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High-definition transcriptomic studies through single-cell RNA sequencing (scRNA-Seq)
have revealed the heterogeneity and functionality of the various microenvironments across
numerous solid tumors. Those pioneer studies have highlighted different cellular
signatures correlated with clinical response to immune checkpoint inhibitors. scRNA-
Seq offers also a unique opportunity to unravel the intimate heterogeneity of the
ecosystems across different lymphoma entities. In this review, we will first cover the
basics and future developments of the technology, and we will discuss its input in the field
of translational lymphoma research, from determination of cell-of-origin and functional
diversity, to monitoring of anti-cancer targeted drugs response and toxicities, and how
new improvements in both data collection and interpretation will further foster precision
medicine in the upcoming years.

Keywords: single-cell RNA sequencing (scRNA-seq), lymphoma, microenvironment, bioinformatics analysis, cell of
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INTRODUCTION

Like any other cancer, lymphomas are heterogeneous diseases exhibiting molecular aberrations at
multiple levels. Adding difficulties to the understanding of lymphomagenesis, interactions with
bystander stromal and immune cells in specific, highly organized microenvironments (ME) dictate
tumor cell behavior. Since 2000, bulk transcriptomic and mutational profiles have been extensively
characterized from pooled, heterogeneous mixtures of both cancer and ME cells, leading to the first
classifications based on cell of origin. In diffuse large B-cell lymphomas (DLBCL, the most common
lymphoma subtype), prognosis after chemo-immunotherapy differs according to germinal center or
non-germinal center transcriptomic signatures. In follicular lymphoma (FL, second most frequent
entity), prognosis is better predicted by the type of ME cells (T cells versus macrophages), rending
interpretation of data dependent of the type and abundance of cells in a single biopsy specimen.

Single-cell RNA-sequencing (scRNA-Seq), by shedding light on gene expression levels across
thousands of cells mixed into a patient’s biopsy without sorting, has revolutionized our
understanding of normal human tissues’ anatomy, ontogeny, and diseases (1–3). Thanks to this
technology, dissecting tumor heterogeneity is now increasingly an achievable goal in cancer care
(4, 5). Indeed, development of resistance to most recent targeted agents originates both from tumor
and ME transcriptomic variability, the latter directly influencing lymphoma phenotypic
org February 2021 | Volume 12 | Article 5976511
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heterogeneity. According to Darwinian laws, evolution selects the
fittest phenotype, not genotype. Several studies have confirmed that
genetic variations are observed in distinct ecosystems within the
same tumor, and that spatial distribution of cellular subsets with
specified transcriptomic signatures correlates to clinical outcome
(6, 7). Lymphomas are a group of lymphoid tumors with
widespread body dissemination (though not considered
metastases), invading blood and lymph vessels. They are therefore
asking daily the question of how to interpret a selective biopsy of
tumor sample in the light of cancer heterogeneity.

Other reviews have provided excellent historical perspectives on
the emergence and development of increasingly cost and time saving
scRNA-Seq protocols, and how the commercial platforms now allow
dissemination of knowledge in many Centers treating patients (4, 6,
8–10). After going through technological considerations about
advantages/disadvantages of scRNA-Seq as compared to other
techniques, our goals are to inform readers about latest insights in
basic and translational lymphoma research about:

-Cell of origin of tumor cells

-Functional and phenotypic heterogeneity of lymphomas

-Inputs in clinical research: monitoring the response to therapy,
and defining markers of early progression/toxicity (with an
emphasis on the latest anti-lymphoma armamentarium:
cellular therapies (CAR T-cells), and immune checkpoint
blockers)
BULK RNA ANALYSES: WHAT HAVE WE
LEARNED ABOUT INTRA- AND EXTRA-
TUMOR HETEROGENEITY IN LYMPHOMA
OVER 20 YEARS?

Malignant lymphomas mirror the complexity of immune system
by many aspects. Since the advent of whole transcriptome
profiling by Affymetrix-based microarrays, transcriptomics of
tumor samples has enabled the identification of various
molecular subsets of cancer cells, as originally the differential
profiles of germinal center (GC)-like and activated B cell type
(ABC) diffuse large B-cell lymphoma (DLBCL) defining cell (11).
This has led to a better characterization of entities (>90 in the
WHO2018 classification).

The genuine technology consisted in capturing each mRNA
from a cellular lysate thanks to arrays of thousands oligonucleotide
probes, each specific for a defined gene, and quantifying the
captured mRNA by fluorescence signals (11). This allowed to
quantify quite precisely the expression level of each gene taken
individually, an information which once paralleled across the
~20,000 human genes, provided a global view of most cellular
hallmarks of the cell types within the analyzed sample. Further
direct sequencing of the mRNAs (RNA-seq) from bulk cell samples
improved the sensitivity and precision of transcriptomes over the
former microarrays, but did not revolutionize significantly the
quality of the results: the microarray and RNA-seq based
transcriptomes of a same sample give highly superimposable
Frontiers in Immunology | www.frontiersin.org 2
results. Various other declinations of the hardware part of this
technology have emerged, such as to analyze more than just mRNA
(e.g., lcRNA, miRNA, …) in samples. Likewise, various
transcriptomics computing algorithms have allowed to determine
the genes differentially expressed (DEG) between two samples, the
functional significance of DEGs by gene set enrichment analyses
(GSEA) (12), as well as the inference of leukocyte cell composition
of a tissue sample by deconvolution of its bulk transcriptome (e.g.,
CIBERSORT) (13, 14), to quote a few. Since two decades, thousands
of transcriptomics studies have been produced and were made
freely available on public repositories (NCBI Gene Expression
Omnibus (GEO), https://www.ncbi.nlm.nih.gov/gds, European
Bioinformatics Institute’s Array Express https://www.ebi.ac.uk/
arrayexpress/). Despite such significant improvements however,
transcriptomics remained bulk and, by lacking the ultimate
resolution of its single cells taken individually, was the mere
arithmetic mean of its cell constituents.

Bulk RNA studies in lymphoma patients proved that TME
signatures strongly impacted prognosis in (15, 16), besides
genetic lesions. Deconvolution of publicly available gene
expression profiles (GEP) datasets from 480 DLBCL patients
treated with R-CHOP (standard therapy frontline) has allowed
to draw maps of TME in 2015 (CIBERSORT), through
characterization of cell composition from their GEP (this
method has been applied to 18,000 human tumors and
correlated leukocytes subsets to survival across various cancers)
(14). However bulk transcriptomic analyses that rely on RNA
extraction from pooled cell populations from tumor tissue
cannot identify low abundant population or rare cell subtypes
and could be not able to differentiate cells with similar expression
patterns. The characterization of the complex relationship
between tumor and bystander cells requires a correct
transcriptional characterization at cellular level. Digital cytometry
(CIBERSORTx) establishes molecular profiles and specific gene
matrices from single cell or sorted cell transcriptomes, and uses
them to “barcode” other samples with bulk RNA available to
evaluate cellular abundance and GEP. This method has been
applied to isolate 49 distinct transcriptional states across 13
signatures including macrophages, neutrophils, fibroblasts, and T
cells. An atlas of ecosystems in DLBCL correlating to somatic
mutations and distinct from tumor-based GEP classification has
been built. Thoughmore applicable to large datasets, this interesting
approach remains less effective than genuine scRNA-Seq for
understanding of the function and/or phenotype of individual cell
types, even rare or unknown cellular subsets without signature
matrix known.
IMPLEMENTATION OF scRNA-SEQ:
TECHNICAL CONSIDERATIONS

How we can tackle the obstacles discussed above with bulk RNA
analyses? Among the huge development of single-cell
technologies and computational advances to understand single
cell transcriptomic profiling, the most commonly used technique
remains scRNA-seq. This technology allows for precise
February 2021 | Volume 12 | Article 597651
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determination of cell counts (with the limitation sometimes that
across samples, in a heterogenous cell mixture, certain populations
might be lost), cell types, and fine identification of the
transcriptomic hallmarks of each cell cluster present in the initial
sample. Whether based on microfluidics or on micro-wells, each
single cell from a sample of thousand cells is processed individually.
Each single cell from cell suspensions is successively lysed, all its
mRNAs are captured through their 3’ end by an oligonucleotide
carrying a cell-identifying tag, cut in smaller fragments (~100 nt),
converted to cDNA, and amplified to produce a single cell library
(capture can be done also by 5’ end, but this technique is not
commonly used yet). All the single cell-derived and tagged libraries
are pooled together to constitute the sample library. The library is
then separately sequenced, each initial mRNA fragment becomes a
“read,” yielding for the whole sample a file typically composed of
400 million reads, each corresponding to each initial mRNA
fragment. In a further bioinformatics preprocessing of the sample,
each read from this file is aligned 1) on the sequence of the species
transcriptome to identify its gene and 2) to the cell-specific tag to
identify its originating cell. This procedure is reiterated for all reads
of the library such as to count how many reads are measured for
each gene from each cell, yielding the so-called (cell, gene) matrix
from the sample. Typically, a single cell RNA sequencing (scRNA-
seq) matrix result comprises thousands of cells and about ten
thousands of genes (since not all genes are detected and each cell
does not express all the genes). Today, current scRNA-Seq
technologies measure about <2,000 genes per cell. Further
Frontiers in Immunology | www.frontiersin.org 3
standard pre-processing of the data includes a normalization of
all read counts and a quality control (QC) in which cells with too
few genes, genes in too few cells, dead cells, and cell doublets are
discarded from the dataset. A first step of data processing consists in
clustering cells according to their gene expression profile, providing
the most coherent and data-driven analysis of a mixed sample. To
this aim, a principal component analysis is first performed to reduce
the large dimensionality of all transcriptomes to their first principle
components (PC). Once these fewer dimensions are selected upon
user’s decision based on the wanted precision, clusters of cells with
similar profiles are delineated under the same user’s criteria: low
granularity makes less clusters of very different cells while more
granularity means more clusters of more closely related cell types.
Finally, the entire dataset is represented on bi-dimensional maps of
cells, in which the above n first principle components are
dimensionally reduced to two dimensions by sophisticated
unsupervised algorithms such as t-distributed stochastic neighbor
embedding (t-SNE). More recently, a superior method for both
PCA and dimension reduction called uniform manifold
approximation and projection (UMAP) has gained a large
popularity for processing and visualization of scRNA-seq datasets
(17). Within t-SNE or UMAP representations of those datasets,
clusters are typically shown with colors and define cell subsets with
high fidelity to the data: all cells alike are plotted next to each other
while different cells form separate clusters with or without
continuity to the former (Figure 1). Those steps are now
performed by skilled bioinformatics users applying either
FIGURE 1 | Sample flow chart for single cell RNAseq analysis. PBMC, peripheral blood mononuclear cells; PCA, principal component analysis; QC, quality control;
t-SNE, t-distributed stochastic neighbor embedding. Legend for the t-SNE map:MK megakaryocytes, mono, monocytes; int, intermediate; m/pDC, myeloid/
plasmacytic dendritic cells; NK, natural killer; PC, plasma cells, and for T cells: cytotox cytotoxic, dn, double negative; cm, central memory; em, effector memory; fh,
follicular helper; n, naïve; reg, regulatory.
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R scripts from algorithms such as Seurat (18), or the proprietary
Chromium™ (https://www.10xgenomics.com/) tools. Nevertheless,
methods to infer cell types from scRNA-seq results are manifold,
but still face challenges. Indeed, to identify a cell type, screening the
dataset for cells expressing a specific marker gene is currently the
most straightforward method. Data comprise many single cells in
which many genes are often undetected for either biological (low
expression level in the cell) or technical (read not sequenced or not
captured) reasons.
APPLICATIONS OF scRNA-SEQ: IN
SEARCH OF THE CELL OF ORIGIN AND
SUBCLONAL DIVERSITY

The first demonstration of a true insight of scRNA-Seq
approaches has been a pioneer study in a germinal center (GC)-
derived tumor, called follicular lymphoma (FL), which shed light
on the ontogeny of FL cells (19). By comparing single-cell
expression of a panel of 91 pre-selected genes in cancer versus
normal B-cells, the authors demonstrated a clustering between FL,
normal GC, memory, and antibody producing cells (plasma cells).
They developed an original pseudo-time inference algorithm
which suggested a developmental ordering of gene expression in
the latter cells (from plasmablasts to mature plasma cell). Such
modeling of maturation inferred from a panel of genes expression
was then applied to phenotypically defined GC cells subsets (light
zone LZ CXCR4loCD83hi and dark zone DZ CXCR4hiCD83lo),
this algorithm indicated that 26% of the cells were misclassified,
with an intermediate CXCR4/CD83 phenotype, proving that our
vision of GC maturation was incorrect. Normal GC B cells
spanned over a continuum of gene expression, not fully
captured by the two states model, as they cyclically transitioned
from LZ to DZ, with about one third of cells being in an
intermediate state sharing LZ/DZ markers. Furthermore,
correlations (and anti-correlations) between discrete clusters of
genes allowed to demonstrate a synchronized gene expression
program defining identity of normal GC cells. Avoiding averaging
effects of mRNA bulk analysis, scRNA-Seq study of five FL
patients at diagnosis clearly showed heterogeneity of gene
expression patterns within and between patients’ samples, not
seen in normal GC B cells. By comparing the 91 genes expression
profiles, FL cells clustered separately from GC or memory cells,
and with a major desynchronization of the GC-specific program,
suggesting that despite sharing a common ancestral signature FL
cells are genetically different from their putative cell of origin.
Sample origin was a major source of genetic heterogeneity across
the 5 FL patients, but intra-patient heterogeneity was not linked to
subclonal genomic diversity, since IGH subclones tracking found
that a given subclone could be found in different states (at least in
the 91-gene panel). A second study (20) applied scRNA profiling
to dissect the heterogeneity of GC tumors cell-of-origin (sc-COO).
Given inter-donor consistency, in terms of gene signature
associated to specific subsets of GC cells, they identified
multiple functionally linked subpopulations (with some cells
Frontiers in Immunology | www.frontiersin.org 4
showing intermediate level of GC differentiation process
between DZ/LZ), as well as the precursors of both memory B
cells and antibody secreting cells (based on expression of CCR6
and PRDM1). Moreover, a gene classifier (selecting the 50 up- and
down-regulated genes in the sc signatures associated with these
GC subpopulations) was built and applied on bulk RNA-Seq
expression profiles from two published DLBCL panels (481 fro
NCI and 230 from BCA). Non-GC cases were scattered across the
sc-RNA Seq classes (but mostly in late GC stages) while
the majority of GC cases were related with normal GC B cells
in the LZ (like early of intermediate stages). Interestingly, 12% of
DLBCL cases in both datasets displayed DZ gene signatures
despite distributing across GC/non-GC/unclassified tumors.
Together with an enrichment in double-hit (MYC/BCL2) cases,
these results suggest a different ontogeny for this high-risk subset
of DLBCL. Progression-free survival after R-CHOP was found to
be dependent across the 5 prognostic categories isolated from the
baseline 13 sc-coo signatures, proving that the latter identified
clinically relevant subgroups of DLBCL patients.

To explain how these states are defined, cell-intrinsic genetic
events and/or interactions with the microenvironment are
possible. Mutations of epigenetic regulating genes are seen in
100% of FL cases (21–23) because they are key in the processes of
initiation, apoptosis resistance, and progression of the disease,
such as loss-of-function KMT2D (23) or CREBBPmutations (24,
25), or gain-of-function EZH2 mutations (26). But besides those
genes, genomic landscape of FL dramatically influences the
nature of the ecosystem, as recently demonstrated with CREBBP
(25), cathepsin S (CTSS) (27), EZH2 (28), and TNFRSF14/HVEM
(29) mutations. On the one hand, activation of EZH2 gene
attenuates T follicular helper (TFH) cells’ help for proliferation
(indispensable to normal GC B cells differentiation) in FL cells,
and drives slow expansion of centrocytes the characteristic niche
of the tumor, embedded within the Follicular Dendritic Cells
meshwork (30). On the other hand, loss of HVEM leads to FL
proliferation by inducing tumor supportive ME with increased
stroma activation and TFH cells recruitment (31, 32). Lastly,
CREBBP loss-of-function mutations (genocopied by TET2 loss-
of-function mutation) contribute to immune evasion via a
decrease of class II trans-activator (CIITA)-dependent MHC
class II expression (of both transcript and protein), leading in
the tumor bed to a decrease of infiltration of both CD4+ helper
and CD8+ memory cytotoxic T cells (25). Very seemingly, CTSS
gain-of-functions mutations or amplifications allow for an
enhanced MHC class II-restricted antigen presentation to CD4+
T cells, with better prognosis for patients.

But detecting genetic variants, such as mutations and copy
number alterations, in scRNA-Seq reads is not an easy task.
Tools have now been developed to study subclonal complexity of
a tumor. Mutations can now be identified at the single cell level,
to cluster tumor from normal cells, derive mutation-specific gene
signatures, identify cell surface markers, and build phylogenetic
trees of subclonal driver genes evolution, as shown in acute
myeloid leukemia (31) (this has never been done in lymphomas).
This latter study acquired transcriptional and mutational data in
16 AML and 5 normal bone marrows to profile AML tumor
February 2021 | Volume 12 | Article 597651
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ecosystems changes with therapy, and demonstrate for the first
time that differentiated AML had immune-modulating
properties against T cells. There is no such study to date in
lymphomas, the scRNA-Seq profiling is being extensively used to
build an atlas of tumor versus normal immune cells within
specific micro-environments.

Still, indirect evaluation of oncogenes mutational status can
be inferred from scRNA-seq approaches. In another study in six
FL patients and five control specimens (32), authors managed to
assign cells to eight different lineages, or immune subsets, in
concordance with a 13-parameter FACS analysis for B, T, and
NK cells but not monocytes (it is likely that development of
CITE-Seq will tackle this kind of discordance). As expected from
the study by Milpied et al. (19), evolutionary paths (different
subclonal somatic mutations) followed by pre-malignant B cells
to FL cells could be inferred from transcriptomic heterogeneity
(normal B cells on the other hand clustered together). Differential
expression analysis revealed transcription of genes specific to the
tumor versus the normal B cells within a patient’s sample. But most
interestingly, samples with CREBBP mutation indeed had lower
expression of HLA-DR gene than wild-type samples, but also lower
expression by two separated clusters of quiescent subpopulations
within a single tumor, suggesting scRNA-Seq captured
transcriptomic consequences of genomic alterations inter- and
intra-patients. In this study, coding somatic mutations deeply
modified the expression of sets of genes, structuring the tumor
into various subclones based on their genetic disparities (4–5 per
sample), the sizes of which were similar regarding on the method
used to quantify them (scRNA-Seq and exome-Seq). Therefore,
gene expression heterogeneity, at least in part, was also attributable
to subclonal genomic heterogeneity, even if other drivers of
phenotypic diversity are stronger as proposed by the preceding
study. Lastly, authors investigated T cells subsets and gene
expression in double immune checkpoint expressing cells,
confirming expression of genes inhibiting T-cell activation in
CD4+ memory T cells co-expressing TNFRSF18 and TNFRSF4.
Overall, droplet-based scRNA-Seq with 10,000 cells only
demonstrated its power to analyze tumor heterogeneity and
infiltrating T cells phenotype.
APPLICATIONS OF scRNA-SEQ:
DECIPHERING FUNCTIONAL DIVERSITY
WITHIN ECOSYSTEMS

The tumormicroenvironment (TME) is constituted by heterogeneous
cellular populations including tumor cells and the surrounding
non-malignant cells, such as numerous and distinct immune cells
and stromal cells. Beyond the heterogeneity of the tumor cells (see
above COO), the diversity and plasticity of the microenvironment
also contributes to the intra-tumor heterogeneity (7, 33, 34).
Strong evidences show that diverse immune subsets and their
interactions within the tumor microenvironment are critical to
diverse aspects of tumor biology, treatment response, and
prognosis (35, 36). To avoid the need for manual annotation of
Frontiers in Immunology | www.frontiersin.org 5
cell types to existing data after unsupervised clustering, a
probabilistic model [CellAssign (37)] has been developed, able
to statistically frame the analyses of TME across samples and
cancers by assigning cells to both known and de novo cell types in
scRNA-seq data.

The TME is always a mix of lymphoma and normal cells [with
Hodgkin’s disease (HD) even as a paradigm of TME cells largely
overwhelming the number of Reed-Sternberg cells] (38). Thus, a
perfect isolation of the malignant cell population from a surgical
biopsy is a significant challenge especially when tumor cells are
low abundant. TME composition could be extremely variable
according to the invaded sites (blood, bone marrow, or lymphoid
secondary organs). It could be composed of extra-cellular matrix
and stromal cells (shaping the architecture of the lymph node
and T-B cells contacts), innate (myeloid and lymphoid) and
adaptive immune cells, and vascular (blood and lymphatics for
homing/egress from niches) cells (39, 40).

To date, the most detailed functional and spatial profiling of
TME cells at the single cell resolution has been published in HD
(41). Authors performed scRNA-Seq characterization of immune
cells and assessed their spatial sub-localization out of 22 HD
patients and five reactive lymph nodes. Transcriptome data from
>100,000 cells and 1,200 genes in median identified 22 clusters, all
being assignable to a cell type based on the published
transcriptomes of sorted immune cells. No tumor specific cluster
was found. But three regulatory T cells (Treg) clusters dominated
the TME of HD. The cluster in HD cases with the highest
proportion of immune cells was also enriched in LAG3 and
CTLA transcripts, as opposed to controls where B cells and
CD8+ T cells were enriched. Non-Treg CD4+ clusters also
enriched in HD included Th2 and Th17 subsets. Treg CD4+
subsets in HD cases expressed GITR, CD25, not FOXP3 (and thus
endowed with a type 1 Tr1 phenotype). Inhibitory receptor-
mediated immune tolerance of HD cells is further reinforced by
the co-localization of LAG3+ Treg near MHC class II-negative
tumor cells by multicolor immunohistochemistry. Since FOXP3+
Treg were significantly reduced in the later samples (increased
only in CMH class-II positive tumors), LAG3+ Treg are thus
considered a disease-specific subset. In an independent series of
166 patients treated with standard ABVD regimen, IHC
confirmed that expression of LAG3+ T cells correlated with the
loss of CMH-class II by tumor cells, with no impact on prognosis.

Besides HD, ecosystem of cutaneous T-cell lymphomas
(CTCL) has been evaluated in a study applying scRNA-Seq
focusing on 14,000 CD3+ T lymphocytes (and a median of
1,200 genes) from four healthy skin donors and five advanced
stage patients. The results revealed large inter-patient heterogeneity
and no overlap with normal skin samples (42). Twenty-six clusters
were identified and cell types annotated with normal dermis
signatures. Greater heterogeneity was found at the level of
lymphocytes, macrophages, keratinocytes, and fibroblasts. A gene
expression signature identifies highly proliferative T cells, among
which 17 genes were shared by all five patients’ samples, including
two markers assessable by IHC to diagnose aggressive CTCL.
Over-expression of TIGIT, LAG3 and TIM3 by CD8+ and CD4+
T cells (exhaustion signatures) indicated strong rationale for
February 2021 | Volume 12 | Article 597651
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immunotherapies in this disease. Presence of TIGIT+ Treg
correlated with lack of granzyme B and perforin in infiltrating
CD8+ T cells. Such differences in malignant and reactive T
lymphocytes in CTCL have been also reported in circulating
form of a CTCL subtype (mycosis fungoides), called Sézary
syndrome. Another group investigated this latter condition using
scRNA-Seq and unraveled the importance for disease evolution of
transitioning from FOXP3+ malignant T cells to GATA3+ or
IKZF2+ cells. This transcriptional heterogeneity could be used to
inform on prognosis, with FOXP3 and another set of 19 genes being
involved in early progression in CTCL cases (43).

Beyond investigating heterogeneity, scRNA-seq has been also
used to study putative cell-to-cell communications, inferred from
the correlation of expression levels of paired ligand and receptor
of individual cells (without knowing spatial proximity) (44–46).
These original approaches have been extended thanks to an
algorithm called NicheNet (47). One single example of the
application of this computational approach in nine lymphoma
patients has been published (48). This analysis suggested that
cancer B cells could receive signals from all four major subsets of
T cells (especially T follicular helper subset as the major source
for IL-4, a putative resistance mechanism against ibrutinib).
These dynamic stromal niches, as already reported in solid
cancers (49), fully support outgrowth of lymphoma cells.

Other studies using scRNA-seq have also focused on
depicting differentiation single-cell states, pro and antitumor
function of immune cell and their distributions in cancer (50).
Furthermore, the ability to define the TCR sequence at a single-
cell level enabled to analyze the association between therapeutic
response and activation states of specific T cell clusters (51, 52).
Then, the development of single-cell transcriptomic technology
enables to analyze the heterogeneity of immune subsets within
the TME and emerges as powerful tools to screen immune-
related signatures and identify potential biomarker which may as
prognostic factors or therapeutic targets (53–55). International
efforts attempting to set up a cancer human atlas at the single-cell
resolution have been fruitful (3, 56), delineating immune
contexture and activation state, for prognosis prediction and
immunotherapy guidance in solid cancers. But data in
lymphomas are still quite scarce (57).
scRNA-SEQ AND CLINICAL RESEARCH:
MONITORING RESPONSE TO THERAPY
AND UNDERSTAND RESISTANCE/
TOXICITIES

Most personalized therapies do not take into account heterogeneity
of nodal lymphomas. A previously discussed paper elegantly
investigated both malignant and non-malignant lymphocytes in
12 donors (nine with lymphoma and three reactive lymph nodes)
(48). Authors have found coexistence of up to 4 transcriptionally
distinct subpopulations of lymphoma cells, responding differently
to treatments in vitro and in vivo in an example assessed at the time
of relapse. This scRNA-Seq molecular profiling of transcriptomic
Frontiers in Immunology | www.frontiersin.org 6
signatures of resistant subclones will undoubtedly help tailor better
therapies in each patient, and how resistance subclones evolve over
time (clonal competition).

In relapsed/refractory DLBCL patients receiving CD19
chimeric antigen receptor T-cells (CAR T-cells), scRNA-Seq
has been used to investigates biomarkers of early progression,
but also of toxicities [cytokine release syndrome (CRS), immune
cell activation neurologic syndrome (ICANS)]. Previous studies
had highlighted the implications of T-cells subsets in the success
of therapy. By doing scRNA-Seq analysis of CAR products in 24
patients, authors of a very recently published paper identified
that exhausted T cell phenotype was more abundant in patients
not entering complete response (CR) (58). But they also
identified a very small subset of IL-1b+ and IL-8+ myeloid
cells (<300) associated with more severe ICANS. These results,
together with the explanation of scRNA-Seq curated data
showing expression of CD19 by mural cells maintain brain-
blood barrier integrity (therefore targeted by CARs) (59),
elegantly demonstrated that efficacy and toxicity of
immunotherapies can both be optimized.

Though not yet with an obvious application in the therapy of
lymphoma, scRNA-Seq studies have been extensively used to
predict immunotherapy responses (especially immune
checkpoint inhibitors, or ICIs) in various solid cancers, based
on T-cell infiltrating lymphocytes (TILs)’s characteristics in the
TME, that target neo-antigens [review in (60)]. TILs in different
cancers have proved to share common signatures, but also
possess specific characteristics in line with the organized TME
they reside in. After ICIs exposure, two studies published in 2018
(61, 62) have defined melanoma-specific and TILs-specific
transcriptome signatures associated with outcomes. By pairing
scRNA-Seq with TCR sequencing, two other groups showed that
ICI induced expansion of T cells with different clonotypes
(meaning recruitment of peripheral CD8+ T cells inside the
tumor bed), rather than boosted the pre-existing TILs (63, 64).
Paucity of myeloid cells subsets were also correlated to outcomes
in another study (41). With the development of more and more
ICIs strategies, in many cancers, and with the help of single cell-
based technologies, this a revolution surging in the field of
immunology, not only onco-immunology (65, 66).
UPCOMING IMPROVEMENT TO UNRAVEL
TME FROM scRNA-SEQ APPROACHES

A major improvement has recently been brought by implementing
scRNA-seq with use of DNA oligonucleotide-tagged antibodies
(ADT), such as to integrate cell surface proteins together with
transcriptome measurements. The resulting technique, called
cellular indexing of transcriptomes and epitopes by sequencing
(CITE-seq), analyses ADT-labeled cells by scRNA-seq to provide
simultaneously both immuno-profiling and transcriptomics of the
same single cells (67). ADT-labeling enhances the identification of
each cellular population present in the samples, and avoid further
misinterpretation of results. Data can be processed with dedicated
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software, such as Single-Cell_Signature_Explorer and single cell
virtual cytometer, the first published method for qualitative and
scoring of single gene or gene-set based signatures (68). This
method could thus provide informations about: cellular
heterogeneity and evolution (our data, in press), clues of cell
maturation through pseudo-temporal trajectory analysis (74) or
cellular dynamics by RNA velocity determination (70), or definition
of GC differentiation state based on CXCR4 and CD86 proteins
expression levels, thus confirming sc transcriptomics data (20).

By its compatibility with various declinations of the scRNA-
seq technology, the results of such multimodal analyses allow to
reach an unapproached level of multi-omics characterization. On
the other hand, detecting genetic variants, such as mutations and
copy number alterations, in scRNA-Seq reads is not an easy task.
Tools have now been developed to study subclonal complexity of
a tumor. Mutations can now be identified at the single cell level,
to cluster tumor from normal cells, derive mutation-specific gene
signatures, identify cell surface markers, and build phylogenetic
trees of subclonal driver genes evolution (31). More recently
multi-omics single cell strategies are focused to study genetic,
epigenetic, phenotypic, and transcriptomic profiles within the
same cell. As examples, SCI-seq (single cell combination marker)
provides cell copy number variation (71), scATAC-seq could
identifies specific chromatin motifs (72), RAGE-Seq (repertoire
and gene expression by sequencing) identifies B or T cell
repertoire (73), scNGS could provide information about
somatic mutations (1). All these approaches combined to new
computational software should give huge knowledge of cellular
heterogeneity, evolution, dynamics of lymphoma cells within
their TME. Multi-omics (three techniques) evaluation of seven
patients with chronic lymphocytic leukemia (CLL) exposed to
ibrutinib has unraveled a consistent regulatory program of
treatment-induced changes, but at a pace that varied among
patients. First events were signs of NF-kB inhibition, followed by
Frontiers in Immunology | www.frontiersin.org 7
reduce activity of lineage transcription factors, resulting in
erosion of CLL cells’ identity and after a few months,
acquisition of a dormant, quiescence-like gene signature (72).
This important study is the first to suggest that multi-omics
approaches, combined with multi-timepoints analyses, are able
to predict the molecular response to a kinase inhibitor in
lymphoma patients.
CONCLUSION

To advance cancer research and resolve heterogeneity, we need
integrated single cell multi-omics platforms to study cell-by-cell
(tumor, immune, stroma) transcriptomes, proteomes,
methylomes, cell surface proteins, localization within the
tumor, and even future evolution through (pseudo-time
analysis), across various patients’ datasets. The information of
the precise localization of normal immune versus tumor cells will
be resolved in part through spatial transcriptomics. Thanks to
newer bioinformatics tools, we need to understand the functional
significance of the different clusters, better visualize them, and
aggregate our data, from labs to labs all together, in a global effort
of a multi-modal integration across generated datasets of tumors
worldwide. These efforts will be paid back by enhanced risk
stratification, disease monitoring, and personalized therapy in
lymphomas, like a few studies in multiple myeloma and acute
myeloid leukemia have already demonstrated.
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