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Background and Objectives. Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by airflow
limitation. Although airway inflammation and oxidative stress are known to be important in the pathogenesis of COPD, the
mechanismunderlying airflow obstruction is not fully understood. Gene expression profiling of lung tissuewas performed to define
the molecular pathways that are dysregulated in COPD. Methods. RNA was isolated from lung tissues obtained from 98 subjects
with COPD and 91 control subjects with normal spirometry. The RNA samples were processed with RNA-seq using the HiSeq
2000 system. Genes expressed differentially between the two groups were identified using Student’s t-test. Results. After filtering
for genes with zero counts and noncoding genes, 16,676 genes were evaluated. A total of 2312 genes were differentially expressed
between the lung tissues of COPD and control subjects (false discovery rate corrected 𝑞 < 0.01). The expression of genes related to
oxidative phosphorylation and protein catabolism was reduced and genes related to chromatin modification were dysregulated in
lung tissues of COPD subjects. Conclusions. Oxidative phosphorylation, protein degradation, and chromatin modification were the
most dysregulated pathways in the lung tissues of COPD subjects. These findings may have clinical and mechanistic implications
in COPD.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is character-
ized by chronic airflow limitation that is not fully reversible
and is highly prevalent worldwide [1]. Although cigarette
smoking is a major risk factor for COPD, the mechanism by
which inhaled smoke contributes to airflow obstruction is not
fully understood. Current theories for this include persistent
airway inflammation that is modified by oxidative stress,
excess proteinases, autoimmunity, and apoptosis of alveolar
cells [2].

Gene expression studies of diseased lungs can generate
high-throughput results to shed light on the molecular

processes underlying COPD pathogenesis. Whole-genome
expression of COPD in humans has been studied using
airway epithelium and resected lung tissue in several groups
[3–9]. These studies mostly used microarrays to profile gene
expression patterns in COPD. Next-generation sequencing
technology was recently applied to transcriptomics. RNA-seq
technology provides read counts of RNA fragments in each
gene [10]. Background and cross-hybridization are not issues
in RNA-seq and the technology can quantify both lowly and
highly abundant transcripts [11]. In addition, this method
can provide information about splice variants, allele-specific
expression, and fusion transcripts [12]. RNA-seq data of
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airways was recently published [13, 14]; however, the number
of subjects in these studies was relatively small.

We performed gene expression profiling using RNA-seq
of lung tissues resected from large numbers of subjects with
COPD or with control subjects to better understand the
molecular mechanisms responsible for the pathogenesis of
COPD.

2. Methods

2.1. Study Populations. Subjects were patients who required
resection for lung cancer and who were registered in the
Asan Biobank from January 2008 to November 2011. The
inclusion criteria were a postbronchodilator FEV

1
/FVC ratio

(ratio of forced expiratory volume in the first second to forced
vital capacity) of less than 0.7 for the COPD group and
normal spirometry for the control group in accordance with
American Thoracic Society/European Respiratory Society
criteria [15]. This study was approved by the institutional
review board of Asan Medical Center (2011-0711) and written
informed consent was obtained from all patients.

2.2. RNA Preparation and Sequencing. Total RNA was iso-
lated from apparently normal fresh frozen lung tissue that
was remote from the lung cancer. RNA integrity was assessed
using an Agilent Bioanalyzer and RNA purity was assessed
using a NanoDrop spectrophotometer.

One 𝜇g of total RNAwas used to generate cDNA libraries
using the TruSeq RNA library kit. The protocol consisted
of poly A-selected RNA extraction, RNA fragmentation,
reverse transcription using random hexamer primers, and
100 bp paired-end sequencing using the Illumina HiSeq 2000
system. All data have been deposited in the NCBI Gene
Expression Omnibus (GEO) public repository and can be
accessed through the accession number GSE57148.

2.3. Quality Control and Data Management. For quality con-
trol, read quality was verified using FastQC and read align-
ment was verified using Picard. Differential gene expression
(DEG) analysis was performed using TopHat and Cufflinks
software [16]. To estimate expression levels, the RNA-seq
reads were mapped to the human genome using TopHat
(version 1.4.1) [17] and quantified using Cufflinks software
2.0.0 [18]. Cufflinks software was run with the UCSC hg19
human genome and transcriptome references. The numbers
of isoform and gene transcripts were calculated and the
relative abundance of transcripts was measured in fragments
per kilobase of exon per million fragments mapped (FPKM).

Expression levels were extracted as a FPKMvalue for each
gene of each sample using Cufflinks software. Genes with
FPKM values of 0 across all samples were excluded. Filtered
data were subject to upper quantile normalization. Statistical
significance was determined using Student’s 𝑡-test. The false
discovery rate (FDR) was controlled by adjusting 𝑃 values
using the Benjamini-Hochberg algorithm. The analysis steps
used are summarized in Figure 1.

To investigate whether DEGs are related to clinical
phenotypes, we performed a linear regression analysis for
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Figure 1: Schematic overview of the transcript analysis of RNA-seq
experiment. Briefly, we used TopHat to align raw fastq files and used
Cufflinks to read annotation and quantification. FastQCwas used to
check read quality.

5 clinical phenotypes with respect to its gene expression.
We considered each clinical phenotype as the responder for
regression and each gene expression as the predictor.

2.4. Quantitative Real-Time PCR (qRT-PCR). Several genes
whose expression level was found to be related to COPD
status by RNA-seq were validated using TaqMan real-time
PCR. The results were normalized to GAPDH Ct values.
Primer sequences for the genes of interest are given in Table 2.

2.5. Pathway Analysis. Functional enrichment analysis was
performed using gene set enrichment analysis (version 2.0.8),
which combines information from previously defined gene
sets obtained from the Molecular Signature Database (ver-
sion 3.1). Biological gene functional annotation analysis was
performed using DAVID (version 6.7) with a list of DEGs.
BioLattice (version 1.1)was used to annotate coexpressed gene
groups to GO biological process terms and visualize their
relations [19].

2.6. Differential Alternative Splicing. To detect differential
alternative splicing between the two groups, subjects from
each group were evaluated using a multivariate Bayesian
algorithm called “multivariate analysis of transcript splicing”
[20]. Differential alternative splicing, including exon skip-
ping, mutually exclusive exons, alternative 5 or 3 splice site
usage, and intron retention, was investigated. Exon usage of
VIM between two groups was visualized using DEXSeq [21].

2.7. Connectivity Map. A connectivity map [22] was used
to identify potential drugs that might reverse the gene
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Table 1: Demographics of COPD subjects and control subjects with
normal lung function.

COPD subjects Control subjects 𝑃 value
Male, 𝑛 (%) 98 100.0 91 100.0
Age, years 67.5 ± 6.4 60.9 ± 9.5 <0.0001
Smoking (py) 48.0 ± 22.0 35.2 ± 17.2 <0.0001
FEV1, % 71.9 ± 13.4 91.0 ± 12.4 <0.0001
FEV1/FVC 57.1 ± 7.8 74.8 ± 4.3 <0.0001
DLCO, % 77.4 ± 13.8 92.8 ± 13.2 <0.0001
COPD: chronic obstructive pulmonary disease; DLCO: diffusing capacity of
the lung for CO2; pack-years; FEV1: forced expiratory volume in 1 second.
Unless otherwise stated, the mean ± standard deviation is shown.

expression pattern associated with the pathogenesis of early
COPD.The connectivity map is a collection of genome-wide
transcriptional expression data from cultured human cells
treated with bioactive small molecules.The basic assumption
of the connectivity map is that transcriptional perturbation
can occur or be treated by certain drugs that intrigue similar
changes.

3. Results

3.1. Demographic Characteristics. The demographic charac-
teristics of 98 subjects with COPD and 91 control subjects are
shown inTable 1. All subjects weremale and themean age and
the mean pack years of cigarette smoking history were higher
in the COPD group than in the control group. As expected,
pulmonary function was significantly lower in the COPD
group than in the control subjects. Most of COPD subjects
were in early stage. In COPD group, 28 subjects took inhaled
corticosteroid, 40 subjects took tiotropium, and 22 subjects
took short-acting beta-agonist. None in control group took
bronchodilator.

3.2. Quality Control and DEGs. The total number of reads
produced from each sample was 38,742,474 ± 7,332,014
reads (mean ± standard deviation). The difference in the
number of reads betweenCOPD samples and control samples
was not statistically significant. After read alignment with
TopHat and read quantification with Cufflinks using UCSC
hg19 transcriptome reference, a total of 189 samples and
23,146 genes were analyzed. A total of 248 genes had zero
FPKM values in all samples. After filtering for genes with
zero counts in whole samples, noncoding genes, and low
variance genes, 16,676 genes were analyzed. Out of these
genes, 2,312 genes were differentially expressed between the
two groups (FDR corrected 𝑞 < 0.01) (Table 3). There
were many overlaps between 𝑡-test and EdgeR (see supple-
mentary Table 1 in the Supplementary Material available
online at http://dx.doi.org/10.1155/2015/206937). Regression
analysis of the DEGs with clinical phenotypes revealed that
genes were more associated with FEV

1
(forced expiratory

volume in the first second) and FEV
1
/FVC ratio than with

age and smoking history (Figure 2).
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Figure 2: Regression analysis of the differentially expressed genes
with clinical phenotypes. Genes were more associated with FEV

1

(forced expiratory volume in 1 second) and FEV
1
/FVC ratio (ratio of

forced expiratory volume in 1 second to forced vital capacity) than
with age and smoking history.
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Figure 3: RNA-seq and quantitative real-time PCR results of seven
genes. Results of fold change by two methods are shown.

3.3. Validation. To validate the RNA-seq results, we per-
formed qRT-PCR of the FGG, MCL1, PDE4A, S100A6, SER-
PINE1, SFTPC, and TMSB4X genes using the same RNA
samples that were used for RNA-seq. We used a subset of 156
samples out of 189 samples for validation. The RNA-seq and
qRT-PCR results were in good agreement (Figure 3).

3.4. Clustering and Gene Functions. A heat map shows the
genes that were differentially expressed between the two
groups (Figure 4). DAVID revealed that the expression of
genes involved in protein catabolism, oxidative phospho-
rylation, and chromatin modification differed most signif-
icantly between the two groups (Table 4). Expression of
genes encoding proteasome components including PSMA2,
PSMB1, PSMC5, and PSMD4 was lower in the COPD group
than in the control group. Gene set enrichment analysis
revealed that the most significantly downregulated pathways
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Table 2: Primers for mRNA expression profiling.

Gene symbol Assay ID Context sequence
TMSB4X Hs03407480 gH GGTGAAGGAAGAAGTGGGGTGGAAG
MCL1 Hs01050896 m1 TAAACAAAGAGGCTGGGATGGGTTT
SFTPC Hs00161628 m1 AGAGCCCGCCGGACTACTCCGCAGC
S100A6 Hs00170953 m1 CCTCCCTACCGCTCCAAGCCCAGCC
FGG Hs00241037 m1 TGGAGTTTATTACCAAGGTGGCACT
SERPINE1 Hs01126607 g1 CAACCCCACAGGAACAGTCCTTTTC
PDE4A Hs01102342 mH ACCGCATCCAGGTCCTCCGGAACAT

Table 3: Top 20 genes differentially expressed between COPD subjects and subjects with normal lung function.

Gene symbol Gene function Fold change
𝑃 value 𝑞 value Expression levels

log
2
(COPD/Normal) (log

2
(FPKM))

RAD54L2 Androgen receptor-interacting protein 0.70 1.23E − 24 2.05E − 20 4.13

UBR4 Ubiquitin protein ligase E3 component
n-recognin 4 0.46 6.24E − 24 1.04E − 19 9.71

KPNA6 Karyopherin alpha 6 0.27 2.25E − 21 3.75E − 17 11.03
VPS28 Vacuolar protein −0.51 1.11E − 20 1.86E − 16 60.90
STRA13 Stimulated by retinoic acid −0.78 2.29E − 20 3.82E − 16 21.96
SPEN Spen family transcriptional repressor 0.47 2.68E − 20 4.47E − 16 9.99

HERC2 HECT and RLD domain containing E3
ubiquitin protein ligase 2 0.42 3.73E − 20 6.22E − 16 6.05

GTF3C3 General transcription factor IIIC 0.58 6.53E − 20 1.09E − 15 9.52
TCF20 Transcription factor 20 (AR1) 0.35 7.22E − 20 1.20E − 15 6.49
MRPL21 Mitochondrial ribosomal protein L21 −0.55 1.91E − 19 3.19E − 15 22.24

COX6A1 Cytochrome c oxidase subunit VIa
polypeptide 1 −0.66 2.17E − 19 3.63E − 15 237.71

ZZEF1 Zinc finger, ZZ-type with EF-hand domain 1 0.30 2.36E − 19 3.94E − 15 7.56
STX8 Syntaxin 8 −0.74 3.00E − 19 5.00E − 15 29.76
UBAP2L Ubiquitin associated protein 2-like 0.27 3.48E − 19 5.80E − 15 29.99

TRRAP Transformation/transcription
domain-associated protein 0.40 3.63E − 19 6.05E − 15 4.96

ENTPD4 Ectonucleoside triphosphate
diphosphohydrolase 4 0.47 3.74E − 19 6.24E − 15 11.88

TRIM56 Tripartite motif containing 56 0.45 4.37E − 19 7.30E − 15 10.09
NHSL2 NHS-like 2 1.21 4.88E − 19 8.14E − 15 1.44
SETD5 SET domain containing 5 0.23 5.17E − 19 8.62E − 15 16.95

PRKAR2A Protein kinase, cAMP-dependent,
regulatory, type II, alpha 0.79 5.39E − 19 8.99E − 15 8.33

FPKM: fragments per kilobase of exon per million fragments mapped.

in the COPD group were oxidative phosphorylation and
biosynthetic process (FDR 𝑞 < 0.25).

We used 𝑘-means clustering to construct 30 groups
of coexpressed genes for BioLattice. After matching with
hypergeometric distributions to annotate those gene sets to
GO terms, concept lattice for coexpressed gene clusters with
GO biological process terms was visualized showing that
genes related to transcription and oxidative phosphorylation
are enriched in the major clusters (Figure 5).

In the COPD group, the heat map shows hierarchi-
cal clustering of two subgroups using Euclidean distance

(Figure 6). Four hundred and four genes that were differ-
entially expressed between these two subgroups in COPD
subjects (𝑞 < 0.05) are enriched in the mitochondrial and
steroid biosynthesis pathway. Group 1 showed tendency for
lower FEV

1
and lower DLCO (carbon monoxide diffusing

capacity). When comparing each group with the control,
DEGs between group 1 and the controls only consisted of 18
genes, and their 𝑃 values were negligible. Meanwhile, DEGs
between group 2 and the controls consisted of 4072 genes and
their 𝑃 values were even higher than those of DEGs between
the COPD group and the controls.
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Table 4: Representative DAVID results of pathway that was differentially expressed between COPD and control groups.

Term Count of genes involved Fold enrichment FDR
GO:0030529∼ribonucleoprotein complex 171 2.79 2.76E − 35
GO:0070013∼intracellular organelle lumen 346 1.63 2.16E − 20
GO:0005739∼mitochondrion 239 1.85 8.08E − 20
GO:0006119∼oxidative phosphorylation 36 3.05 1.88E − 06
GO:0030163∼protein catabolic process 135 1.80 8.98E − 09
GO:0006396∼RNA processing 125 1.90 1.52E − 09
GO:0006351∼transcription, DNA-dependent 67 1.90 4.25E − 04
GO:0015031∼protein transport 138 1.50 1.07E − 03
GO:0016568∼chromatin modification 61 1.85 4.50E − 03
GO:0006511∼ubiquitin-dependent protein catabolic process 55 1.89 7.86E − 03
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Figure 4: Heat map of RNA-seq results of lung tissues from COPD and control subjects. Color column sidebar indicated status of subjects,
where red means COPD subjects and blue means control group.

There was no difference in medication history between
the two groups.

3.5. Isoform and Alternative Splicing. Isoforms that were
differentially expressed between the COPD and control
groups were evaluated by Cufflinks. Pathway analysis results
of the DEIs were similar to those of the DEGs. However,
among the DEIs, 310 were not in the DEG list, which are
enriched in genes encoding proteins that function in cell
junctions and focal adhesions. The multivariate analysis of
transcript splicing program (MATS) revealed that specific
alternative splicing events were significantly more common
in COPD subjects than in control subjects. Five categories of
differentially expressed isoforms were identified by MATS:
skipped exon, alternative 5 splice site, alternative 3 splice

site, mutually exclusive exons, and retained introns. Signif-
icantly different events between the COPD group and the
control group are shown in the supplementary Table 2 (FDR
𝑞 < 0.01). Intron retention of HNRNPH1 and VIM occurred
significantly more in the COPD group than in the control
group. Mutually exclusive exons occurred more frequently
in the COPD group than in the control group in 78 genes.
Figure 7 shows exon usage of VIM between the two groups
visualized using DEXSeq [21].

3.6. Connectivity Map. A connectivity map [22] was used to
identify potential drugs that might reverse the gene expres-
sion pattern associated with the pathogenesis of early COPD.
Gene expression changes arising from treatment with several
drugs were negatively correlated with the expression patterns



6 International Journal of Genomics

Top

Bottom

C18
19

C19
5

C16
9

27

C17
24

C14
15

C2
4

C3
7

C4
26

C8
16

C10
6

C12
3

C13 C11

C9
29

C15
20

C7
13

C5
17

C6
23

P oxidative phosphorylation
P protein targeting
P transport
P intracellular transport
P localization
P establishment of localization
P cellular localization
P establishment of cellular localization

P electron transport

P generation of precursor metabolites and energy

P regulation of transcription DNA-dependent
P regulation of metabolism
P regulation of cellular metabolism
P regulation of biological process
P regulation of physiological process

P regulation of cellular process

P regulation of cellular physiological process

Figure 5: BioLattice analysis of RNA-seq data of lung tissues from COPD and control subjects. Each node indicates significantly enriched
GO terms with 𝑃 values < 0.01. Lines indicate significant sharing of genes within two nodes, which indicates similarity of two enriched GO
terms with respect to differentially expressed genes.

that differ in the COPD group compared to the control group.
Gene expression changes arising from treatment with MG-
262 (𝑃 = 0.00004) and puromycin (𝑃 < 0.00001) were most
significantly negatively correlated.

4. Discussion

In this study, we used RNA-seq to identify genes whose
expression differs between COPD and control subjects. In
total, 2312 genes were identified with FDR 𝑞 < 0.01. We
validated a subset of RNA-seq data with qRT-PCR, and the
results were in good agreement.

Previous studies have investigated the gene expression
profiles of COPD patients using microarray, serial analysis of
gene expression, andRNA-seq.Microarray data indicates that
MICAL2 and NOTCH2 are upregulated in the resected lung
tissue of COPDpatients [5]; the expression of these genes was
higher in the COPD group than in the control group in the
present study. The expression of genes encoding ribosomal
proteins and S100A6 was lower in the COPD group than in
the control group, and RNA-seq previously indicated that
the expression of these genes is reduced in the small airway
epithelium of smokers [14]. However, there is little overlap

between studies in terms of the genes that are differentially
expressed between people with reduced lung function and
those with normal lung function [23]. This may be because
different methods were used or because different phenotypes
were examined. Of interest, 582 differentially expressed genes
were not in the Affymetrix microarray (U133a).

Previous studies of the COPD transcriptome reported a
high degree of overlap in the biological processes affected.
In the current study, the most altered pathway in COPD
patients was mitochondrial oxidative phosphorylation. The
expression of mitochondrial genes was previously shown to
be reduced in the lung tissues of COPD subjects using serial
analysis of gene expression [3]. A recent report showed that
expression of the mitochondrial membrane protein PHB1 is
downregulated in lung tissue of COPD patients, suggesting
that mitochondrial stability is reduced [24]. Another report
revealed thatmitochondrialmass is reduced in airway epithe-
lial cells exposed to particulate matter, and this defect is also
observed in the daughter cells [25]. One possible explanation
may be related to the fact that an increase in the CO

2
level can

reduce oxidative phosphorylation [26].However, considering
that our COPD subjects were in relatively early stages of the
disease, they are not expected to have a clinically meaningful
increase in CO

2
levels.
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Figure 6: Heat map of RNA-seq results of lung tissues from COPD subjects. Hierarchical clustering of two subgroups in COPD subjects is
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Figure 7: Exon usage of vimentin according to COPD status. COPD
subjects showed more exon usage of exon 1 to exon 4.

In the current study, the protein catabolism pathway
was dysregulated in the lung tissues of COPD subjects.
Many genes related to the 20S proteasome including PSMA2,
PSMB1, PSMC5, PSMD4, and PSMD13, as well as ubiquitin

ligase complex genes including STUB1, SELS, and DERL2,
were downregulated in COPD subjects. The ubiquitination-
proteasome pathway is dysregulated in COPD, but the mech-
anism by which this occurs is not fully understood [27]. The
expression of 26S proteasome-associated genes is lower in
lung tissues of moderate COPD subjects than in those of
the smoker control subjects with normal lung function [3].
The expression and activity of the proteasome are reduced in
lung tissues of COPD subjects due to dysregulation of Nrf2
[28]. Impairment of proteasomal activity/expression may be
important in the pathogenesis of COPD. Interestingly, the
proteasome inhibitor MG-262 was on top of a list of drugs
that reverse the gene expression pattern of COPD. In recent
experiments inmice, a proteasome inhibitor was suggested to
be a therapeutic agent for pulmonary arterial hypertension
via inhibition of pulmonary vascular smooth muscle cell
proliferation and correction of endothelial dysfunction [29].
Inhibition of proteasome inhibitors can reverse diaphrag-
matic function in a COPD mouse model [30].

In the current study, chromatin modification genes were
upregulated in the COPD group. An epigenetic mechanism is
reportedly important in the pathophysiology of COPD [31].
Chromatin modification is an important mechanism in epi-
genetics. In the current study, the expression of MLL, which
plays an important role in H3K4methylation [32], and CHD,
which is important for chromatin modification and opening
of chromatin to allow transcription [33], was increased in
COPD subjects. These changes may lead to the upregulation
of transcription. The expression of HDAC10 was decreased
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in the lung tissue of COPD subjects, while the expression of
HDAC2 was previously reported to be decreased in COPD
[34]. Several studies report the mechanism by which the
expression ofHDAC2 is reduced inCOPD, but further studies
are required to explain how the expression of several genes
related to chromatin modification is increased in COPD.

In a recent study investigating genes associated with
the severity of emphysema, the major pathways affected
were inflammation and tissue repair [35]. However, the
inflammation pathway was not majorly affected in COPD
subjects in the current study, probably because the subjects
were at relatively early stages of the disease.

One of the advantages of RNA-seq is that DEIs can be
identified. Pathway analysis results of the DEIs were similar
to those of the DEGs; however, genes encoding proteins that
function in cell junctions and cell migration were found
specifically in the DEIs and not in the DEGs. This suggests
that specific isoforms of these genes may function in the
lung. Alternative splicing of genes is tissue-specific and has
important roles in development, physiological responses, and
the pathogenesis of diseases [36]. Interestingly, the gene
encoding vimentin, which is a structural protein, had more
retained introns in the COPD group than in the control
group, which may alter the sequence of the protein.

There are several limitations of this study. COPD subjects
were older and had more pack years of smoking than the
control group. However, regression analysis results showed
that most of DEGs had stronger correlation with lung
function than age or smoking amount. All subjects were
smoking or ex-smoking men. The results of this study may
not be applicable to nonsmoking or female COPD subjects.
Normal looking tissue adjacent to the lung cancer tissue
was used for analysis. Lung tissue consists of many cell
types including macrophages, epithelium, and endothelium.
Microdissection of lung tissue or single cell sequencingwould
be required to determine whether the differential expression
is altered in all lung cells or only in a specific subset of cells.
Finally, it is difficult to determine whether the dysregulated
pathways identified in this study are a cause or a consequence
of the pathogenesis of COPD. Experiments in which the
increase/decrease of the DEGs is reversed and shown to
slow disease progression are needed to confirm that these
pathways are causally involved in the pathogenesis of COPD.

In conclusion, reduced oxidative phosphorylation, mod-
ulation of protein catabolism, and dysregulation of tran-
scription are important molecular features of early stages of
COPD. Genes and splicing variants were identified that were
differentially expressed between COPD subjects and control
subjects. RNA-seq was useful tool to increase understanding
of the pathophysiology of COPD.
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