, a step can be calculated

after obtaining the step in traversal(t − 2). For insertion and deletion operations, two steps can

be calculated depending on steps of traversal(t − 1). These calculations require the values of

two steps for the substitution and insertion operations on the left column and one step for

deletion operation on the same column.

When the previous diagonal traversals traversal(t − 2) and traversal(t − 1) finish the calcula-

tions of all data-dependent previous steps, traversal(t) can use the calculation results to skip

unnecessary operator evaluations. Our proposed method adopts so-called pruning register to

avoid multiple iterations in a loop without accessing each element in the edit distance matrix.

Each pruning bit in the pruning register is assigned into a column of the edit distance matrix.

When the pruning bit for its column is set as ‘1’, there is no need to calculate all steps in the

column. In this case, the steps to be calculated have distances over k. The pseudocode of the

proposed string matching is as follows:

Algorithm 1 Diagonal Skipping
1: procedure DIAGONAL_SKIPPING (input sequence, pattern)
2: Initialization(D[0, . . .,i][0], D[0][1, . . .,j], pruning_reg)
3: for each traversal do
4: for each step(α, β) 2 traversal do
5: if pruning_reg(β) == 1 then break;
6: end if
7: if pruning_reg(β − 1) == 0 then
8: D[α][β] = costmin((D[α − 1][β], D[α][β − 1], D[α − 1][β − 1]))
9: else
10: D[α][β] = costmin((D[α − 1][β], D[α − 1][β − 1]))
11: end if
12: if D[α][β] > k and pruning_reg(β − 1) == 1 then
13: pruning_reg(β) = 1;
14: end if
15: end for
16: end for
17: return D
18: end procedure

In the pseudocode, the procedure Diagonal_Skipping has two arguments: input sequence

and pattern. Terms i, j, and k denote the input sequence length, pattern length, and mismatch

threshold k, respectively. Firstly, several elements in two-dimensional (i + 1) × (j + 1) array D
and pruning register pruning_reg are initialized. In this initialization, D[0, . . .,i][0] is initialized

using only deletion operators. On the other hand, D[0][1, . . .,j] is initialized using only inser-

tion operators. These steps can be simply calculated without considering min() function in Eq

(1). In the pruning register, the bit indicating the leftmost column (the 0-th column) is set as

‘1’, and other bits are set as ‘0’.

Then, each step in a traversal is calculated in order. The direction of the arrow is from right

top to left bottom, as shown in Fig 4. As shown in Preliminaries section, Xα and Yβ mean a sub-

sequence of input sequence Xi and a subpattern of pattern Yj for 1� α� i and 1� β� j. An
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element D[α][β] in the two-dimensional array contains edit distance D(Xα, Yβ). For each step

of D[α][β] for distance D(Xα, Yβ), if the pruning bit of the β-th column is ‘1’, the next steps cal-

culated in a traversal can be over k. Therefore, the break statement means that this procedure

skips other iterations that calculate steps of the traversal; otherwise, each step in the traversal is

calculated. When the pruning bit of (β−1)-th column is ‘0’, data-dependent previous steps are

accessed, and function costmin calculates the minimum distance. Except for the calculation D
[s][1], 1� s� i, when the pruning bit of (β−1)-th column is ‘1’, the value stored in D[α][β − 1]

is over k, so only D[α − 1][β] and D[α − 1][β − 1] are accessed to calculate D[α][β]. When cal-

culating D[s][1], 1� s� i, all operators are considered because the pruning bit of the leftmost

column is initialized as ‘1’. If the edit distance in D[α][β] is over k and the pruning bit of the

(β − 1)-th column is ‘1’, the pruning bit of the β-th column becomes ‘1’. The number of diago-

nal traversals is proportional to the pattern length j. Therefore, the computational complexity

can be O(jk), which means that the computations can be mainly limited by j and k.

Fig 5 illustrates the string matching operation with input sequence “ccatese” and pattern

“catch”. Firstly, the bit for the leftmost column in the pruning register is initialized as ‘1’, as

shown in Fig 5(a). Additionally, D[0, . . .,i][0] and D[0][1, . . .,j] are initialized. As diagonal tra-

versals proceed on the fourth arrow, the step over k = 2 is reached on the second left column.

Also, pruning_reg(1) is updated as ‘1’, as shown in Fig 5(c). On the fifth arrow, because the

Fig 5. An example of proposed method using pruning register.

https://doi.org/10.1371/journal.pone.0251047.g005
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pruning bit of pruning_reg(1) is ‘1’, function cost(D[3][2], D[3][1]) is performed to calculate D
([4][2]), where the insertion operation is skipped. Fig 5(d) shows intermediate progress based

on Algorithm 1. The proposed diagonal skipping method can determine the steps to be

skipped just by accessing the pruning register instead of using all data-dependent previous

steps. Also, the proposed method skips multiple-step calculations at a time, which reduces the

execution time.

In the proposed method, the number of traversals on arrows is proportional to the pattern

length j, where several step calculations over k are not skipped in the proposed method. If all

neighbouring data-dependent steps on the same column over k are checked before evaluating

operators, the unnecessary operator evaluations can be skipped, which can make the complex-

ity O(min(j, k)). However, unlike the proposed diagonal skipping method using only one

pruning register, complicated conditional statements and additional memory accesses are

required. This method can be valid when the computational overhead of operator evaluations

is significant, which is described in the range (c) of Fig 3.

Experimental results and analysis

Based on realistic environments, we show the experimental results depending on different edit

distance metrics. Firstly, when Levenshtein distance is calculated, it is expected that the skip-

ping method is not effective due to the overhead of conditional statements. Then, when adopt-

ing the generalized edit distance metrics considering the visual similarity in shapes or

keyboard character positions, the proposed skipping method can show better performance

than the dynamic programming for small k-mismatches and the method using the reordered

data structure. Besides, the overhead of conditional statements for finding data-dependent pre-

vious steps is discussed.

Experimental environments

In experiments, the proposed method was coded and complied by C language and GCC 5.4.0,

respectively. For apple-to-apple comparisons, we implemented the dynamic programming

and the skipping method that found neighbouring data-dependent previous steps to skip each

step calculation over k. These implemented codes have been uploaded in [32], where the exe-

cution times of the proposed method and other counterparts were measured. The tests were

performed on a single core of Intel Xeon CPU E5-2630 v3 @ 2.40GHz machine with 16 Giga-

byte main memory and Ubuntu 16.04 operating system. The experiments randomly selected

100,000 pairs of the input sequence and pattern from the English dictionary with 370,099

words [33], where the average and standard deviation of the input sequence and pattern

lengths were 9.4 and 2.90, respectively.

We evaluated the proposed method based on three different distance metrics. Firstly, we

calculated the Levenshtein distances to know the benefits of the proposed method in the sim-

ple edit distance metric. Secondly, for the evaluation using a highly computational edit dis-

tance metric, the similarity in shapes between two alphabet characters was quantified in a two-

dimensional array D considering [34]. This array was used to calculate the cost in the substitu-

tion operator. For example, substitution(‘a’, ‘b’) = 1/2.13 � C and substitution(‘o’, ‘e’) = 1/4.13 �

C, where C was the scaling factor for normalizing the substitution cost. In this example, the

cost of substitution(‘a’, ‘b’) can be 1.94 times the cost of substitution(‘o’, ‘e’). For insertion and

deletion operators, this experiment assumed a weighted cost depending on pattern length j,
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where we developed an exponential cost function using the average word length as:

deletionðxaÞ; insertionðybÞ ¼
exp

averagelength
j

� �

expð1Þ
:

ð5Þ

In Eq (5), costs were normalized by exp(1). As j increased, the costs of insertion or deletion

operations decreased exponentially, so that different weights were assigned depending on j.
Finally, our experiments adopted a more complicated distance metric that considered char-

acter positions in a keyboard. In this metric, the Euclidean distance between characters was

calculated to obtain each substitution operation’s cost. The position of each character was

stored in an array, which was used to calculate the Euclidean distance between characters.

Based on the typo distance in [35], the function for calculating the cost of each substitution

operation was implemented. Unlike typo distance [35] without commutative property, our

edit distance metric had the same cost for the deletion and insertion operations to meet the

edit distance’s characteristic. The features of edit distance metrics above are summarized in

Table 1.

Experimental analysis

Fig 6 shows the summary of average execution times by sweeping k when using the Levensh-

tein distance metric. When the diagonal traversal did not adopt k-mismatches, the average exe-

cution time was longer than that of the dynamic programming using the vertical traversal

because of the overhead from conditional statements and reordered memory accesses. In these

experiments, the execution time increased with k. When k> 4, the execution time was over

that of the vertical traversal, which means the proposed method did not have any benefits over

the simple vertical traversal for large k. Besides, Fig 6 shows that the diagonal traversal without

considering k-mismatches required the additional overhead of conditional statements and

reordered data accesses compared with the vertical traversal. Therefore, for the Levenshtein

distance metric, when k was small, we concluded that the proposed method can help reduce

the execution time. Significantly, compared with the vertical and diagonal traversals, the exe-

cution times were decreased by 44.3% and 52.3% with k = 1.

For the generalized edit distance using similarity in shapes, Fig 7 illustrates the average exe-

cution times by sweeping k. Like the case using the Levenshtein distance metric, the execution

time increased with k. When k< 5, the average execution times of the proposed diagonal skip-

ping method were shorter than that of the vertical traversal, which means that many step cal-

culations can be skipped for small k in this generalized edit distance metric. The diagonal

traversal only increased the average execution time by 11.5% over the vertical traversal. Nota-

bly, when k = 1, the execution times were reduced by 55.7% and 60.3% over the vertical and

diagonal traversals. Compared with the evaluation using the Levenshtein distance metric, it

Table 1. Features of evaluated edit distance metrics.

Metric Role Costs

Levenshtein simple low-cost edit distance metric low

Shape normalized weighted edit distance metric medium

Keyboard complex weighted edit distance metric high

https://doi.org/10.1371/journal.pone.0251047.t001
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was expected that the execution time can be further reduced because the overhead ratio of con-

ditional statements and reordered memory accesses was smaller.

Fig 8 summarizes the average execution times based on the distance metric considering

keyboard character positions. Like Figs 6 and 7, the execution times were evaluated by sweep-

ing k. Diagonal skipping(II) adopted the skipping method using the pruning register and

reduced unnecessary operator evaluations after accessing data-dependent previous steps over

k. On the other hand, Diagonal skipping(I) just used the skipping method using the pruning

register. By avoiding unnecessary operator evaluations over k, the Diagonal skipping(II) can

further reduce the execution time when k was small. As k increased, the difference of the aver-

age execution time between Diagonal skipping(I) and Diagonal skipping(II) was reduced

because the number of reduced operator evaluations using Diagonal skipping(II) diminished.

When k = 5, the difference in the average execution times was negligible. When k> 5, the

average execution time of Diagonal skipping(II) was longer than that of Diagonal skipping(I).
Besides, when k = 8, the average execution time of Diagonal skipping(II) was very close to

those of the vertical and diagonal traversals. Like the Levenshtein distance and the generalized

distance using similarity in shapes, many step calculations can be skipped for small k, and the

number of skipped step calculations decreased with k. However, even when k = 8, the proposed

method’s average execution time was shorter than those of the vertical and diagonal traversals.

In agreement with Table 1, the operators’ computational costs used in this distance metric can

Fig 6. Average execution times of the Levenshtein distance metric.

https://doi.org/10.1371/journal.pone.0251047.g006
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be high compared with the conditional statements. Notably, compared with the vertical tra-

versal, when k = 1, Diagonal skipping(I) and Diagonal skipping(II) reduced the average execu-

tion time by 60.1% and 87.3%, respectively.

Fig 9 illustrates the ratios of the skipped edit distance calculations. This experiment counted

two types of skipped edit distance calculations when obtaining D[i][j]. When the pruning bit

of (β−1)-th column was ‘1’, the insertion operator was skipped, and only D[α − 1][β] and D[α
− 1][β − 1] were accessed to calculate D[α][β]. Secondly, if pruning bit of the β-th column was

‘1’, the next steps in a traversal were skipped because they were over k. When k = 1,

84.6*70.9% step calculations were skipped. As increasing k, the ratios decreased rapidly,

where the decreasing ratios can be different depending on the adopted edit distance metric.

When k = 8, only 11.0*3.7% step calculations can be skipped, where the overhead of condi-

tional statements and reordered memory accesses increased the average execution time com-

pared with the vertical and diagonal traversals.

The statistical analysis was performed to know the functional relationship between the exe-

cution time and input parameters. As shown in [36], the regression approach was adopted,

and the input sequence and pattern lengths were used as input parameters. This evaluation

was performed with k = 2 for all adopted edit distance metrics. In these regression analyses,

the coefficients of determination (R2) can be used to show how much the regression model

was fit for the target data [37]. When using the Levenshtein distance metric, R2 was just 0.267.

On the other hand, R2s of the generalized edit distance metrics using similarity in shapes

(denoted as Shape) and keyboard position (denoted as Keyboard) were 0.575 and 0.818,

respectively. These results showed that except for the input sequence and pattern lengths,

other overheads could significantly affect the the Levenshtein distance metric’s execution time.

Fig 7. Average execution times of the generalized edit distance metric using similarity in shapes.

https://doi.org/10.1371/journal.pone.0251047.g007
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Table 2 lists the results of the regression analysis for the adopted three edit distance metrics,

where Coef., SE Coef., T, and P denote the coefficient, standard error coefficient, t-value, and

p-value, respectively. Because the p-values were small, the input sequence and pattern lengths

can be statistically significant. Large t-values in Table 2 show that even though the input

sequence and pattern lengths were the same, the execution time can be different severely

depending on the input sequence and pattern values. Moreover, the coefficient for the pattern

lengths was more significant than that of input sequences, which means that the pattern

lengths were more critical in the execution time.

Conclusion

This paper proposes k-mismatch approximate string matching for the generalized edit dis-

tance. When the generalized edit distance is involved, this paper shows that the step calcula-

tions’ skipping can reduce the execution time. The proposed method adopts the pruning

register to skip step calculations in the diagonal traversals. This paper introduces practical gen-

eralized edit distance metrics for the sophisticated experimental environments. The Levensh-

tein and two generalized edit distance metrics based on similarity in shapes and keyboard

character positions are applied to know the effectiveness of the proposed method. In experi-

ments, even though the overhead of conditional statements and reordered data accesses exists

in the generalized edit distance metrics, the proposed method can reduce the execution time

of k-mismatch string matching. Considering the experimental results with realistic edit

Fig 8. Average execution times for the generalized edit distance metric using keyboard character positions.

https://doi.org/10.1371/journal.pone.0251047.g008
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distance metrics, the proposed skipping method helps reduce the execution time in k-mis-

match approximate string matching.
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