
Citation: Lin, X.; Shi, Y.; Wen, P.; Hu,

X.; Wang, L. Free, Conjugated, and

Bound Phenolics in Peel and Pulp

from Four Wampee Varieties:

Relationship between Phenolic

Composition and Bio-Activities by

Multivariate Analysis. Antioxidants

2022, 11, 1831. https://doi.org/

10.3390/antiox11091831

Academic Editor: Renan

Campos Chisté

Received: 21 July 2022

Accepted: 13 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Article

Free, Conjugated, and Bound Phenolics in Peel and Pulp from
Four Wampee Varieties: Relationship between Phenolic
Composition and Bio-Activities by Multivariate Analysis
Xue Lin 1,2, Yousheng Shi 1,2, Pan Wen 3, Xiaoping Hu 1,2,* and Lu Wang 1,2,*

1 School of Food Science and Engineering, Hainan University, Haikou 570228, China
2 Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University,

Haikou 570228, China
3 School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China
* Correspondence: huxiaoping03@hainanu.edu.cn (X.H.); lwang@hainanu.edu.cn (L.W.)

Abstract: Free, conjugated, and bound phenolic fractions of peel and pulp in four wampee vari-
eties from South China were analyzed for their contents, composition, antioxidant capacities, and
inhibitory activities against α-glucosidase. We found that there were significant differences in pheno-
lic/flavonoid contents among diverse varieties and different parts (peel and pulp), and the contents
were highest in the peel’s bound form. The results of UHPL-Q-Exactive HF-X and HPLC showed
that chlorogenic acid, gentisic acid, and rutin were abundantly distributed over the three phenolic
fractions in peel and pulp of all wampee samples, while isoquercitrin was the most abundant in the
conjugated form of peel/pulp and myricetin had the richest content in the free form of peel/pulp.
Wampee peel had stronger antioxidant capacities of ABTS+, DPPH, ·OH, and FRAP than the pulp,
and the bound phenolic fraction of the peel/pulp had much higher antioxidant activities than FP
and CP fractions. It is interesting that the same phenolic fraction of the wampee peel displayed
roughly close IC50 values of α-glucosidase inhibition to those from the pulp samples. The relationship
between individual phenolic and TPC/TFC/the bio-activities and the similarity among the free,
conjugated, and bound phenolic fractions in peel and pulp samples were explored by using Pearson
correlation analysis, principal component analysis, and hierarchical cluster analysis. This work provides
a systematic and comprehensive comparison of the three phenolic fractions of diverse wampee varieties
and different parts, and a rationale for applying phenolics from wampee fruits.

Keywords: wampee varieties; free phenolic; conjugated phenolic; bound phenolic; antioxidant
capacities; inhibitory activity against α-glucosidase; multivariate analysis

1. Introduction

Clausena lansium (Lour.) Skeels (wampee) belongs to the genus Clausena in the family
Rutaceae, originating from Southern China [1], and is mainly cultivated in tropical and
subtropical regions of the world, such as Southern China, India, Vietnam, and Thailand [2].
Wampee fruit resembles grapes, with a brown or yellow peel that is usually eaten along
with the pulp, and tastes sour and sweet, similar to the flavor of kumquat. The leaf is a
spicy substitute for curry leaves in cooking in Sri Lanka and Nigeria [3,4]. Wampee has
recently received much attention not only because its fruits and leaves have a special flavor,
but also because its root, stem, leaf, fruit, and seed can be used to treat and prevent common
cold, cough, asthma, viral hepatitis, gastrointestinal disease, ulcers, bronchitis, and malaria
in traditional Chinese and Vietnamese medicine [5,6]. Previous studies about wampee
mainly focused on carbazole alkaloids isolated from the roots and stems of wampee and
neuroprotective effects of these compounds [3,5,6]; the polyphenol composition, antidia-
betic, and lipid-lowering effects of polyphenol extracts of the leaves [7]; the polyphenolic
profile and antioxidant activity during the leaf development stages, chemical profiles of
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the leaves, barks, flower, peels, pulps, and seeds of wampee with liquid chromatography
tandem mass spectrometry (LC-MS) untargeted metabolomics [8]; the antioxidant and
anticancer activities of wampee peel extracts by using different solvents (ethanol, hexane,
ethyl acetate, butanol, and water) [1]; and the isolation and purification of compounds
from wampee fruit and antioxidant or amylase inhibitory activity of these compounds [9].
Although the polyphenolic composition in the wampee leaves has been well characterized,
information about polyphenolic constituents of free phenolic (FP), conjugated phenolic
(CP), and bound phenolic (BP) fractions in the peel and pulp of different wampee varieties
is still lacking.

Oxidative stress is an imbalance between the production of reactive oxygen species
(ROS) and their elimination in the cells and tissues [10], and it can cause chronic inflamma-
tion, which can further mediate several chronic diseases such as insulin resistance, type 2
diabetes mellitus (T2DM), and cardiovascular diseases (CVD) [11]. Polyphenols are natural
compounds that are rich in dietary sources such as fruits, vegetables, red wine, tea, coffee,
cholates, cereals, and dry legumes [12]. Many researchers have demonstrated that polyphe-
nols exert antioxidant and anti-inflammatory effects both in vitro and in vivo [13,14].

The aim of this study was to systematically investigate polyphenol compositions, an-
tioxidant activities in four different in vitro models, and α-glucosidase inhibitory activities
of FP, CP, and BP fractions in the peel and pulp of four wampee varieties. The polyphenol
constituents of wampee samples were accurately identified and quantified by UHPLC-Q
Exactive HF-X and HPLC for the first time. More importantly, the contributions of the
individual phenolic compounds to the observed biological activities were explored by
Pearson correlation analysis and principal component analysis (PCA). In addition, PCA
and hierarchical cluster analysis (HCA) were conducted to classify FP, CP, and BP fractions
of different parts (peel and pulp) of four different wampee varieties.

2. Materials and Methods
2.1. Materials and Reagents

Four wampee fruits samples, W1–W4, were collected in July 2020 from South China,
including Guangdong, Guangxi, and Hainan provinces, and the varieties were identified by
professionals. Detailed information about W1–W4 is shown in Table 1. All the standards,
including o-coumaric acid, gallic acid, gentisic acid, chlorogentic acid, DL-catechin, iso-
quercitrin, caffeic acid, myricetin, quercein, rutin, kaempferol 7-O-glucoside, quercitrin,
and kaempferol, were HPLC-grade (>97%) and purchased from Shanghai Macklin Bio-
chemical Co., Ltd. (Shanghai, China). 4-nitrophenyl α-D-glucopyranoside (pNPG), 2,2′-
azinobis (3-ethylbenzothiazoline-6-sulfonic acid ammonium salt) (ABTS), 1,1-diphenyl-2-
picrylhydrazyl radical (DPPH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
(Trolox), 2,4,6-tris(2-pyridyl)-s-triazine (TPTZ), and all mobile phase reagents used for
liquid chromatography, including ethanol, acetonitrile, formic acid, and 2-propanol (HPLC-
grade), were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shang-
hai, China). Folin–Ciocalteu phenol reagent was purchased from Sigma-Aldrich Chemical
Co., Ltd. (St. Louis, MO, USA). Other reagents applied in the study were of analytical
grade and purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
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Table 1. Species information of the four wampee samples from South China (n = 6).

Abbre. Collect
Location Type Color Length (mm) Width (mm) Single

Weight (g) Photo

W1 Yunfu,
Guangdong

Seedless
wampee Bright yellow 31.12 ± 2.78 ac 25.24 ± 2.26 a 10.62 ± 2.72 a
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2.2. Extraction of FP, CP, and BP Fractions

The peel and pulp of W1–W4 were freeze-dried in an LGJ-10 vacuum freeze dryer
(Songyuan, Beijing, China). First, dried peel and pulp were ground with a Chinese medicine
grinder. Next, they were sieved through a 180 µm mesh, and then the fine peel and pulp
powder of W1–W4 were stored at −20 ◦C until analyses were conducted. Exactions
of FP, CP, and BP fractions were performed according to reported methods with some
minor modifications [15,16], and the extracting procedure is shown in Figure 1. In brief,
freeze-dried powder (2 g) was extracted twice with 25 mL ethanol–water (80:20, v/v)
under ultrasound (320 W) for 30 min. The residue was used for extracting BP, while the
supernatant was concentrated, re-dissolved with water (40 mL), degreased with n-hexane
(20 mL/time, 3 times), and the water phase was retained to prepare FP and CP. Firstly,
the water phase was extracted 3 times with 70 mL/time ethyl acetate (EA). Secondly, EA
was removed from EA phase and 50% ethanol (5 mL) was added to obtain FP. Thirdly, the
residue and water phase combined from the above two steps were hydrolyzed with 2 M
NaOH (40 mL) for 4 h under a nitrogen atmosphere, acidified to pH 2.0 with 6 M HCl, and
then degreased 3 times with n-hexane, extracted with EA (70 mL/time, 3 times). Finally,
EA was removed and the extractions of CP and BP were prepared by adding 5 mL of 50%
ethanol. All samples of peel and pulp from W1–W4 were extracted in three replicates.

2.3. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)

TPC and TFC of FP, CP, and BP fractions in the peel and pulp of W1–W4 were deter-
mined using Folin–Ciocalteu (FC) and aluminum chloride colorimetric methods described
by Dou et al. [17]. Gallic acid and rutin were applied as the standards for the determination
of TPC and TFC, respectively. TPC and TFC were expressed as mg gallic acid and mg
rutin equivalents per gram in dry weight, that is, mg GAE/g DW and mg RE/g DW,
respectively. Three biological replicates of all samples obtained as described in Section 2.2
were measured.
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2.4. Analysis of Polyphenol Composition
2.4.1. Identification of Phenolic Compounds

Phenolic compounds in the FP, CP, and BP fractions from the peel and pulp of
W1–W4 were separated by the Vanqusih Horizon UHPLC system (Thermo Scientific,
Waltham, MA, USA) equipped with an UHPLC column (Waters ACQUITY UHPLC HSS T3,
100 mm × 2.1 mm i.d., 1.8 µm, Lindon, UT, USA) with eluting solvent A (95% Milli-Q grade
water and 5% acetonitrile including 0.1% formic aid) and solvent B (47.5% acetonitrile,
47.5% 2-propanol, and 5% Milli-Q grade water including 0.1% formic aid). The gradient
elution procedure was as follows: 0–3.5 min 100–75.5% A; 3.5–5 min 75.5–35% A; 5–5.5 min
35–0% A; 5.5–7.4 min 0% A; 7.4–7.6 min 0–48.5% A; 7.6–7.8 min 48.5–100% A; 7.8–10 min
100% A. Flow rate was 0.4 mL/min, column temperature was set at 40 ◦C, and injection
volume was 2 µL. Mass spectrometry (MS) data were obtained in the positive and negative
modes from m/z 70 to 1050 with Q-Exactive HF-X (Thermo Scientific, Waltham, MA, USA)
coupled with an electrospray ionization (ESI) source. MS parameters were as follows: a
sheath gas flow rate of 50 arb; an aux gas flow rate of 13 arb; a heater temperature of 425 ◦C;
a capillary temperature of 325 ◦C; a spray voltage of +3500 V or −3500 V; an s-lens RF level
of 50; a normalized collision energy of 20 eV, 40 eV, and 60 eV; a full MS resolution of 60,000;
and an MS2 resolution of 7500. ProgenesisQI (WatersCorporation, Lindon, UT, USA) was
used to obtain retention times, m/z, and peak intensities of mass spectra. In addition, phe-
nolic compounds in the FP, CP, and BP fractions were identified by matching MS and MS2

information with some public databases and literature works. Three biological replicates of
all samples obtained as described in Section 2.2 were analyzed.

2.4.2. Quantification of Phenolic Compounds

An Agilent 1200 HPLC system equipped with a column (Agilent Zorbax Eclipse Plus
C18, 250 mm × 4.6 mm i.d., 5 µm, Santa Clara, CA, USA) and a diode array detector
(Agilent, Santa Clara, CA, USA) was used to quantify the phenolic compounds in the FP,
CP, and BP fractions from the peel and pulp of W1–W4. The elution process was performed
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according to a reported method with minor modifications with eluting solvent A (Milli-Q
grade water with 0.1% formic aid) and solvent B (acetonitrile with 0.1% formic aid) [18]. The
gradient elution procedure was as follows: 0–6 min 85% A; 6–10 min 85–80% A; 10–20 min
80–75% A; 20–30 min 75–65% A; 30–40 min 65–50% A; 40–55 min 50–20% A; 55–60 min
20–85% A. Other HPLC parameters were as follows: column temperature of 30 ◦C, injection
volume of 10 µL, flow rate of 0.8 mL/min, and detection wavelength of 280 nm. Three
biological replicates of all samples obtained as described in Section 2.2 were analyzed.

2.5. Evaluation of Antioxidant Activities in Four In Vitro Models

ABTS+, DPPH, and OH radical scavenging activities and ferric-reducing antioxidant
power (FRAP) were used to evaluate the antioxidant activities of the FP, CP, and BP fractions
from the peel and pulp of W1–W4. The antioxidant activity assays in the four models were
conducted according to previous studies [19,20]. Trolox was a positive control in the first
three models, and the results were all expressed as µmol Trolox equivalents per gram in dry
weight (µmol Trolox/g DW). In the FRAP model, FeSO4 was used to establish a standard
curve, and the antioxidant activity was expressed as µM Fe(II)SE/g DW. Three biological
replicates of all samples obtained as described in Section 2.2 were measured.

2.6. Determination of α-Glucosidase Inhibitory Activity

The α-glucosidase inhibitory activities of FP, CP, and BP fractions from the peel and
pulp of W1–W4 were determined by the method described by Cai et al. [21]. Firstly, 1 U/mL
α-glucosidase solution was prepared with 0.1 M phosphate buffer solution (PBS, pH 6.8).
Secondly, 100 µL of the enzyme solution was mixed with 50 µL of FP, CP, and BP extracts
and incubated at 37 ◦C for 10 min. Thirdly, 100 µL of 5 mM pNPG solution was added and
incubated at 37 ◦C for 20 min. Finally, the absorbance of the reaction mixture was detected
at 405 nm in 15 min.

In the model, acarbose and PBS (pH 6.8) were the positive and negative controls,
respectively. Inhibitory activity against α-glucosidase was expressed as IC50 (µg/mL), refer-
ring to the amount of the FP, CP, and BP fractions required to inhibit 50% of α-glucosidase
activity. Three biological replicates of all samples obtained as described in Section 2.2 were
analyzed.

2.7. Statistical Analysis

All the detections were conducted in triplicate, and the data were expressed as mean±
standard deviation (SD). One-way analysis of variance (ANOVA) and Pearson correlation
analysis were performed using SPSS statistics 23 (IBM, Chicago, IL, USA), and graphs were
generated using GraphPad Prism 8 (GraphPad Software, San Diego, CA, USA) and R 3.6.3
(ggplot2 package). SIMCA 14.1 (MKSUmetrics, SE) and R 3.6.3 (ggplot2 and ggdendro
packages) were used to perform principal component analysis (PCA) and hierarchical
cluster analysis (HCA) and visualize related graphs.

3. Results and Discussion
3.1. Total Phenolic Contents (TPC) and Total Flavonoid Contents (TFC)

There were significant differences among the contents of free phenolic (FP), con-
jugated phenolic (CP), bound phenolic (BP), free flavonoid (FF), conjugated flavonoid
(CF), and bound flavonoid (BF) in the peel and pulp of different wampee samples, as
shown in Figure 2. TPC and TFC in the four wampee peel samples were in the ranges of
16.99–27.64 mg GAE/g DW and 8.90–15.75 mg RE/g DW, respectively; TPC and TFC in the
four pulp samples were 1.90–2.97 mg GAE/g DW and 1.15–1.55 mg RE/g DW, respectively.
It was found that the contents of FP and CP in peel or pulp of the four wampee samples
resembled one another, and similar contents of FF and CF were also observed in the same
peel or pulp samples. Moreover, the BP or BF was dominant in the TPC or TFC, accounting
for approximately 50–65% of the total contents. BP/BF contents and TPC/TFC in the peel
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of Jixin wampee or in the pulp of Heipi wampee were significantly higher than in other
genotype samples.
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conjugated, and bound flavonoid contents (C); total flavonoid contents (D) in the peel and pulp of
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Prasad et al. [1] confirmed that the phenolic contents of hexane fraction, ethyl acetate
fraction, butanol fraction, and water fraction of wampee peel were 7.9 µg GAE/g DW,
330 µg GAE/g DW, 30.3 µg GAE/g DW, and 54 µg GAE/g DW, respectively. The total FP
content from the above four fractions was 4.22 mg GAE/g DW, lower than those of the
samples in the current study (4.52–8.20 mg GAE/g FW). Chang et al. [22] reported that
the average FP and FF of peel and pulp mixture from five sour wampees were 5.22 mg
GAE/g FW and 4.81 mg CE/g FW, and they were 6 times and 4 times higher than those
of five sweet wampee varieties, respectively. In this research, Jixin (W3) is a sour wampee
and Seedless (W1) is a sweet wampee, and we found 1.2- to 2.2-fold differences in the
contents of FP, CP, BP, FF, CF, and BF of the peel or pulp from the four wampee samples.
This discrepancy may be due to the diverse genotypes and growth environment.

Previous studies have mainly focused on the soluble FP of plants; however, CP and
BP have been less studied. CP is soluble and can be bound to soluble oligo-saccharides
or peptides by hydrophobic, covalent ester, and ether bonds, while BP is insoluble and
can be covalently bound to cellulose, hemicellulose, and lignin [16,23–25]. Many studies
demonstrate that significant amounts of CP and BP are released by colonic fermentation,
and the released phenolics may play a significant role in gut health [23,26,27]. In this work,
the contents of CP and BP from peel/pulp of the wampee samples accounted for 75–80%
of the TPC; thus, the total phenolic content and biological activities have been seriously
underestimated. The two phenolic fractions may be the predominant contributors to the
delivery of antioxidants to the colon.
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3.2. Identification of Phenolic Compounds

Phenolic compositions of wampee peel and pulp were analyzed by UHPLC cou-
pled with Q-Exactive HF-X, and the total ionic chromatograms are shown in Figure S1.
By comparing parent ions, MS2 fragment ions, and retention times with public databases
and standards, a total of 19 polyphenols were identified, as shown in Table 2. Some of
them belonged to flavonoids, including epigallocatechin, (+/−)-taxifolin, DL-catechin,
isoquercitrin, (+)-epicatechin, myricetin, quercetin, rutin, fisetin, populnin (i.e., kaempferol
7-O-glucoside), quercitrin, kaempferol, and (+/−)-naringenin. The others were phenolic
acids, including o-coumaric acid, gallic acid, gentisic acid, chlorogenic acid, m-salicylic
acid, and caffeic acid.

Table 2. Identification of the main phenolic compounds in peel and pulp of the four wampee samples
from South China by UHPLC-Q Exactive HF-X.

Peak No. Retention
Time (Min) Compound Name Formula Mw Molecular Ion

(m/z) MS/MS (m/z) Error Reference

1 1.38 o-Coumaric acid C9H8O3 164 165.0549 [M+H]+ 165.0549, 123.0444, 1.89 Standard,
MS/MS

2 1.63 Gallic acid C7H6O5 170 169.0136 [M-H]− 169.0136, 125.0234 −3.73 Standard,
MS/MS

3 1.95 Gentisic acid C7H6O4 154 153.0185 [M-H]− 153.0185, 109.0283 −5.14 Standard,
MS/MS

4 2.00 Epigallocatechin C15H14O7 306 305.0669 [M-H]− 305.0669, 137.0229,
125.0234 0.91 MS/MS

5 2.18 Chlorogenic acid C16H18O9 354 353.0883 [M-H]− 353.0883, 191.0543 1.42 Standard,
MS/MS

6 2.37 (+/−)-Taxifolin C15H12O7 304 303.0514 [M-H]− 303.0514, 285.0435,
125.0233 1.29 MS/MS

7 2.47 m-Salicylic acid C7H6O3 138 139.0392 [M+H]+ 139.0392, 121.0284,
95.0493 1.73 MS/MS

8 2.56 DL-Catechin C15H14O6 290 289.0721 [M-H]− 289.0721, 245.0809,
205.0492, 109.0286 1.32 Standard,

MS/MS

9 2.96 Isoquercitrin C21H20O12 464 465.1037 [M+H]+ 465.1037, 303.0498,
285.0414 1.97 Standard,

MS/MS

10 3.03 Caffeic acid C9H8O4 180 179.0344 [M-H]- 179.0344, 135.0441 −2.91 Standard,
MS/MS

11 3.29 (+)-Epicatechin C15H14O6 290 335.0777
[M+FA-H]-

335.0777, 179.0342,
135.0441 1.55 MS/MS

12 3.64 Myricetin C15H10O8 318 319.0453 [M+H]+ 319.0453, 245.0468,
217.0505, 153.0187 1.88 Standard,

MS/MS

13 3.98 Quercetin C15H10O7 302 303.0504 [M+H]+ 303.0504, 229.0503,
153.0817, 137.0232 1.76 Standard,

MS/MS

14 3.97 Rutin C27H30O16 610 611.1617 [M+H]+ 611.1617, 303.0501 1.81 Standard,
MS/MS

15 4.41 Fisetin C15H10O6 286 287.0555 [M+H]+ 287.0555, 213.0554,
137.0242, 121.0289 1.59 MS/MS

16 4.52 Populnin C21H20O11 448 449.1086 [M+H]+ 449.1086, 431.0988,
287.0529 1.77 Standard,

MS/MS

17 4.53 Quercitrin C21H20O11 448 447.0938 [M-H]+ 447.0938, 300.0272,
271.0249, 255.0298 1.60 Standard,

MS/MS

18 5.27 Kaempferol C15H10O6 286 287.0555 [M+H]+ 287.0555, 153.0185,
121.0281 1.56 Standard,

MS/MS

19 5.64 (+/−)-Naringenin C15H12O5 272 271.0615 [M-H]− 271.0615, 151.0030,
119.0492 1.06 MS/MS

Compounds 1 and 5 were easily identified as o-coumaric acid and chlorogenic acid
with molecular ions at m/z 165.0549 [M+H]+ and 353.0883 [M-H]−, respectively, as well
as MS2 fragment ions at m/z 123.0444 and 191.0543, based on the MS information from
public database (MassBank of North America). Compounds 2, 3, and 10 were identified
as gallic acid, gentisic acid, and caffeic acid with parent ions at m/z 169.0136 [M-H]−, m/z
153.0185 [M-H]−, and m/z 179.0344 [M-H]−, respectively. Moreover, all the three phenolic
acids lost CO2, and created fragment ions at m/z 125.0234 [(M-H)-CO2]−, m/z 109.0283
[(M-H)-CO2]−, and m/z 135.0441 [(M-H)-CO2]−, respectively. These phenolic acids had
similar fragment patterns to the ones reported by Zhu et al. [18], Arruda et al. [28], and
Wang et al. [29].

Compounds 4 and 6 exhibited precursor ions at m/z 305.0669 [M-H]−, 303.0514 [M-H]−,
and fragment ions at m/z 125.0234, 137.0229 and 125.0233, 258.0435. Therefore, they were
easily identified as epigallocatechin and taxifolin by comparing the fragment patterns with
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the data from MassBank Europe and MassBank of North America, respectively. Compound
7 was characterized as m-salicylic acid by the molecular ion at m/z 139.0392 [M+H]+, and
MS/MS fragment ions at m/z 121.0284 [(M+H)-H2O]+ and m/z 95.0493 [(M+H)-CO2]+,
due to the loss of H2O and CO2. Compound 8 was identified as DL-catechin according
to the similar parent ion at m/z 289.0721 [M-H]− and fragment ions at 245.0468, 205.0492,
and 109.0286 described by Li et al. [30]. Based on the molecular ion at m/z 335.0777
[M+FA-H]−, which was equal to MW 290, compound 11 was tentatively identified as
(+)-epicatechin. Compound 12 exhibited a parent ion at m/z 319.0453 [M+H]+ as well as
fragment ions at m/z 245.0468 [(M+H)-C3H6O2]+, 217.0505 [(M+H)-C3H6O2-CO]+, and
153.0187 [(M+H)-C7H2O5]+, due to the loss of 74 amu, 102 amu, and 166 amu. According
to the similar fragment pattern, this compound was distinctly identified as myricetin [31].
Similarly, compound 13, which showed a molecular ion at m/z 303.0504 [M+H]+, with
MS2 fragment ions at 229.0503 [(M+H)-C3H6O2]+, 153.0817 [(M+H)-C7H2O4]+, 137.0232
[(M+H)-C7H2O5]+, was easily identified as quercetin.

Compounds 15 and 18 were two isomers and tentatively identified as fisetin and
kaempferol, according to the same precursor ion at m/z 287.0555 [M+H]+ with MS/MS
fragment ions at m/z 213.0554 [(M+H)-C3H6O2]+, 137.0242 [(M+H)-C7H2O4]+, 121.0289
[(M+H)-C7H2O5]+, and MS/MS fragment ions at m/z 153.0185 [(M+H)-C7H2O3]+, 121.0289
[(M+H)-C7H2O5]+, respectively. By comparing the fragment patterns (MS/MS ions at m/z
271.0615 [M-H]−, 151.0030 and 119.0492) with the data from MassBank Europe, compound
19 was distinctly identified as (+/−)-naringenin.

In view of the molecular ion at m/z 465.1037 [M+H]+ and fragment ions at m/z
303.0498 [C15H10O7+H]+ and 285.0414 [(C15H10O7+H)-H2O]+, compound 9 was tentatively
identified as quercetin 3-O-glucoside. Considering a precursor ion at m/z 611.1617 [M+H]+

and the MS/MS fragment ion at m/z 303.0501 [C15H10O7+H]+, compound 14 was easily
identified as rutin. Compounds 16 and 17 were two isomers and identified as kaempferol
7-O-glucoside and quercitrin, because the former was characterized by the parent ion at
m/z 449.1086 [M+H]+ and MS/MS fragment ions at 431.0988 [(M+H)-H2O]+, 287.0529
[C15H10O6+H]+. However, the latter exhibited the molecular ion m/z 447.0938 [M-H]− and
MS/MS fragment ions at m/z 300.0272 [C15H10O7-2H]−, 271.0249, 255.0298, the result being
consistent with the fragment pattern of quercitrin from MassBank of North America.

3.3. Quantitative Analysis of Phenolic Composition

As shown in Table 3, the contents of gallic acid, DL-catechin, caffeic acid, populnin,
quercetin, and kaempferol were much lower than other phenolics in all the peel/pulp from
the four wampee varieties. Moreover, BP in the peel of Jixin wampee had significantly
higher chlorogenic acid (2611.36 µg/g DW), gentisic acid (1423.05 µg/g DW), rutin (1197.04
µg/g DW), and myricetin (2499.72 µg/g DW) than in other samples, which resulted in
higher TPC.

Chlorogenic acid was distributed over FP, CP, and BP of all the samples. In wampee
peel, it was mostly concentrated in BP, less in FP, and least in CP, but it was most in BP
and with similar content in FP and CP from the wampee pulp. It was found that gentisic
acid and rutin almost distributed over FP, CP, and BP in all the peel and pulp samples.
They were mostly concentrated in CP, less in BP, and least in FP. Isoquercitrin mainly existed
in CP, and had similar content in FP and BP from almost all the peel and pulp samples.
Quercitrin was much more abundant than other phenolics in BP from all the peel and pulp
samples. In addition, it was also rich in FP from all peel and pulp samples and in peel
CP, but it was not detected in CP of the pulp samples. o-Coumaric acid was rich in FP
and CP from almost all peel and pulp samples, but it did not exist in all BP. Myricetin was
rich and predominant in FP of wampee peel and pulp and also existed in BP of the peel of
Seedless and Jixin wampee. However, it was not detected in CP and BP of the other peel
and pulp samples.
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Table 3. Phenolic composition in free, conjugated, and bound fractions of peel and pulp of the four wampee samples from South China (n = 3).

Phenolic
Compounds

Status Contents (µg/g DW)

Pe1 Pe2 Pe3 Pe4 Pu1 Pu2 Pu3 Pu4

Gallic acid
(GA)

FP 56.09 ± 1.01 b 87.63 ± 0.83 a 57.81 ± 4.23 b 56.20 ± 1.40 b 25.46 ± 0.05 c 24.05 ± 0.19 cd 22.23 ± 0.05 d 26.20 ± 0.15 c
CP 45.44 ± 1.65 b 44.48 ± 0.02 b 51.09 ± 0.77 a 41.23 ± 0.70 c 16.70 ± 0.32 e 18.02 ± 0.03 e 20.31 ± 0.04 d 25.11 ± 0.43 c
BP 102.93 ± 1.86 b 68.96 ± 1.97 d 215.43 ± 1.80 a 97.68 ± 2.97 c ND ND ND ND
TP 204.47 ± 0.80 b 201.08 ± 1.12 b 324.32 ± 5.27 a 195.10 ± 3.68 c 42.16 ± 0.27 e 42.07 ± 0.22 e 42.53 ± 0.08 e 51.31 ± 0.28 d

Chlorogenic acid
(CC)

FP 316.72 ± 1.14 a 270.71 ± 2.49 b 236.04 ± 11.41 d 255.95 ± 2.83 c 59.15 ± 4.47 e 64.27 ± 4.64 e 58.17 ± 0.83 e 66.28 ± 1.00 e
CP 234.14 ± 10.93 a 110.65 ± 5.98 d 194.52 ± 7.14 b 165.00 ± 8.19 c 56.84 ± 0.61 f 55.30 ± 0.76 f 53.15 ± 0.20 f 86.97 ± 1.68 e
BP 626.39 ± 18.87 c 832.93 ± 36.47 b 2611.36 ± 27.81 a 412.30 ± 9.71 d 107.20 ± 0.81 f 126.31 ± 0.67 ef 112.65 ± 0.17 ef 144.65 ± 5.08 e
TP 1177.25 ± 30.94 b 1214.29 ± 32.98 b 3041.91 ± 46.35 a 833.25 ± 1.31 c 223.19 ± 4.27 e 245.88 ± 3.21 e 223.97 ± 0.46 e 297.90 ± 5.76 d

Gentisic acid (GEA)

FP 251.29 ± 14.39 d 280.42 ± 1.00 c 445.50 ± 5.30 a 357.52 ± 19.08 b 141.54 ± 0.85 g 192.69 ± 10.07 e 119.14 ± 0.35 h 177.92 ± 0.69 f
CP 1287.14 ± 56.18 c 1412.22 ± 5.30 b 1905.12 ± 228.96 a 1798.06 ± 160.06 a 556.71 ± 25.60 d 285.97 ± 2.48 g 394.77 ± 20.01 f 433.76 ± 1.12 e
BP 713.60 ± 21.20 d 1068.70 ± 47.70 b 1423.05 ± 19.96 a 921.54 ± 3.03 c 385.18 ± 0.08 e ND 317.51 ± 0.42 f 252.42 ± 1.06 g
TP 2252.03 ± 20.59 d 2761.34 ± 52.00 c 3773.67 ± 214.31 a 3077.13 ± 176.11 b 1083.42 ± 24.84 e 478.66 ± 12.55 h 831.41 ± 19.94 g 864.10 ± 0.75 f

Caffeic acid
(CA)

FP 1.71 ± 0.01 b 3.77 ± 0.49 a 0.21 ± 0.08 c 3.81 ± 0.11 a ND ND ND ND
CP ND ND 8.93 ± 0.31 a ND ND ND ND ND
BP ND ND 5.43 ± 0.45 a ND ND ND ND ND
TP 1.71 ± 0.01 c 3.77 ± 0.49 b 14.57 ± 0.68 a 3.81 ± 0.11 b ND ND ND ND

Rutin
(RUT)

FP 276.61 ± 8.05 c 813.88 ± 33.73 a 227.27 ± 0.77 d 395.19 ± 11.93 b 30.35 ± 0.78 f 8.37 ± 0.04 h 22.74 ± 0.03 g 36.41 ± 0.06 e
CP 895.04 ± 6.70 b 988.24 ± 4.92 a 1048.47 ± 2.12 c 1173.74 ± 96.77 d 141.62 ± 8.94 h 255.67 ± 2.30 g 279.93 ± 15.23 f 154.02 ± 0.34 e
BP 609.19 ± 4.10 c 659.99 ± 8.22 b 1197.04 ± 39.47 a 536.07 ± 0.43 d 97.78 ± 2.79 f 128.96 ± 1.05 e 147.69 ± 4.05 e 95.85 ± 0.44 f
TP 1780.84 ± 10.65 c 2462.11 ± 46.87 a 2472.77 ± 40.82 a 2015.00 ± 85.27 b 269.75 ± 5.36 e 392.99 ± 1.21 d 450.36 ± 19.26 d 286.28 ± 0.17 e

Isoquercitrin
(IQUE)

FP 128.43 ± 7.33 b 216.31 ± 5.46 a 221.65 ± 0.15 a 222.77 ± 5.93 a 10.90 ± 0.40 e 21.06 ± 0.91 d 22.43 ± 0.10 d 40.41 ± 0.02 c
CP 1172.76 ± 8.93 c 1295.64 ± 6.52 b 1395.58 ± 17.67 a 1363.47 ± 49.30 a 179.10 ± 11.78 e 329.47 ± 3.03 d 361.52 ± 20.15 d 195.58 ± 0.43 e
BP 192.00 ± 1.07 d 264.96 ± 2.82 b 286.55 ± 9.23 a 212.90 ± 0.76 c ND ND 25.20 ± 2.13 f 37.51 ± 0.02 e
TP 1493.18 ± 0.52 c 1776.91 ± 14.80 b 1903.78 ± 8.29 a 1799.13 ± 56.00 b 190.00 ± 11.38 g 350.53 ± 2.13 e 409.16 ± 22.39 d 273.50 ± 0.43 f

Quercitrin
(QUER)

FP 4510.19 ± 286.30 d 20775.72 ± 107.48 a 15001.01 ± 193.94 c 16552.39 ± 371.56 b 518.29 ± 15.12 g 896.19 ± 30.23 e 826.66 ± 6.05 f 887.27 ± 5.59 e
CP 2558.98 ± 30.23 a 578.75 ± 15.12 d 790.38 ± 15.11 b 639.22 ± 15.30 c ND ND ND ND
BP 66900.24 ± 1247.09 c 124417.57 ± 1776.16 a 90709.88 ± 2116.28 b 21936.13 ± 744.58 d 3463.24 ± 121.53 g 3577.77 ± 12.85 g 4419.79 ± 86.46 f 8331.27 ± 48.37 e
TP 73969.41 ± 1503.16 c 145772.05 ± 1868.52 a 106501.28 ± 1937.45 b 39127.74 ± 357.91 d 3981.52 ± 106.42 h 4473.96 ± 17.38 g 5246.45 ± 80.42 f 9218.55 ± 53.97 e

Populnin
(POP)

FP 2.20 ± 0.09 b 5.57 ± 0.91 a 1.81 ± 0.09 b ND ND ND ND ND
CP 34.20 ± 0.25 a 16.06 ± 0.61 c 16.96 ± 0.09 bc 17.86 ± 1.00 b 3.62 ± 0.24 d ND 1.74 ± 0.18 f 2.93 ± 0.09 e
BP ND ND ND ND ND ND ND ND
TP 36.40 ± 0.16 a 21.63 ± 0.30 b 18.77 ± 0.01 c 17.86 ± 1.00 c 3.62 ± 0.24 d ND 1.74 ± 0.18 f 2.93 ± 0.09 e

o-Coumaric acid
(o-CC)

FP 8570.31 ± 276.71 d 21464.95 ± 102.74 a 15214.21 ± 194.52 b 14089.54 ± 267.13 c ND 6493.58 ± 268.50 e 5533.30 ± 6.85 f 5999.06 ± 6.85 ef
CP 8041.54 ± 210.96 c 12621.03 ± 116.44 a 12515.55 ± 63.01 a 10345.67 ± 142.47 b 5875.77 ± 327.40 d ND 5845.63 ± 321.92 d 7716.88 ± 28.77 c
BP ND ND ND ND ND ND ND ND
TP 16611.86 ± 487.68 d 34085.98 ± 13.70 a 27729.76 ± 257.53 b 24435.21 ± 409.59 c 5875.77 ± 327.40 g 6493.58 ± 268.50 g 11378.93 ± 315.07 f 13715.94 ± 35.62 e

Myricetin
(MYR)

FP 12524.73 ± 137.64 c 2323.11 ± 204.17 f 17451.74 ± 16.67 a 16729.17 ± 463.96 b 619.87 ± 24.67 h 4092.03 ± 34.20 e 681.29 ± 2.72 g 6524.66 ± 13.78 d
CP ND ND ND ND ND ND ND ND
BP 2185.55 ± 66.35 b ND 2499.72 ± 24.31 a ND ND ND ND ND
TP 14710.28 ± 71.29 c 2323.11 ± 204.17 f 19951.46 ± 7.63 a 16729.17 ± 463.96 b 619.87 ± 24.67 h 4092.03 ± 34.20 e 681.29 ± 2.72 g 6524.66 ± 13.78 d
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Table 3. Cont.

Phenolic
Compounds

Status Contents (µg/g DW)

Pe1 Pe2 Pe3 Pe4 Pu1 Pu2 Pu3 Pu4

Quercetin
(QUE)

FP 12.93 ± 0.10 a 7.85 ± 0.69 c 10.94 ± 0.22 b 3.89 ± 0.07 d ND ND ND ND
CP 3.31 ± 0.05 c 2.15 ± 0.04 c 18.73 ± 1.95 a 8.89 ± 0.73 b ND ND ND ND
BP 16.36 ± 0.52 b 6.58 ± 0.12 d 35.03 ± 0.88 a 10.86 ± 0.01 c ND ND ND ND
TP 32.60 ± 0.37 b 16.58 ± 0.61 d 64.70 ± 2.61 a 23.64 ± 0.81 c ND ND ND ND

Kaempferol
(KAE)

FP 5.59 ± 0.17 c 34.93 ± 0.71 a 2.04 ± 0.15 d 26.17 ± 0.51 b ND ND ND ND
CP ND 2.85 ± 0.18 ND ND ND ND ND ND
BP ND ND 4.26 ± 0.09 ND ND ND ND ND
TP 5.59 ± 0.17 c 37.78 ± 0.89 a 6.30 ± 0.05 c 26.17 ± 0.51 b ND ND ND ND

Pe1, Pe2, Pe3, and Pe4 are the peel of W1, W2, W3, and W4, respectively; Pu1, Pu2, Pu3, and Pu4 are the pulp of W1, W2, W3, and W4, respectively. FP, CP, BP, and TP are free phenolic,
conjugated phenolic, bound phenolic, and total phenolic, respectively. ND means not detected. Different letters (a–h) indicate there are statistically significant differences among different
samples at the same status (p < 0.05).
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Although many studies have measured the content of FP and phytochemical compo-
nents [22,32,33], information remains lacking about the characterization and contents of
FP, CP, and BP of different wampee varieties and different parts. Chang et al. [22] reported
that rutin in FP of the mixture of peel and pulp from all ten wampee varieties was richer
(>38.41 µg/g FW) than the other seven phytochemical components, including syringin,
benzoic acid, 2-methoxycinnamic acid, kaempferol, hesperetin, nobiletin, and tangeretin,
and kaempferol with low content was only detected in FP from three sour wampee varieties
and less than 2.29 µg/g FW. The contents of rutin and kaempferol in FP were similar to
those in the present work. In recent studies, fifteen flavonoids (taxifolin-3-O-rhamnoside
and other flavone glycosides) and nine phenolic acids (o-coumaric acid and other chemicals)
were identified as different metabolites in the juice extracted from the pulp of sweet, sweet–
sour, and sour wampee samples by UPLC-MS/MS-based widely targeted metabolome
analysis [32,33]. Most of the 24 components were different from the phenolic composition
in this study, which may be due to differences in extraction methods, detection means, and
genotypes.

3.4. Antioxidant Activities

In this work, three radical scavenging models, ABTS·+, DPPH, and ·OH, as well as
another total antioxidant capacity assay (FRAP), were used to measure antioxidant activities
of FP, CP, and BP from the peel and pulp of the four wampee varieties, since at least two
models should be employed for evaluating in vitro antioxidant capacities [34].

As shown in Figure 3A–E, antioxidant activities of FP, CP, and BP from the different
wampee varieties and positions varied significantly. Regarding ABTS+ model, the antioxi-
dant levels of FP, CP, and BP in peel of different wampee varieties were 56.32–101.93 µmol
TE/g DW, 53.84–80.94 µmol TE/g DW, and 117.32–210.00 µmol TE/g DW, respectively;
those of the pulp samples were in the ranges of 4.25–4.73 µmol TE/g DW, 2.85–4.96 µmol
TE/g DW, and 11.26–18.56 µmol TE/g DW, respectively. For the DPPH assay, FP, CP,
and BP from peel samples yielded antioxidant values of 34.49–47.81 µmol TE/g DW,
33.38–43.68 µmol TE/g DW, and 76.79–121.84 µmol TE/g DW, respectively; those from
pulp samples showed the values of 2.85–3.02 µmol TE/g DW, 2.14–3.62 µmol TE/g DW,
and 6.97–12.49 µmol TE/g DW, respectively. With regard to the results of ·OH analysis,
the antioxidant values of FP, CP, and BP from peel of the four wampee varieties were
32.49–57.03 µmol TE/g DW, 35.05–52.54 µmol TE/g DW, and 76.03–120.94 µmol TE/g DW,
respectively. However, those from pulp samples differed were 5.47–12.57 µmol TE/g DW,
5.48–8.76 µmol TE/g DW, and 20.32–25.18 µmol TE/g DW, respectively. In addition, FRAP
values of FP, CP, and BP from the peel samples were in the ranges of 64.84–125.23 µmol
TE/g DW, 61–108.77 µmol TE/g DW, and 134.60–272.56 µmol TE/g DW, respectively, while
those from the pulp samples were in the ranges of 7.18–9.55 µmol TE/g DW, 4.79–9.82 µmol
TE/g DW, and 12.78–25.60 µmol TE/g DW, respectively. More importantly, BP of Jixin
wampee peel and BP of Heipi wampee pulp exhibited much higher antioxidant capacities
in all the four models than other peel or pulp samples. Moreover, antioxidant activities
of BP fractions from all peel or pulp samples were much higher than those of CP and FP
fractions, and the latter two fractions from each of the samples showed roughly similar
antioxidant values. The results indicated that the BP fractions of peel and pulp of the four
wampee varieties were the main contributors to the antioxidant capacities.
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3.5. α-Glucosidase Inhibitory Activity

Diabetes is one of the major causes of disability [35], and type 2 diabetes (T2D) accounts
for 90% of all diabetes [36]. The global diabetes prevalence in 2019 was estimated to be
9.3% (463 million people), and this value is expected to rise to 10.2% (578 million) by 2030
and 10.9% (700 million) by 2045 [37]. Therefore, it is obvious that global health spending on
diabetes will greatly increase. Until June 2019, metformin and insulin were approved as the
only drugs for adult T2D by the U.S. Food and Drug Administration (FDA) [38]. However,
metformin can induce gastrointestinal and cutaneous side effects and lactic acidosis [39],
and insulin therapy may result in hypoglycemia and weight gain [40,41]. It is therefore
urgent to find alternative products from natural compounds without side effects to manage
T2D. Many studies have reported that polyphenol intake is related to decreasing the risk of
insulin resistance and T2D [13].
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It is shown in Figure 3E that FP, CP, and BP from peel and pulp of the four wampee
samples exhibited outstanding inhibitory activity against α-glucosidase. Due to the lower
IC50 value with higher α-glucosidase inhibition, FP of the pulp from Jixin wampee was the
lowest α-glucosidase inhibitor (IC50 = 27.89 ± 0.83 µg GAE/mL), and BP of the peel from
Heipi wampee was the highest α-glucosidase inhibitor (IC50 = 1.89 ± 0.04 µg GAE/mL) of
all the samples. It is worth noting that all the pulp samples from the same phenolic fraction
(FP, CP, or BP) displayed roughly similar IC50 values to those from the peel samples, but
wide variations existed in their phenolic/flavonoid contents and antioxidant activities, as
shown in Figures 2 and 3A–D. The abundant flavonoid composition in all the peel and
pulp samples may contribute to their strong α-glucosidase inhibition. Many studies have
confirmed that flavonoid compounds, such as quercetin (IC50 = 15.71 µg/mL), myricetin
(IC50 = 36.17 µg/mL), rutin (IC50 = 68.16 µg/mL), and quercitrin (IC50 = 113.27 µg/mL),
have excellent inhibitory activity against α-glucosidase [19,42].

3.6. Correlation Analysis and Multivariate Analysis

In this work, Pearson correlation analysis was used to comprehensively explore the
relationship between individual phenolic and TPC/TFC/bio-activities (ABTS+, DPPH,
·OH, and FRAP values and IC50 value of α-glucosidase inhibition) in FP, CP, and BP of peel
and pulp from the four wampee varieties.

Correlation coefficients of TPC vs. TFC/ABTS+/DPPH/·OH/FRAP/α-glucosidase
inhibition (GIA) were 0.983 (p < 0.01), 0.998 (p < 0.01), 0.995 (p < 0.01), 0.970 (p < 0.01), 0.997
(p < 0.01), and −0.291 (p > 0.05), respectively. TFC had similar correlation coefficients with
ABTS·+ (r = 0.986, p < 0.01), DPPH (r = 0.977, p < 0.01), ·OH (r = 0.957, p < 0.01), FRAP
(r = 0.984, p < 0.01), and GIA (r =−0.317, p > 0.05). It is obvious that the antioxidant activities
significantly correlated with TPC and TFC, while GIA did not significantly correlate with
them. Moreover, the four antioxidant activities showed significantly positive correlations
with the contents of gallic acid, chlorogenic acid, DL-catechin, gentisic acid, caffeic acid,
rutin, isoquercitrin, quercitrin, quercetin, and kaempferol and no significant correlation
with the contents of populnin, o-coumaric acid, and myricetin. Nevertheless, except for
gentisic acid (r = −0.489, p < 0.05), quercitrin (r = −0.691, p < 0.05), o-coumaric acid
(r = 0.441, p < 0.05), and myricetin (r = 0.563, p < 0.05), other phenolic compounds in the
wampee samples were not significantly correlated with GIA (Figure 4A).

Principal component analysis (PCA) and hierarchical cluster analysis (HCA) are
widely used for classifying samples into different groups with different algorithms. TPC,
TFC, individual phenolic, and bio-activities were used as variables in PCA and HCA, and
Euclidean distance was applied in HCA. PC1 and PC2 explained 69% of the total variance
in the data; hence, the two principal components can be used for dimensionality reduction.
The PCA score plot shows sample–sample similarities; samples can be clustered into a
group with high similarity if they are close together, while samples in different groups have
high discrepancy. As shown in Figure 4B, peel FP samples, peel CP samples and pulp FP,
CP, and BP samples of the four wampee varieties were severally close and separated into
three groups. BP samples from the other three varieties’ peels had similar scores and were
close together, except for BP of Jixin wampee peel. Therefore, all the samples were classified
into five groups. It is interesting that the same result was found in HCA (Figure 4D).

The PCA loading plot displays the relationship among variables. The smaller an acute
angle between two variables is, the higher positive correlation they show. However, the
larger an obtuse angle between two variables is, the higher negative correlation they possess.
A right angle between two variable vectors means they do not correlate. It is shown in
Figure 4C that all the acute angles between TPC/TFC and ABTS+/DPPH/OH/FRAP were
very small, and each of angles between the contents of populnin/o-coumaric acid/myricetin
and ABTS+/DPPH/OH/FRAP was close to 90◦. In addition, the obtuse angles between GIA
and gentisic acid/quercitrin were the largest two and the acute angles between GIA and o-
coumaric acid/myricetin were almost the two smallest. Therefore, the correlations between
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TPC/TFC/the contents of individual phenolic compounds and ABTS+/DPPH/OH/FRAP/
GIA analyzed by PCA were roughly similar to those obtained with Pearson correlation analysis.
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Figure 4. Correlation heatmap (A), PCA score plot (B), PC loading plot (C), and dendrogram (D) of the
data matrix of the contents of individual phenolic, TPC, TFC, and bio-activities from free, conjugated,
and bound phenolic fractions in the peel and pulp of different wampee samples from South China.
TPC, total phenolic content; TFC, total flavonoid content; GA, gallic acid; CC, chlorogenic acid;
DL-CAE, DL-catechin; GEA, gentisic acid; CA, caffeic acid; RUT, rutin; IQUE, isoquercitrin; QUER,
quercitrin; POP, populnin; o-CC, o-coumaric acid; MYR, myricetin; QUE; quercetin; KAE, kaempferol;
GIA, α-glucosidase inhibition; FPe/FPu, free phenolic fraction of wampee peel/pulp; CPe/CPu,
conjugated phenolic fraction of wampee peel/pulp; BPe/BPu, bound phenolic fraction of wampee
peel/pulp.

4. Conclusions

In this work, the contents and phenolic compositions of FP, CP, and BP fractions of peel
and pulp from four diverse wampee varieties and their in vitro bio-activities, including
antioxidant and α-glucosidase inhibitory activities, were reported. The results show that
the contents of FP, CP, BP, TPC, and TFC and the antioxidant capacities of all peel samples
were much higher than those of all pulp samples. Meanwhile, for peel/pulp from all the
wampee varieties, BP/BF was the greatest fraction, accounting for over 50% of TPC/TFC.
TPC and TFC in the wampee peel were 16.99–27.64 mg GAE/g DW and 8.90–15.75 mg
RE/g DW, respectively, vs. 1.90–2.97 mg GAE/g DW and 1.15–1.55 mg RE/g DW in
the wampee pulp. For BP fractions from the wampee peel, the antioxidant values in
ABTS+, DPPH, OH, and FRAP models were in the ranges of 117.32–210.00 µmol TE/g
DW, 76.79–121.84 µmol TE/g DW, 76.03–120.94 µmol TE/g DW, and 134.60–272.56 µmol
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TE/g DW, respectively. For BP fractions from the wampee pulp, corresponding values
were 11.26–18.56 µmol TE/g DW, 6.79–12.49 µmol TE/g DW, 20.32–25.18 µmol TE/g DW,
and 12.78–25.60 µmol TE/g DW, respectively. Chlorogenic acid, gentisic acid, and rutin
were abundantly distributed over FP, CP, and BP in wampee peel and pulp. Isoquercitrin
was the most abundant in CP of peel/pulp, and myricetin was had richest contents in
FP of peel/pulp. Wampee peel showed stronger antioxidant capacities of ABTS+, DPPH,
·OH, and FRAP than the pulp, and BP of the peel/pulp had much higher antioxidant
activities than FP and CP fractions. However, the same phenolic fractions (FP, CP, or BP)
of the wampee peel displayed roughly similar IC50 values of α-glucosidase inhibition to
those of the pulp samples. Moreover, by using Pearson correlation analysis and PCA, we
found that TPC, TFC, and the contents of most of phenolic compounds in the wampee
samples were significantly positively correlated with the antioxidant activities, whereas
the contents of gentisic acid and quercitrin were significantly negatively correlated with
IC50 values of α-glucosidase inhibition. Except for the BP fraction of Jixin wampee peel,
all the other samples were categorized into four classes by PCA and HCA. Overall, BP in
peel from all wampee varieties, especially from Jixin wampee, showed high antioxidant
activities, and all phenolic fractions (FP, CP, and BP) of the peel/pulp from all wampee
samples had excellent inhibitory activities against α-glucosidase. Findings from the present
study provide a rationale for applying phenolics from wampee fruits.
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