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Introduction
There is increasing evidence that Ca2+ overload and excito
toxicity are central players in a wide variety of neurological 
diseases, including stroke and Parkinson’s and Alzheimer’s 
diseases (Orrenius et al., 2003; Dong et al., 2006). Glutamate 
receptors and voltagegated Ca2+ channels (VGCCs) are the main 
sources of Ca2+ influx in neurons and contribute significantly to 
pathological Ca2+ elevations. To prevent Ca2+induced damage, 
neurons have evolved a variety of feedback pathways that limit 
Ca2+ influx during periods of excessive extracellular glutamate 
or intense electrical activity (Stotz and Zamponi, 2001; Budde 
et al., 2002; Davis and Linn, 2003; Green et al., 2007; Jarvis 
and Zamponi, 2007). Among the most important of these feed
back pathways is the internalization of Ca2+ channels, which are 
the main sources of Ca2+ in excitable cells. Glutamate receptors 
are internalized after tetanic stimulation or bath treatment with 
glutamate (Derkach et al., 2007; Lau and Zukin, 2007), but it is 

not known whether this type of stimulation also causes internal
ization of VGCCs.

VGCCs are classified according to their biophysical prop
erties and susceptibility to pharmacological blockers. Ltype 
VGCCs (LTCs) have a large persistent current that makes them 
a large source of intracellular Ca2+ (Tsien et al., 1988; Catterall, 
2000). CaV1.2 is the most abundant LTC in the mammalian 
brain and is expressed in the spines, dendritic shafts, and cell 
bodies of most neurons in the brain. Several functions have been 
described for CaV1.2, including roles in gene expression, den
dritic arborization, survival, and synaptic plasticity (Westenbroek 
et al., 1990; Hell et al., 1993; Catterall, 2000; CalinJageman 
and Lee, 2008). Ca2+ influx through CaV1.2 also contributes to 
neuronal death during ischemia, and LTC blockers have been 
shown to decrease neuronal death in models of stroke (Korenkov  
et al., 2000; Schurr, 2004).

The number of LTCs on the cell surface is altered under 
many physiological and pathological conditions. During aging 
and in Alzheimer’s disease, there is an increase in the number of 
cell surface LTCs that is associated with neuronal dysfunction 
(Disterhoft et al., 1994; Haase et al., 1996; Thibault and Landfield, 

Voltage-gated Ca2+ channels (VGCCs) play a key 
role in neuronal signaling but can also contribute 
to cellular dysfunction and death under pathologi-

cal conditions such as stroke and neurodegenerative dis-
eases. We report that activation of N-methyl-d-aspartic 
acid receptors causes internalization and degradation of 
CaV1.2 channels, resulting in decreased Ca2+ entry and 
reduced toxicity. CaV1.2 internalization and degradation 
requires binding to phosphatidylinositol 3-phosphate  
5-kinase (PIKfyve), a lipid kinase which generates phos-
phatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) and 

regulates endosome and lysosome function. Sustained 
activation of glutamate receptors recruits PIKfyve to CaV1.2 
channels, increases cellular levels of PtdIns(3,5)P2, and 
promotes targeting of CaV1.2 to lysosomes. Knockdown 
of PIKfyve prevents CaV1.2 degradation and increases 
neuronal susceptibility to excitotoxicity. These experiments 
identify a novel mechanism by which neurons are pro-
tected from excitotoxicity and provide a possible explana-
tion for neuronal death in diseases caused by mutations 
that affect PtdIns(3,5)P2 regulation.
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Ca2+ influx through Nmethyldaspartic acid (NMDA) receptors 
and VGCCs and leads to Ca2+induced toxicity (Schurr, 2004). 
Although it is known that activation of glutamate receptors 
causes internalization of AMPA and NMDA receptors (Derkach 
et al., 2007; Lau and Zukin, 2007), little is known about the 
effect of excess glutamate on the cell surface expression of 
VGCCs. To determine whether glutamate receptors regulate 
the number of CaV1.2 channels on the cell surface, we used an 
assay that we previously developed to measure the surface 
levels of CaV1.2 channels in primary neurons (Green et al., 
2007). We introduced CaV1.2 channels containing both an intra
cellular YFP and an extracellular HA epitope into primary 
cortical neurons and used antiHA antibodies to label channels 
on the cell surface. Because the HA antibodies do not cross the 
cell membrane, the ratio of the antiHA to YFP fluorescence 
provides a quantitative measurement of the proportion of chan
nels on the plasma membrane.

Stimulation with 50 µM glutamate led to a 60% decrease 
in the proportion of CaV1.2 channels on the cell surface, indicat
ing that a significant proportion of CaV1.2 channels are internal
ized relatively rapidly by a large dose of glutamate (Fig. 1,  
A and B). To provide independent evidence that activation of 
glutamate receptors causes loss of cell surface CaV1.2 channels, 
we used Ca2+ imaging to measure Ca2+ influx in neurons before 
and after treatment with high concentrations of glutamate. 
Treatment with 50 µM glutamate for 10 min caused a significant 
decrease in the intracellular Ca2+ rise induced by depolarization. 
This decrease could be observed both at the population level 
and in single cells (Fig. 1 C). Together, these experiments sug
gest that relatively prolonged activation of glutamate receptors 
causes loss of CaV1.2 channels on the cell membrane.

Because prolonged treatment with glutamate can cause 
excitotoxicity in neurons, we next investigated whether loss of 
CaV1.2 channels was correlated with cell death in neurons. We 
treated neurons with 10, 50, or 100 µM glutamate for 3, 10, or 
30 min or 10 h and measured cell death 10 h later by counting 
pyknotic nuclei, measuring MAP2 levels in dendrites, or using 
TUNEL staining (Fig. S1). Although treatment with 50 or  
100 µM glutamate for 30 min or 10 h caused substantial apop
totic cell death, stimulation with 50 µM glutamate for 10 min 
(conditions which cause channel internalization) did not lead 
to cell death. This suggests that CaV1.2 internalization is not 
correlated with cell death and therefore is more likely to be a 
cellular response to a potentially cytotoxic stimulus.

In a previous study, we found that stimulation of neurons 
using relatively mild depolarizing stimuli to activate CaV1.2 
channels caused a reversible loss of cell surface CaV1.2 chan
nels (Green et al., 2007). Under these conditions, CaV1.2 chan
nels are returned to the membrane rapidly after restoration of 
the resting membrane potential. To investigate whether activa
tion of glutamate receptors also led to reversible loss of CaV1.2 
channels from the cell membrane, we stimulated neurons with 
50 µM glutamate for 10 min and then returned the cells to rest
ing conditions for 20 min before measuring cell surface chan
nels. In contrast to our previous findings (Green et al., 2007), 
we observed no recovery of CaV1.2 channels on the cell mem
brane 20 min after treatment with 50 µM glutamate (Fig. 1 D), 

1996; Coon et al., 1999). Studies in animals and humans have 
reported that LTC blockers can improve performance on mem
ory tasks (for review see Thibault et al., 2007). In addition, a 
developmentally regulated increase in CaV1.2 levels could lead 
to cell death in Parkinson’s disease (Day et al., 2006; Chan et al., 
2007). However, despite the importance of LTCs in neuronal 
pathology, the mechanisms that control their expression and 
trafficking are not well understood.

Phosphatidylinositol (3,5)bisphosphate (PtdIns(3,5)P2) is 
a rare phospholipid that is found in endosomal membranes and 
is generated by the activity of a lipid kinase called phosphati
dylinositol 3phosphate 5kinase (PIKfyve; mammals) or Fab1 
(yeast; Michell et al., 2006). PIKfyve/Fab1 is critically impor
tant for the regulation of membrane trafficking and for the func
tion of endosomes and lysosomes. Fab1 mutants have enlarged 
vacuoles and defects in multivesicular body invagination and 
vacuole acidification (Gary et al., 1998; Odorizzi et al., 1998; 
Efe et al., 2005). Genetic disruption of Fab1 is lethal in model 
organisms, and inhibition of PIKfyve leads to the enlargement 
of endosomes and formation of vacuoles in cells in culture 
(Ikonomov et al., 2001; Nicot et al., 2006; Rusten et al., 2006; 
Rutherford et al., 2006).

Recently, it has been shown that mutations that alter the 
production of PtdIns(3,5)P2 cause severe neuronal defects in 
both mice and in humans. Mutations in mouse Fig4 and Vac14, 
two proteins which regulate PIKfyve (Duex et al., 2006; Sbrissa 
et al., 2007; Botelho et al., 2008), reduce PtdIns(3,5)P2 levels 
and lead to ataxia and neuronal death (Chow et al., 2007; Zhang 
et al., 2007). In addition, mutations in other proteins that control 
PtdIns(3,5)P2 levels cause neuronal and muscular diseases, in
cluding myotubular myopathy, amyotrophic lateral sclerosis, 
and CharcotMarieTooth disease (Nicot and Laporte, 2008). 
This raises the question of why, despite the ubiquitous produc
tion of PtdIns(3,5)P2 in cells, mutations in this pathway prefer
entially affect excitable cells like neurons and myocytes.

In this study, we report that sustained glutamate exposure 
causes internalization and degradation of CaV1.2 in cortical 
neurons. Using a proteomic screen, we identify PIKfyve as a 
CaV1.2binding protein, and we show that this protein binds to 
CaV1.2 upon activation of glutamate receptors. PIKfyve is re
quired for both internalization and degradation of the channel, 
and loss of PIKfyve increases the susceptibility of neurons to 
cell death in response to activation of glutamate receptors. Our 
study suggests that PIKfyvedependent channel degradation is 
essential to prevent Ca2+induced toxicity in neurons. These 
experiments provide a direct link between Ca2+ signaling and 
PIKfyve and help to explain why defects in PtdIns(3,5)P2 sig
naling are deleterious to cells that are susceptible to excitotoxicity 
such as neurons and myocytes.

Results
Glutamate stimulation promotes CaV1.2 
internalization and degradation
Ischemia and stroke cause neuronal death by triggering excess 
release of glutamate into the extracellular space, which activates 

http://www.jcb.org/cgi/content/full/jcb.200903028/DC1
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Figure 1. Activation of glutamate receptors promotes CaV1.2 internalization and degradation. (A) Cortical neurons expressing YFP-HA-CaV1.2 channels 
were treated with 50 µM glutamate (Glu) for 10 min and stained with anti-HA antibodies without permeabilization. The top six panels show staining in 
neuronal cell bodies; to distinguish changes in staining intensity more easily, the insets show the same images using a rainbow color scheme. The bottom six 
panels show staining in dendrites. (B) Quantification of data from A (n = 30; mean ± SEM; *, P < 0.0001 by Student’s t test). (C) Ratiometric measurement 
of intracellular Ca2+ in neurons incubated in the absence or presence of 50 µM glutamate for 10 min and depolarized with 67 mM KCl (n = 50; mean ± 
SEM). The panel on the left shows the mean Ca2+ responses, and the inset graphs show individual traces. (D) A 20-min recovery period after glutamate 
stimulation for 10 min did not lead to recovery of YFP-HA-CaV1.2 surface levels (n = 30; mean ± SEM; *, P < 0.0001 by Student’s t test). (E) Cortical neu-
rons were incubated with 50 µM glutamate for 15 min and analyzed by Western blotting with anti-CaV1.2 and anti-GAPDH antibodies (n = 3). Molecular 
mass is indicated in kilodaltons. (F) Cortical neurons were stimulated with glutamate for 10 min and then stained with anti-CaV1.2 and MAP2 antibodies 
to show changes in endogenous CaV1.2 in dendrites after stimulation. (G) Ratio of CaV1.2 to MAP2 fluorescence on neuronal dendrites treated as in F  
(n = 200 dendrites; mean ± SEM; *, P < 0.0001 by Student’s t test). (H) Endogenous CaV1.2 surface levels 20 min after glutamate stimulation (n = 30; mean ±  
SEM; *, P < 0.0001 by Student’s t test). Bars: (A, top) 20 µm; (A, bottom) 3 µm; (F) 5 µm.
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free media (Fig. 1 H), providing additional evidence for CaV1.2 
channel degradation.

CaV1.2 degradation depends on  
NMDA receptors
We next investigated whether CaV1.2 degradation depended on 
the elevation of the intracellular Ca2+ concentration ([Ca2+]i) 
and on the activation of specific types of glutamate receptors. 
We used Fura2 to measure [Ca2+]i and found that treatment 
with 50 µM glutamate, which causes channel degradation, caused 
a [Ca2+]i rise that was significantly greater than treatment with 
10 µM glutamate, 67 mM KCl, or 2 µg/ml ionomycin (Fig. 2 A). 
To determine whether Ca2+ influx was required for glutamate
dependent CaV1.2 degradation, we stimulated cells with 50 µM 
glutamate in media with reduced extracellular Ca2+ and found 
that this completely prevented CaV1.2 degradation (Fig. 2 B). 
This indicates that Ca2+ influx across the membrane is required 
for this process.

Glutamate stimulation elevates [Ca2+]i by a variety of mech
anisms, including activation of Ca2+permeable AMPA and NMDA 

suggesting that activation of glutamate receptors leads to a per
manent loss of CaV1.2 channels on the cell surface.

To determine whether the loss of CaV1.2 from the cell 
membrane was caused by channel degradation, we measured 
CaV1.2 levels in neurons either by Western blotting or by  
immunofluorescence. We stimulated neurons with 50 µM gluta
mate and used SDSPAGE and antiCaV1.2 antibodies to detect 
endogenous CaV1.2 channels (Fig. S2, A–C). We found that  
this treatment caused a reproducible decrease in the levels of 
CaV1.2 relative to a glyceraldehyde3phosphate dehydrogenase 
(GAPDH) internal control (Fig. 1 E), suggesting that CaV1.2 
was degraded after activation of glutamate receptors. To pro
vide further evidence of glutamateinduced CaV1.2 degradation, 
we used immunocytochemistry to detect CaV1.2 channels in 
cultures of neurons before and after treatment with 50 µM 
glutamate for 10 min. Glutamate caused a 35% loss of CaV1.2 
immunoreactivity from the dendrites and a redistribution of 
the channel to a region around the cell nucleus (Fig. 1, F and G;  
and Fig. S2 D). This decrease in the levels of the endogenous 
channel was not reversed by a 20min incubation in glutamate

Figure 2. NMDA receptors mediate CaV1.2 degradation in a Ca2+-dependent manner. (A) Ratiometric measurement of [Ca2+]i in neurons treated with 
glutamate (Glu), 67 mM KCl, or 2 µg/ml ionomycin (n = 100; mean ± SEM). (B) Neurons were stimulated with 50 µM glutamate or 67 mM KCl for  
10 min in the absence or presence of 2.5 mM EGTA. The graph shows the percent decrease in the ratio of CaV1.2 to MAP2 fluorescence on dendrites  
(n = 200 dendrites; mean ± SEM; *, P < 0.01 by one-way analysis of variance [ANOVA] with the Newman-Keuls multiple comparison test). (C) Change 
in the surface expression of CaV1.2 in dendrites of neurons treated with 50 µM glutamate for 10 min in the presence of 10 µM MK801 or 10 µM NBQX 
(n = 200 dendrites; mean ± SEM; *, P < 0.01 by one-way ANOVA). (D) Change in the surface expression of CaV1.2 in dendrites of neurons treated with 
50 µM glutamate for 10 min in the presence of 300 µM DL-AP3 (n = 200 dendrites; mean ± SEM; NS by Student’s t test).

http://www.jcb.org/cgi/content/full/jcb.200903028/DC1
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in CaV1.2 channels (Fig. 3 C). Together, these data suggest 
that lysosomes play a central role in CaV1.2 channel degrada
tion in neurons.

To provide further evidence for the importance of lyso
somes in the degradation of CaV1.2, we investigated whether 
treatment of neurons with glutamate caused relocalization of 
Ca2+ channels to lysosomal compartments. We introduced a 
FlagMyc–labeled CaV1.2 channel (FlagMycCaV1.2) and a GFP 
fusion protein of the lysosomalassociated membrane protein 
(LAMP; LAMPGFP) into neurons (Fig. S3 A). Treatment with 
glutamate caused a significant increase in the colocalization of 
CaV1.2 and LAMPGFP in neuronal dendrites (Fig. 3 D), sug
gesting that the channels are targeted to lysosomes by activation 
of glutamate receptors.

PIKfyve associates with CaV1.2
To provide further insight into the mechanisms that underlie 
CaV1.2 internalization and degradation, we used a proteomic 
approach to identify CaV1.2binding proteins. We expressed GST 
fusion proteins of the intracellular domains of CaV1.2 in Neuro2A 
neuroblastoma cells, immunoprecipitated the proteins, and 
used multidimensional mass spectrometry to identify associ
ated proteins. GSTYFP was immunoprecipitated and analyzed 
in parallel as control for nonspecific protein binding. We repeated 

receptors, metabotropic glutamate receptors, and indirect acti
vation of VGCCs. To examine which of these pathways is  
responsible for CaV1.2 degradation, we treated neurons with  
50 µM glutamate in the presence of NBQX, MK801, or DLAP3 to 
block AMPA, NMDA, or metabotropic glutamate receptors, re
spectively. Treatment with NBQX and DLAP3 had no effect  
on CaV1.2 degradation, but treatment with MK801 prevented 
loss of CaV1.2 from dendrites (Fig. 2, C and D), indicating that 
CaV1.2 degradation depends on NMDA receptors. This is in 
agreement with a previous study of loss of LTC currents in neu
rons treated with NMDA (Davis and Linn, 2003).

Glutamate-induced CaV1.2 degradation 
occurs via lysosomes
Glutamatetriggered CaV1.2 degradation could occur either via 
the lysosomal or the proteosomal pathways. To determine which 
pathways regulate channel degradation, we treated cells with the 
lysosomal inhibitors bafilomycin and chloroquine or with the 
proteosomal inhibitor lactacystin. Both bafilomycin and chloro
quine significantly inhibited glutamateinduced CaV1.2 degra
dation, whereas lactacystin had no significant effect (Fig. 3 A). 
In addition, NH4Cl, which prevents lysosomal acidification, caused 
a large increase in the number of CaV1.2 channels on the cell 
surface (Fig. 3 B) and reversed the glutamateinduced decrease 

Figure 3. Glutamate-induced CaV1.2 degradation is mediated by lysosomes. (A) Neurons were incubated with 100 µM chloroquine or 100 nM bafilo-
mycin for 3 h or with 2 µM lactacystin for 1 h and then stimulated with 50 µM glutamate for 10 min. The graph shows the percent decrease in the ratio of 
CaV1.2 to MAP2 fluorescence on dendrites (n = 200 dendrites; mean ± SEM; *, P < 0.001 by one-way ANOVA). (B) Cortical neurons (3 d in vitro) were 
treated with or without 30 mM NH4Cl for 3 h and then analyzed by immunocytochemistry with anti-CaV1.2 antibodies. Representative images are shown. 
(C) Cortical neurons were treated with or without 30 mM NH4Cl for 30 min and then incubated with 50 µM glutamate for 15 min and subjected to 
immunoblot analysis with anti-CaV1.2 and anti-GAPDH antibodies. Molecular mass is indicated in kilodaltons. (D) Fluorescent images of neurons expressing  
Flag-Myc-CaV1.2 and LAMP-GFP. Cells were stained with anti-Myc and anti-GFP antibodies before and after treatment with 50 µM glutamate (Glu) for  
15 min (n = 5 neurons and 23 dendrites). The arrows show colocalization of CaV1.2 and the lysosomal marker LAMP-GFP. Bars: (B) 30 µm; (D) 2.5 µm.

http://www.jcb.org/cgi/content/full/jcb.200903028/DC1
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Figure 4. PIKfyve associates with CaV1.2. (A and B) Coimmunoprecipitation of full-length Myc-PIKfyve and of the Flag-tagged C terminus of CaV1.2 
(Flag–CaV1.2 CT) coexpressed in HEK 293T cells with either anti-Flag (A) or anti-Myc (B) antibodies. (C) Coimmunoprecipitation of full-length Flag-CaV1.2 
and Myc-PIKfyve in HEK 293T cells. Flag-CaV1.2 was immunoprecipitated with anti-Flag antibodies, and the immunoprecipitated material was analyzed 
using both Myc and Flag antibodies. (D) Schematic structure of deletion mutants of PIKfyve. (E and F) Immunoprecipitation (IP) of the deletion mutants of 
PIKfyve and of the C terminus of CaV1.2 expressed in HEK 293T cells. Cell lysates were subjected to immunoprecipitation with either anti-Myc (E) or anti-
Flag (F) antibodies, and Western blots were analyzed to detect interacting proteins. (G) Schematic structure of deletion mutants of the C terminus of CaV1.2. 
(H) Coimmunoprecipitation of the Flag-Myc-CaV1.2 C terminus deletion mutants (CT-1 through CT-5) with full-length PIKfyve (HA-PIKfyve) expressed in HEK 
293T cells using anti-Flag antibodies. Western blots were performed using both anti-Flag and anti-HA antibodies. (I) Coexpression of CaV1.2 CT-2 and CT-3 
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with glutamate, CaV1.2 (Fig. 4 J) was reproducibly coimmuno
precipitated with PIKfyve. These data argue that endogenous 
CaV1.2 associates with endogenous PIKfyve and, further, that 
this occurs in response to activation of glutamate receptors.

Activation of glutamate receptors 
increases PtdIns(3,5)P2 levels
The inducible interaction of PIKfyve with CaV1.2 under condi
tions of excitotoxic stress suggested that PIKfyve could be acti
vated by glutamate receptors. To study this question, we made 
an intracellular sensor for PtdIns(3,5)P2, which is the main 
product of PIKfyve in cells. We made a fusion protein of GFP 
and two copies of the GRAM domain from the phosphatase 
myotubularin (MTM1; Fig. 5 A), which binds to PtdIns(3,5)P2 
(Tsujita et al., 2004). We introduced this protein into neurons 
and, upon treatment with 50 µM glutamate, observed a marked 
relocalization from the cytoplasm and the nucleus to a peri
nuclear region (Fig. 5, B and C). This change in localization was 
not observed in cells expressing GFP alone, suggesting that it is 
specific to the GRAMcontaining protein. The change in GFP
GRAM localization was only observed in neurons treated with 
50 µM glutamate but not with glutamate in the presence of 
EGTA, elevated KCl, or ionomycin, indicating that this event 
occurs only under the conditions that lead to CaV1.2 degrada
tion (Fig. 5 D).

The perinuclear localization of GFPGRAM after gluta
mate treatment was very similar to that of lysosomes and late 
endosomes, so we explored whether GFPGRAM relocalizes to 
these compartments after activation of glutamate receptors. We 
coexpressed in neurons GFPGRAM and the lysosome marker 
LAMPCherry and observed a small increase in the colocaliza
tion of the two proteins after treatment with glutamate (Fig. S3 E). 
This indicates that PtdIns(3,5)P2 is generated in endosomal 
compartments in response to glutamate receptor activation.

To provide independent evidence that activation of gluta
mate receptors leads to an increase in PtdIns(3,5)P2 in neurons, 
we used a monoclonal antibody to detect PtdIns(3,5)P2. This anti
body is relatively specific for PtdIns(3,5)P2, as determined by 
its ability to detect a decrease in PtdIns(3,5)P2 levels in knock
outs of ppk3, the Caenorhabditis elegans homologue of  
PIKfyve (Nicot et al., 2006). Treatment of neurons with 50 µM 
glutamate resulted in an increase in antiPtdIns(3,5)P2 fluores
cence, which is consistent with our earlier finding (Fig. 5 B) that 
glutamate leads to relocalization of the GFPGRAM domain 
(Fig. 5, E and F). Together, these results provide evidence that acti
vation of glutamate receptors leads to an increase in PtdIns(3,5)P2 
levels in neurons.

We next asked whether the increase of PtdIns(3,5)P2 trig
gered by activation of glutamate receptors depends on PIKfyve 
activity. We made short hairpin RNAs (shRNAs) that target  
PIKfyve (shPIKfyve) and two PIKfyve constructs that contain silent 
mutations in the region recognized by the shRNA that could be 

the experiment five times and generated a score for each CaV1.2
interacting protein that reflected the number of times that the 
protein bound to CaV1.2 relative to YFP (Table S1). One of the 
main proteins that associated with the cytoplasmic C terminus 
of CaV1.2 was PIKfyve, a lipid kinase which is localized in 
early endosomes (Fig. S3, B and C) and controls endosomal and 
lysosomal trafficking. Because CaV1.2 is degraded in lysosomes 
in response to glutamate stimulation, we investigated whether 
PIKfyve has a role in regulating this process.

To verify that CaV1.2 interacts with PIKfyve in cells, we in
troduced MycPIKfyve and FlagCaV1.2 expression plasmids into 
HEK 293T cells, lysed the cells, and immunoprecipitated the chan
nel using antiFlag or antiMyc antibodies. Immunoprecipitation 
of the fulllength channel (Fig. 4 C) or of the cytoplasmic C termi
nus of the channel (Fig. 4 A) resulted in coimmunoprecipitation of 
fulllength PIKfyve. Conversely, immunoprecipitation of PIKfyve 
caused coimmunoprecipitation of the CaV1.2 C terminus (Fig. 4 B). 
We next expressed GFPPIKfyve and the CaV1.2 C terminus in 
HEK 293T cells. Expression of the CaV1.2 C terminus caused GFP
PIKfyve to form large perinuclear aggregates, providing additional 
evidence that these two proteins interact in cells (Fig. S3 D).

We then used deletion analysis to map the domains  
of PIKfyve and CaV1.2 that interact with each other. We sub
divided PIKfyve into five fragments (Fig. 4 D), expressed them 
in HEK 293T cells, and tested their ability to interact using 
coimmunoprecipitation assays. The two Nterminal fragments 
of PIKfyve did not associate with the C terminus of CaV1.2, but 
the three Cterminal fragments all interacted with this channel 
(Fig. 4, E and F). We also subdivided the C terminus of CaV1.2 
into five fragments and tested the association of these fragments 
with fulllength PIKfyve (Fig. 4 G). We found that a domain 
composed of aa 1,709–1,808 of CaV1.2 (CT2) interacted with 
fulllength PIKfyve, whereas other regions did not (Fig. 4 H). 
Expression of this CT2 fragment and the fragment immediately 
terminal to it (aa 1,809–1,928 or CT3) caused GFPPIKfyve to 
form perinuclear aggregates that were identical to those formed 
with the full C terminus of CaV1.2 (Fig. 4 I). Together, these re
sults suggest that aa 1,709–1,808 of CaV1.2 and the Cterminal 
fragment of PIKfyve are required for the interaction of these two 
proteins. The region from aa 1,709–1,808 is highly conserved in 
LTCs across various species, suggesting that it is likely to define 
a motif that is important for channel function. Although the na
ture of these proteins made it impossible to purify them from bac
teria to test for a direct interaction, our data are consistent with 
a direct interaction between the Cterminal domains of CaV1.2 
and PIKfyve.

We next investigated whether CaV1.2 interacts with PIKfyve 
in a glutamatedependent manner. We used antiPIKfyve anti
bodies to immunoprecipitate PIKfyve from cultured neurons 
before and after treatment with glutamate and used anti 
CaV1.2 to detect the channel by Western blotting. CaV1.2 did not 
associate with PIKfyve in resting cells, but in neurons stimulated 

caused aggregation of GFP-PIKfyve in a structure close to the nucleus. Arrowheads show PIKfyve aggregates that are formed when PIKfyve is coexpressed 
with C-terminal fragments of CaV1.2. (J) Coimmunoprecipitation of endogenous CaV1.2 and PIKfyve from neurons before or after treatment with 50 µM 
glutamate for 5 min (n = 3). (A–C, E, F, H, and J) Molecular mass is indicated in kilodaltons. Ab, antibody; IB, immunoblot. Bar, 50 µm.
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Figure 5. Activation of glutamate receptors increases PtdIns(3,5)P2 levels. (A) Structure of myotubularin and of the GFP–2× GRAM reporter protein.  
(B) Fluorescent images expressing either GFP alone or the GFP–2× GRAM reporter before and after treatment with 50 µM glutamate (Glu) for 10 min.  
(C) Changes in perinuclear fluorescence observed in cells expressing GFP or GFP–2× GRAM after treatment with glutamate (n = 60 cells; 300 ROIs; mean ±  
SEM; *, P < 0.0001 by Student’s t test). The areas targeted to quantify perinuclear localization are indicated in the illustration. The pink line indicates 
the edge of the cell, the dashed line indicates the nucleus, and the small yellow circles indicate perinuclear regions. (D) Change in perinuclear GFP–2× 
GRAM fluorescence before and after various types of stimulation, as indicated in Fig. 2 A (n = 60 cells; 300 ROIs; mean ± SEM; *, P < 0.001 by one-way 
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MTM1, which dephosphorylates PtdIns(3,5)P2 at the 3 position, 
and measured dendritic CaV1.2 levels in neurons. Expression 
of MTM1 reduced glutamateinduced CaV1.2 degradation in 
dendrites (Fig. S5, A and B), providing additional evidence that 
PIKfyve and PtdInd(3,5)P2 help mediate CaV1.2 degradation.

We next investigated whether the interaction of PIKfyve 
with the C terminus of CaV1.2 was important for glutamate 
dependent CaV1.2 degradation. We generated a MycCaV1.2 
channel that lacks the Cterminal PIKfyvebinding site (CaV1.2 
CT), introduced it into neurons, and measured its degradation 
after activation of glutamate receptors. Although the wildtype 
channels were efficiently degraded by activation of glutamate 
receptors, the levels of CaV1.2 CT channels were not signifi
cantly reduced (Fig. 6, E and F), suggesting that binding of CaV1.2 
to PIKfyve is required for CaV1.2 degradation in response to the 
activation of glutamate receptors.

Finally, we tested whether PIKfyve regulates the targeting 
of CaV1.2 channels to lysosomes after activation of glutamate 
receptors. We introduced LAMPGFP and MycCaV1.2 into neu
rons along with shPIKfyve or shScrambled constructs and then 
treated cells with glutamate. We measured the colocalization of 
CaV1.2 and LAMP by calculating the coefficient of correlation 
between CaV1.2 and LAMP in cells. Treatment with glutamate 
caused a loss of diffuse CaV1.2 staining and the appearance of 
MycCaV1.2 puncta, some of which colocalized with LAMP
GFP, giving rise to an increase in the coefficient of correlation 
between the two images. Knockdown of PIKfyve substantially 
reduced the colocalization of CaV1.2 and LAMP after activation 
of glutamate receptors (Fig. 6 G), supporting the idea that 
CaV1.2 channels are trafficked to lysosomes after treatment with 
glutamate in a manner that depends on PIKfyve.

PIKfyve protects neurons against 
excitotoxic cell death
Under conditions of stroke and anoxia, glutamate is a potent  
excitotoxic agent that acts by increasing intracellular Ca2+ lev
els both through NMDA receptors and through LTCs (Schurr, 
2004). We initially characterized the contribution of different 
Ca2+ channels to glutamatetriggered excitotoxicity in our 
cells by treating neurons for 30 min with 50 µM glutamate in 
the presence of blockers for NMDA receptors (MK801), AMPA 
receptors (NBQX), LTCs (nimodipine), P/Qtype VGCCs (aga
toxin IVA), Ntype VGCCs (conotoxin GVIA), and Rtype 
VGCCs (SNX482) and measuring cell death 10 h later (Fig. 7, 
A and B). As expected, the NMDA receptor MK801 blocked 
80% of the cell death, the AMPA receptors and LTC blockers 
reduced cell death 25%, and the other channel blockers had 
essentially no effect on glutamateinduced toxicity. This indi
cates that although NMDA receptors are the primary triggers of 
excitotoxicity, both LTCs and AMPA receptors also play a role 
in this process.

used to restore PIKfyve expression in the presence of the shRNAs 
(wild type [PIKfyve WTres] and kinase negative [PIKfyve 
KEres]). shPIKfyve reduced the expression of PIKfyve in HEK 
293T cells but not of the shRNAresistant proteins, as measured 
by Western blotting of Myctagged proteins (Fig. S4 A). In ad
dition, shPIKfyve caused a dramatic increase in the number and 
size of vacuoles in NIH3T3 cells that was suppressed by the  
introduction of PIKfyve WTres but not of PIKfyve KEres (Fig. S4, 
B and C), indicating that these shRNAs also reduce the expres
sion of the endogenous proteins. To determine whether PIKfyve 
generates PtdIns(3,5)P2 in response to glutamate, we introduced 
shPIKfyve into neurons, stimulated the cells with 50 µM 
glutamate, and measured PtdIns(3,5)P2 production using the 
GFPGRAM protein. Introduction of shPIKfyve eliminated the 
relocalization of GFPGRAM to the perinuclear region, sug
gesting that it also eliminated the production of PtdIns(3,5)P2 
(Fig. 5 G). Interestingly, we observed relatively few vacuoles in 
most neurons expressing the shPIKfyve under resting condi
tions, suggesting that PIKfyve activity is relatively low in rest
ing neurons (Fig. S4 D). Introduction of a PIKfyve WTres along 
with shPIKfyve restored the relocalization of the GRAM do
main to the perinuclear region in response to glutamate, whereas 
the PIKfyve KEres domain did not rescue the effects of shPIK
fyve on the localization of the GFPGRAM reporter. Together, 
these results provide evidence that activation of glutamate re
ceptors leads to increases in PtdIns(3,5)P2 levels in neurons and 
that this is mediated by PIKfyve.

PIKfyve regulates glutamate-dependent 
CaV1.2 internalization and degradation
Because PIKfyve regulates endosome trafficking, we next inves
tigated whether it contributes to the glutamatedependent inter
nalization of CaV1.2 channels. We transfected neurons with 
shPIKfyve together with YFPHACaV1.2 and measured the sur
face levels of CaV1.2 after stimulation with glutamate. Knock
down of PIKfyve significantly suppressed glutamatedependent 
CaV1.2 internalization (Fig. 6, A and B), whereas a scrambled 
control shRNA (shScrambled) had no effect, suggesting that  
PIKfyve controls CaV1.2 levels on the cell surface. To determine 
whether PIKfyve also regulates degradation of endogenous 
CaV1.2, we introduced shPIKfyve into neurons and measured the 
amount of CaV1.2 channel in dendrites using antiCaV1.2 anti
bodies (Fig. 6, C and D). shPIKfyve significantly decreased the deg
radation of CaV1.2 in neurons treated with glutamate compared 
with shScrambled. Introduction of PIKfyve WTres restored the 
glutamatedependent degradation of CaV1.2, whereas PIKfyve 
KEres had no effect. Thus, PIKfyve seems to be required both for 
CaV1.2 internalization and degradation in response to increases in 
glutamate. Because the main product of PIKfyve is PtdIns(3,5)P2, 
we asked whether PtdInd(3,5)P2 was necessary for glutamate 
induced CaV1.2 degradation. We overexpressed the phosphatase 

ANOVA). (E) Cortical neurons stained with anti-PtdIns(3,5)P2 antibodies before and after treatment with 50 µM glutamate for 10 min. (F) Quantification 
of the data in D showing an increase in PtdIns(3,5)P2 levels in perinuclear regions (n = 100; mean ± SEM; *, P < 0.0001 by Student’s t test). (G) Change 
in perinuclear GFP–2× GRAM fluorescence in neurons containing either shPIKfyve or shScrambled along with either a control vector or PIKfyve WTres or 
PIKfyve KEres after treatment with 50 µM glutamate (n = 60 cells; 300 ROIs; mean ± SEM; *, P < 0.01 by one-way ANOVA). Bars, 10 µm.

 

http://www.jcb.org/cgi/content/full/jcb.200903028/DC1
http://www.jcb.org/cgi/content/full/jcb.200903028/DC1
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Figure 6. PIKfyve regulates glutamate-dependent CaV1.2 internalization and degradation. (A) Cortical neurons expressing YFP-HA-CaV1.2 with shPIKfyve 
or shScrambled were treated with 50 µM glutamate (Glu) for 10 min and stained with anti-HA antibodies without membrane permeabilization. The insets 
show the same images using a rainbow scheme. (B) Graph of the data in A illustrating the cell surface expression levels of CaV1.2 (n = 30; mean ± SEM; 
*, P < 0.0001 by Student’s t test). (C) Dendrites from neurons stained with anti-CaV1.2 and anti-MAP2 antibodies and expressing either shPIKfyve or 
shScrambled, along with either a control vector or PIKfyve WTres or PIKfyve KEres. Neurons were stimulated with 50 µM glutamate for 10 min and then 
stained with anti-CaV1.2 or MAP2 antibodies. (D) Percent decrease of the ratio of CaV1.2 to MAP2 fluorescence on dendrites for the experiments in C  
(n = 100 dendrites; mean ± SEM; *, P < 0.01 by one-way ANOVA). (E) Dendrites from neurons expressing Flag-Myc-CaV1.2 or Flag-Myc–CaV1.2 CT 
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at least one other channel in addition to CaV1.2 but not for all 
cell surface channels.

Discussion
This study provides new insights into the mechanisms by which 
neurons are protected from excessive Ca2+ influx and excito
toxicity after excessive activation of NMDA receptors, such as what 
occurs during transient ischemic attacks, epileptic seizures, and 
in the penumbra of strokes. Our results suggest that neurons in
ternalize CaV1.2 channels and AMPA receptors in response to 
sustained activation of glutamate receptors. This is followed by 
recruitment of PIKfyve to the early endosomes, probably by 
binding to the C terminus of CaV1.2 and to lipids that are en
riched in the endosomal membrane. Recruitment of PIKfyve to 
the endosomes leads to an increase in PtdIns(3,5)P2 levels in 
these vesicles, which promotes their maturation and eventual 
fusion with lysosomes and leads to CaV1.2 degradation (Fig. 8). 
Thus, prolonged activation of NMDA receptors leads to both 
removal and degradation of CaV1.2 channels by a PIKfyve 
dependent mechanism.

This PIKfyvemediated degradation pathway seems to  
be essential for the ability of neurons to respond to moderate 
elevations of extracellular glutamate. Reducing PIKfyve or dis
rupting PIKfyve’s association with CaV1.2 channels prevents 
channel degradation and leads to cell death when neurons are 
stimulated with subtoxic concentrations of glutamate. Blocking 
LTCs and AMPA receptors blocks the increase in cell death in 
neurons lacking PIKfyve, indicating that these ion channels can 
be toxic even at moderate levels of excitability and need to be 
downregulated. The increased susceptibility of neurons to  
excitotoxicity in the absence of PIKfyve may help to explain 
why diseases that arise from mutations that alter PtdIns(3,5)P2 
levels disproportionately affect excitable cells such as neurons.

PtdIns(3,5)P2 and membrane protein 
degradation in neurons
The important finding is that intracellular Ca2+ elevations in 
mammalian neurons regulate the levels of PtdIns(3,5)P2. Cir
cumstantial evidence suggests that Fab1 function may be regu
lated by Ca2+ signals in other organisms as well. In budding yeast, 
PtdIns(3,5)P2 levels are increased by hyperosmotic shock, a pro
cess which increases the concentration of intracellular Ca2+. In 
addition, Fab1 mutants are hypersensitive to elevated extracellu
lar Ca2+ levels, suggesting that this pathway is important for the 
response to Ca2+induced stress. Finally, in fission yeast, muta
tions of sst1, a vesicular Ca2+ transporter, suppress the phenotype 
of cells containing mutations of the Fab1 homologue ste12 
(Matsumoto et al., 2002; Onishi et al., 2003). Our data and these 
corroborating studies suggest that Ca2+ regulation of PIKfyve 
activity might be a relatively ancient mechanism for cellular 

The observation that Ca2+ influx through LTCs can con
tribute to toxicity led us to ask whether one of the functions 
of PIKfyvedependent CaV1.2 degradation might be to reduce 
Ca2+dependent toxicity in neurons. To answer this question, we 
transfected neurons with either shScrambled or shPIKfyve and 
treated the cells with 50 µM glutamate for 10 min. 50 µM gluta
mate for 10 min did not cause cell death in untransfected neu
rons or neurons containing shScrambled (Fig. 7 C and Fig. S1). 
In contrast, treatment with glutamate caused a large increase in 
apoptosis in shPIKfyvecontaining neurons (Fig. 7, C and D). 
The increase in glutamateinduced cell death in cells containing 
shPIKfyve was prevented by expression of PIKfyve WTres but 
not by PIKfyve KEres, indicating that the effects of shPIKfyve 
are specific and that the kinase activity of PIKfyve is required 
for its effect on survival. Together, these results strongly suggest 
that PIKfyve is important for protecting neurons from apoptosis 
under conditions of moderate glutamate receptor activation.

To determine whether PIKfyve protects neurons from excito
toxicity by mediating internalization and degradation of CaV1.2 
channels, we transfected neurons with shPIKfyve and treated 
them with 50 µM glutamate for 10 min in the presence or ab
sence of the CaV1.2 blocker nimodipine. We found that blocking 
CaV1.2 channels protected 30% of the neurons lacking PIKfyve 
from glutamateinduced toxicity (Fig. 7 E), suggesting that  
excess Ca2+ entry through LTCs contributes to the increased 
sensitivity to glutamate in the absence of PIKfyve. Because 
AMPA receptors also contribute to excitotoxic cell death and 
these receptors are also known to be internalized in response  
to treatment of cells with glutamate, we investigated whether 
blocking AMPA receptors alone or in combination with LTCs 
prevented glutamateinduced cell death in neurons lacking 
PIKfyve. Blocking AMPA receptors expressing the shPIKfvye 
shRNA reduced cell death by 30%, whereas the combination 
of both LTC and AMPA blockers almost completely prevented 
cell death in neurons. This result argues that the susceptibility to 
glutamateinduced apoptosis in neurons lacking PIKfyve is caused 
by the activity of both LTCs and AMPA receptors (Fig. 7 F).

This result also raised the interesting possibility that 
AMPA receptor internalization in response to glutamate might 
be mediated by PIKfyve. We examined this hypothesis by intro
ducing into neurons one of the subunits of the AMPA recep
tor, the GluR2 channel, tagged with an intracellular YFP and an 
extracellular HA tag. This construct was robustly internalized 
by treatment of neurons with 50 µM glutamate for 10 min. 
However, introduction of the PIKfyve shRNA completely pre
vented GluR2 internalization, indicating that this event also 
depends on PIKfyve (Fig. S5, C–E). In control experiments, 
we also tested the role of PIKfyve in regulating the internaliza
tion of KV1.2 channels but found that the surface expression of 
these channels did not depend on PIKfyve (Fig. S5, F and G). 
Thus, PIKfyve seems to be important for the internalization of 

together with GFP, stimulated with glutamate, and immunostained with anti-Myc and anti-GFP antibodies. (F) The graph shows the percent decrease in the 
ratio of CaV1.2 to MAP2 fluorescence in dendrites in E (n = 100 dendrites; mean ± SEM; *, P < 0.005 by Student’s t test). (G) Dendrites from neurons 
expressing Flag-Myc-CaV1.2 and LAMP-GFP in the presence or absence of shPIKfyve or shScrambled. Cells were stained with anti-Myc and anti-GFP anti-
bodies before and after treatment with 50 µM glutamate for 15 min. (n = 5 neurons and 16–23 dendrites). The arrow shows CaV1.2 colocalization with 
the lysosomal marker LAMP-GFP. Bars: (A) 10 µm; (C, E, and G) 5 µm.
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Figure 7. PIKfyve protects neurons against excitotoxic cell death. (A) Cortical neurons incubated with or without 10 µM MK801, 10 µM NBQX, 10 µM 
nimodipine (Nim), 0.5 µM agatoxin IVA (AgaIVA), 1 µM -conotoxin GVIA (Ctx), or 10 µM SNX482 (SNX) and stimulated with 50 µM glutamate (Glu) 
for 30 min and then incubated for 9.5 h before analysis. Arrows indicate typical pyknotic cells. (B) Pyknotic nuclei quantified for each condition in A  
(n = 3 and >500 cells/sample; mean ± SEM; *, P < 0.001; and **, P < 0.05 by one-way ANOVA). (C) Cortical neurons were stimulated with 50 µM 
glutamate for 10 min and then incubated for 10 h in the absence of glutamate. Representative images of neurons expressing DsRed and either shPIKfyve or 
shScrambled along with the PIKfyve WTres, PIKfyve KEres, or the corresponding empty vector are shown. Cells were stained with the nuclear dye Hoechst. 
(D) Cell death was measured by counting pyknotic nuclei (n = 3 and >50 cells/sample; mean ± SEM; *, P < 0.001 by one-way ANOVA). (E) Cortical 
neurons were stimulated with 50 µM glutamate for 10 min in the presence or absence of 10 µM nimodipine and then incubated for 10 h. Cell death was 
measured by counting pyknotic nuclei (n = 3 and >50 cells/sample; mean ± SEM; *, P < 0.001 by one-way ANOVA). (F) Cortical neurons treated as in E. 
When indicated, NBQX was added at a 10-µM concentration (mean ± SEM; *, P < 0.001 by one-way ANOVA). Bars: (A) 30 µm; (C) 10 µm.
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some aspects of the pathology observed in these patients could 
be caused by dysregulation of VGCCs or, more generally, by 
failure of activitydependent protein degradation. If this hypoth
esis is correct, patients with PtdIns(3,5)P2 phosphatase muta
tions might benefit from the use of Ca2+ channel blockers like 
gabapentin and pregabalin, which are widely used clinically for 
other applications.

In summary, our study identifies a novel mechanism for 
Ca2+ channel degradation in neurons that integrates two unrelated 
fields, Ca2+ channel signaling and endosomal trafficking. These 
experiments provide new insights into channel homeostasis and 
suggest a rationale for investigating Ca2+ channel dysfunction in 
diseases caused by defects in PtdIns(3,5)P2 signaling.

Materials and methods
Materials and antibodies
Lipofectamine 2000, terminal deoxynucleotidyl transferase, Fura-2 acetoxy-
methyl ester, and Hoechst 33258 were purchased from Invitrogen; MK801, 
NBQX, and nimodipine were purchased from Sigma-Aldrich; SNX482 was 
purchased from Alomone Labs; DL-AP3 was purchased from Tocris Bio-
science; bafilomycin A1 and lactacystin were purchased from EMD; chloro-
quine was purchased from MP Biomedicals; biotin–deoxy-UTP was 
purchased from TriLink BioTechnologies; and fluorescein-conjugated strepta-
vidin (DTAF-streptavidin) was purchased from Jackson ImmunoResearch Lab-
oratories, Inc. Antibodies to CaV1.2 (1:500; AB5156; Millipore), PIKfyve 
(1:500; 6C7; Abnova), Myc (1:500; 4A6; Millipore), HA (3F10; Roche), 
Flag (1:500; M2; Sigma-Aldrich), GAPDH (1:1,000; 6C5; Applied Bio-
systems), or DsRed (1:500; E64-1077; BD) was used for immunoblot analysis. 
Antibodies to CaV1.2 (1:100; AB5156), MAP2 (1:500; MAB378; Milli-
pore), Myc (1:500; 4A6), HA (1:500; 3F10), PtdIns(3,5)P2 (1:100; Z-P035; 
Echelon), or GFP (1:500; 598; MBL) was used for immunocytochemistry.

Cell culture, stimulation, and transfection
HEK 293T and NIH3T3 cells were cultured in Dulbecco’s modified mini-
mum essential medium containing 10% FBS, 100 U penicillin and 100 µg 
streptomycin (P/S), and 2 mM l-glutamine (Q). Neuro2A cells were cul-
tured in minimum essential medium containing 10% FBS and P/S. Primary 
neuronal cultures were prepared from embryonic day 17–19 Sprague-
Dawley rats by dissociating dissected cortices with enzyme solution (Hanks’ 
balanced salt solution with 600 U papain and 0.32 mg/ml cystein). Neu-
rons were plated on coverslips coated with 20 µg/ml polyornithine and 
1.42 µg/ml laminin and maintained in culture in Basal Medium Eagle with 

protection, although this hypothesis clearly needs to be investi
gated further in other systems.

Because PIKfyve seems to play a general role in the deg
radation of a variety of cell surface proteins, it is interesting to 
speculate why it interacts with CaV1.2 channels. One possibil
ity is that endosomes derived from Ca2+dependent endocyto
sis in dendrites and synapses often contain CaV1.2 channels. 
By binding to CaV1.2, PIKfyve can be recruited to a specific 
type of activitydependent endosome and can play a role in the 
degradation of postsynaptic proteins. This is consistent with 
the general notion that the recruitment of proteins that contain 
FYVE domains to endosomal membranes is mediated by bind
ing to both PtdIns(3)P and proteins located on endosomes 
(Simonsen et al., 1998; Lawe et al., 2000). It will be interest
ing to determine whether PIKfyve also participates in the Ca2+ 
dependent degradation of other postsynaptic proteins such as 
NMDA receptors and whether this depends on PIKfyve bind
ing to CaV1.2 channels.

Although PIKfyve has been reported to play a role in 
endosomal trafficking and lysosome function, it has not been 
shown to control endocytosis directly. We found that PIKfyve 
knockdown prevents CaV1.2 and AMPA receptor internalization 
in response to glutamate. This finding suggests either that  
PIKfyve can regulate the endocytic machinery directly or, alter
natively, that altering endosome trafficking can prevent the  
activity or recycling of molecules required for endocytosis. The 
fact that we only observe PIKfyve in endosomes and not at the 
cell membrane argues that the effects of PIKfyve on endocyto
sis are indirect, but this question will need to be studied more 
carefully in the future.

PtdIns(3,5)P2 and disease
Our finding that PIKfyve interacts with CaV1.2 and regulates its 
degradation also has important implications for the pathology 
of several diseases that affect myocytes and neurons. These 
cells express large numbers of CaV1.2 channels, suggesting that 

Figure 8. Model describing the process of CaV1.2 degradation in response to glutamate. Glutamate stimulation and high levels of intracellular Ca2+ lead 
to channel degradation in a PIKfyve-dependent manner, which protects the cell from Ca2+ toxicity. Stronger stimulation overrides this protective mechanism, 
and neurons undergo excitotoxicity.
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TGATTCCTGG-3; LAMP1 forward, 5-AGGATCCGCCACCATGGCGGC-
CCCCGGCAG-3; and reverse, 5-GGGATCCGATAGTCTGGTAGCC-
TGCGTGACTCC-3; MTM1 forward, 5-AGGATCCGCCACCATGGCT-
TCTGCATCAACTTC-3; and reverse, 5-AGGATCCTCAGAAGTGAGTT-
TGCACATGGGG-3; 2× GRAM forward, 5-GGGATCCGCCACCATG-
AAATATAATTCACACTCC-3; and reverse, 5-AGAATTCAGTAATATCTAG-
ACCATAGGAATT-3; 2× GRAM forward, 5-AGAATTCATGAAATATAAT-
TCACACTCCTTG-3; and reverse, 5-AGGATCCAGTAATATCTAGAC-
CATAGGAATTTTCTCC-3; and GluR2 forward, 5-GTCTAGAGCCAC-
CATGCAAAAGATTATGCATAT-3; and reverse, 5-GTCTAGAAATTTTA-
ACACTTTCGATGCCATA-3.

The oligonucleotides used were as follows: mouse PIKfyve  
shRNA sense, 5-GATCCGGACAGGGTTGGATCTGAATTCAAGAGATT-
CAGATCCAACCCTGTCCTTTTTTACGCGTG-3; and antisense, 5-AATT-
CACGCGTAAAAAAGGACAGGGTTGGATCTGAATCTCTTGAATTCA-
GATCCAACCCTGTCCG-3; rat PIKfyve shRNA sense, 5-GATCC-
GGACAGGGTTGGATCTCAATTCAAGAGATTGAGATCCAACCCTGT-
CCTTTTTTACGCGTG-3; and antisense, 5-AATTCACGCGTAAAAAAGGA-
CAGGGTTGGATCTCAATCTCTTGAATTGAGATCCAACCCTGTCCG-3; 
and shScrambled shRNA sense, 5-GATCCTGTAGGTCGAGAGCGTAG-
ATTCAAGAGATCTACGCTCTCGACCTACATTTTTTACGCGTG-3; and 
antisense, 5-AATTCACGCGTAAAAAATGTAGGTCGAGAGCGTAG-
ATCTCTTGAATCTACGCTCTCGACCTACAG-3. RNAi-resistant PIKfyve 
cDNA was made by introducing silent mutations using conventional PCR. 
The PCR primers used were as follows: forward, 5-TCTAGAATGGCCA-
CAGATGACAAGAGTTCCCCGACACTGGACTCTGCTAATGATTTG-3; 
and reverse, 5-TCTAGATTAGCAATTTAAGTCTAGTCCCGTCCAGTG-
GTCTGGCACCATCAAGAAATACTT-3.

Immunocytochemistry
Cortical neurons plated on 12- or 15-mm coverslips and grown in 12- or 
24-well plates were fixed with 4% paraformaldehyde in PBS for 10 min at 
room temperature. The coverslips were washed in PBS once and incubated 
with a blocking solution (5% BSA in PBS) with (for regular immuno-
cytochemistry) or without (for surface expression assay) 0.4% Triton X-100 
for 30 min. The samples were incubated with the indicated primary antibodies 
for 1 h at room temperature or overnight at 4°C and then washed three 
times in PBS at room temperature before incubation with secondary anti-
bodies (Alexa Fluor 350 anti–mouse IgG [1:1,000], Alexa Fluor 488 
anti–mouse/rabbit IgG [1:1,000], and/or Alexa Fluor 594 anti–mouse/
rabbit IgG [1:1,000]) for 30 min at room temperature in the blocking solu-
tion. For surface expression assays, the samples were incubated with anti-
HA antibodies (3F10) for 1 h at room temperature or overnight at 4°C and 
then incubated with secondary antibodies (Alexa Fluor 594 anti–rat IgG 
[1:1000]) for 30 min at room temperature in the blocking solution. Cells 
were imaged using an epifluorescence microscope (TE2000U; Nikon) 
equipped with 10× S Fluor 0.5 NA (Nikon), 40× S Fluor 1.30 NA (Nikon), 
and 60× Plan-Apochromat 1.40 NA (Nikon) objective lenses and a cooled 
charge-coupled device camera (ORCA-ER; Hamamatsu Photonics) con-
trolled by a computer (Macintosh; Apple) running Open Laboratory soft-
ware (PerkinElmer).

Image analysis
To measure the surface expression levels, the single regions were defined 
to encompass the entire cell body and calculate the ratio of HA to YFP fluor-
escence. To measure the relocalization of the GFP–2× GRAM in neurons, 
fluorescent images were obtained and analyzed using Open Laboratory 
software. For each cell, five circular regions of interest (ROIs) were defined 
around the periphery of the cell nucleus, and a single ROI was defined to 
encompass the entire cell body. The mean fluorescence intensity calculated 
from the ROIs around the nucleus was divided by the mean intensity of the 
entire cell body to generate a perinuclear ratio value (P). The percent 
change in P in stimulated cells was calculated using the following equation: 
%P = (PS  PR)/PR, where PS is the ratio after stimulation and PR is the ratio 
in resting cells. Stimulation of cells with glutamate resulted in an increase 
in puncta that could be detected using the anti-PtdIns(3,5)P2 antibodies. To 
quantify the number of puncta, the raw fluorescence images were intensity 
sliced to generate binary images that included only pixels that were part of 
a puncta. The area covered by the puncta was divided by the total area of 
the cell to generate a value for the percentage of pixels in a cell that 
formed part of a puncta. Colocalization of Flag-Myc-CaV1.2 and LAMP-
GFP was evaluated by using line profiles drawn along neuronal dendrites 
for each type of staining using Igor Pro software (WaveMetrics). The co-
efficient of correlation between the Flag-Myc-CaV1.2 and LAMP-GFP line 
profiles was calculated according to the following equation:

5% FBS, P/S, Q, and 0.6% glucose. For immunocytochemistry, neurons 
were stimulated with glutamate in Tyrode’s solution without Mg (129 mM 
NaCl, 5 mM KCl, 3 mM CaCl2, 30 mM glucose, 0.1% BSA, and 25 mM 
Hepes, pH 7.4). Cell lines and cortical neurons were transfected with plas-
mids using Lipofectamine 2000 according to the manufacturer’s instruc-
tions. The ratio of plasmids used for specific experiments is given as follows: 
for surface expression assay, 1C/1b/2 = 2:1:1 (Fig. 1, A–C) and 
1C/1b/2/shRNA = 2:1:1:2 (Fig. 6, A and B); for colocalization  
assay, 1C/1b/2/LAMP = 2:1:1:1 (Fig. 3 C) and 1C/1b/2/
LAMP/shRNA = 2:1:1:1:1 (Fig. 6 G); for coimmunoprecipitation, PIKfyve/
CaV1.2 CT = 1:1 (Fig. 4, A and B), PIKfyve/1C/1b = 2:2:1 (Fig. 4 C), 
PIKfyve/CaV1.2 CT = 1:1 (Fig. 4, E and F), and PIKfyve/CaV1.2 CT = 
1:1 (Fig. 4 H); for relocalization of the GRAM domain, GRAM/shRNA/
PIKfyve = 1:2:2 (Fig. 5 F); for CaV1.2 degradation assay, PIKfyve/shRNA = 
1:1 (Fig. 6, C and D) and 1C/1b/2 = 2:1:1 (Fig. 6, E and F); and 
for cell death assay, shRNA/PIKfyve = 1:1 (Fig. 7, C and D).

Plasmid construction
GFP-PIKfyve (mouse) and GFP-HA-KV1.2 constructs were provided by  
P. Cullen (University of Bristol, Bristol, England, UK; Rutherford et al., 2006) 
and L.Y. Jan (University of California, San Francisco, San Francisco, CA; 
Gu et al., 2003), respectively. The cDNA for PIKfyve was amplified by PCR 
from the GFP-PIKfyve construct and cloned into the XbaI sites of pCS4-Myc 
and pCS4-HA. The pCS4-GFP, pCS4-Cherry, and pCS4-HA-GFP plasmids 
were constructed by the insertion of the EGFP and Cherry coding sequence 
into the XbaI site in pCS4 and pCS4-HA, respectively. The Rab5, LAMP1, 
and MTM1 cDNAs were amplified by PCR from the human ORFeome 
cDNA library (Thermo Fisher Scientific) and subcloned into the BamHI sites 
of pcDNA3-GFP, pCS4-GFP, pCS4-Cherry, and pCS4-Myc to generate 
three different vectors encoding each protein. The GluR2 cDNA was ampli-
fied from the human ORFeome cDNA library and subcloned into the XbaI 
sites of pCS4-HA-GFP. The dihydropyridine-resistant CaV1.2 1C, 1b, 
2, and pEYFP-HA-CaV1.2 constructs were described previously (Dolmetsch 
et al., 2001; Gomez-Ospina et al., 2006; Green et al., 2007). The 
pGW1-Flag-CaV1.2, pGW-Flag-2, GST–CaV1.2 CT, and pDEST27-GST-
YFP were generated using Gateway technology (Invitrogen). The cDNA for 
CaV1.2 CT was amplified by PCR and cloned into the BamHI site of 
pcDNA3-Flag. Short hairpin oligonucleotides were designed and inserted 
into the RNAi-Ready pSIREN-DNR-DsRed-Express vector (Takara Bio Inc.) 
by ligation into the BamHI and EcoRI sites. For specific experiments, DsRed 
was eliminated from the RNAi-Ready pSIREN-DNR-DsRed-Express vector 
using the NcoI restriction enzyme. Site-directed mutagenesis was per-
formed using QuikChange (Agilent Technologies) to generate RNAi-resistant 
kinase-negative PIKfyve (PIKfyve KEres; Sbrissa et al., 2000). PIKfyve KEres 
consisted of changing the K1820 to E in the kinase domain. The cDNA from 
the GRAM domain of myotubularin (residues 8–112) was amplified by 
PCR from the MTM1 construct and cloned into pcDNA3-GFP.

The primers used were as follows: PIKfyve forward, 5-ATCTAGAAT-
GGCCACAGATGACAAG-3; and reverse, 5-GTCTAGATCAGCAATTCA-
GATCCAA-3; PIKfyve FYVE forward, 5-AGGATCCATGGCCACAGAT-
GACAAG-3; and reverse, 5-GGGATCCCTAACTTAAGGCTATTTT-3; 
PIKfyve DEP forward, 5-GGGATCCTATGCTCATTCTACAGAC-3; and 
reverse, 5-AGGATCCTTATGAGAGCTGCTGTCC-3; PIKfyve Cpn/TCP-
1 forward, 5-GAGATCTATAAGTGATGCCTTCATC-3; and reverse, 5-AAG-
ATCTTTATGAGCATCTCATCCC-3; PIKfyve linker forward, 5-GAGATC-
TACTCGAGATTATTTTCCA-3; and reverse, 5-AAGATCTTTAGATGAA-
TTCCTCCTC-3; PIKfyve PIP5K forward, 5-AGGATCCCGTTCCCTTTCTCAC-
TCA-3; and reverse, 5-GGGATCCTCAGCAATTCAGATCCAA-3; PIKfyve 
KEres sense, 5-AGATTCATTCTGGAGCAAATGCCTCGTTTG-3; and anti-
sense, 5-CAAACGAGGCATTTGCTCCAGAATGAATCT-3; CaV1.2 CT-1 
forward, 5-GCCACCATGGTCGGCAAGCCCTCGCAGAGG-3; and re-
verse, 5-CTAGTTGCCAAACAGGCCTCCAGCCCTCCTG-3; CaV1.2 CT-2 
forward, 5-GCCACCATGCACGTCAGCTACTACCAGAGTG-3; and re-
verse, 5-CTACTGTACCCGGACAGCAGGGGACAAGGG-3; CaV1.2 
CT-3 forward, 5-GCCACCATGGAGGCAGCATGGAAACTCAGC-3; 
and reverse, 5-CTACTTTAGACATTCCAGATGGAAGGAGGC-3; CaV1.2 
CT-4 forward, 5-GCCACCATGCGACAAAAGGATCAAGGGGGAG-3; 
and reverse, 5-CTAGCCCCCACTACAGGCTGTGGTCTCCTC-3; CaV1.2 
CT-5 forward, 5-GCCACCATGAGCAGCATGGCCCGGAGAGCC-3; 
and reverse, 5-CTACAGGTTGCTGACATAGGACCTG-3; GFP forward, 
5-AATCTAGAATGGTGAGCAAGGGCGAG-3; and reverse, 5-GGACT-
AGTTTACTTGTACAGCTCGTC-3; Cherry forward, 5-CTCTAGAGCCAC-
CATGGTGAGCAAGGGCGAG-3; and reverse, 5-GACTAGTTTACTTG-
TACAGCTCGTCCATGCCGCC-3; Rab5 forward, 5-AGGATCCATGGC-
TAGTCGAGGCGC-3; and reverse, 5-GGGATCCTTAGTTACTACAACAC-
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45 min at 37°C. The samples were then incubated in a solution (10 µM 
Hoechst 33258 in PBS) for 10 min to stain the nuclei.

Online supplemental material
Fig. S1 shows that glutamate stimulation promotes neuronal cell death. Fig. S2 
shows that glutamate stimulation promotes CaV1.2 relocalization and 
degradation. Fig. S3 shows localization of LAMP, PIKfyve, and the GRAM 
domain. Fig. S4 shows that knockdown of PIKfyve by PIKfyve shRNAs 
promotes vacuole formation. Fig. S5 shows that PIKfyve is important for 
specific channel internalization and degradation. Table S1 lists CaV1.2- 
interacting proteins. Online supplemental material is available at http://www 
.jcb.org/cgi/content/full/jcb.200903028/DC1.
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Immunoblot analysis
Cells were washed with PBS and then lysed in extraction buffer (20 mM 
Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM EGTA, 5 µM NaF, 1 µM Na3VO4, 
0.5% Triton X-100, and 1 mM dithiothreitol) containing a protease inhibi-
tor cocktail tablet (Roche). The cell lysates were analyzed by SDS-PAGE, 
transferred to polyvinylidene fluoride, probed with primary antibodies, 
and detected with HRP-conjugated secondary antibodies and luminol re-
agent (SuperSignal West Dura Extended Duration Substrate; Thermo 
Fisher Scientific).

Coimmunoprecipitation
Transfected HEK 293T cells were washed with PBS and then lysed in extrac-
tion buffer containing protease inhibitors (see Immunoblot analysis). The cell 
lysates were centrifuged at 13,200 rpm for 10 min, and the resulting super-
natant was subjected to immunoprecipitation with antibodies to 10 µg/ml 
PIKfyve (6C7), 2.5 µg/ml Myc (4A6), or anti-Flag M2 agarose beads 
(Sigma-Aldrich) for 3 h at 4°C. The immunoprecipitates were subjected to 
immunoblot analysis with antibodies to CaV1.2, Myc, Flag, and HA.

Proteomics and mass spectrometry
The protein complex associated with the C terminus of CaV1.2 was purified 
and analyzed using mass spectrometry three independent times. One 
immunoprecipitated sample was analyzed in duplicate to generate a total 
of five mass spectrometry data samples. For each experiment, three 10-cm 
plates of Neuro2A cells were transfected with GST-YFP or with GST–CaV1.2 
CT using Lipofectamine 2000 according to the manufacturer’s instructions 
(24 µg DNA/plate in 1.5 ml of Opti-MEM-I and 60 µl of Lipofectamine in 
1.5 ml of Opti-MEM-I). 2 d after transfection, the cells were lysed in lysis 
buffer (50 mM Tris-HCl, 1% Triton X-100, 150 mM NaCl, and 10 mM 
EDTA) for 30 min at 4°C with shaking. The lysis buffer was supplemented 
with an inhibitor cocktail tablet (Roche) and calpain I and II inhibitors. The 
lysates were centrifuged for 20 min at 14,000 rpm and incubated with 
100 µl of glutathione Sepharose beads (GE Healthcare) for 2 h at 4°C. The 
beads were washed five times in lysis buffer and treated with trypsin before 
analysis. The peptides were separated using capillary electrophoresis and 
analyzed by tandem mass spectrometry in the Stanford University Mass 
Spectrometry facility. Finally, all of the peptide sequences were analyzed 
using MASCOT software (Matrix Science).

Ca2+ imaging
Cortical neurons were loaded with 1 µM Fura-2 for 30 min at 37°C in 
Tyrode’s solution (129 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 
30 mM glucose, 0.1% BSA, and 25 mM Hepes, pH 7.4), washed with 
Tyrode’s solution, and placed in a perfusion chamber on the stage of an in-
verted fluorescence microscope (TE2000U; Nikon). The cells were treated 
with 50 µM glutamate in Tyrode’s solution without Mg (129 mM NaCl,  
5 mM KCl, 3 mM CaCl2, 30 mM glucose, 0.1% BSA, and 25 mM Hepe, 
pH 7.4) for 10 min before imaging in normal Tyrode’s solution and then 
stimulated with high KCl Tyrode’s solution (67 mM NaCl, 67 mM KCl,  
2 mM CaCl2, 1 mM MgCl2, 30 mM glucose, 0.1% BSA, and 25 mM 
Hepes, pH 7.4). Imaging was performed at room temperature on an epi-
fluorescence microscope (Eclipse TE2000U; Nikon) equipped with an ex-
citation wheel and an automated stage. Open Laboratory software was 
used to collect and quantify time-lapse excitation ratio images. Fluores-
cence images were analyzed using Igor Pro software.

Cell death assay
Cortical neurons were stimulated with 50 µM glutamate for the indicated 
times and were then incubated for 10 h in the absence of glutamate. Neu-
rons were then fixed with 4% paraformaldehyde in PBS for 10 min at room 
temperature. The coverslips were incubated in a solution (10 µM Hoechst 
33258 and 0.4% Triton X-100 in PBS) for 10 min to stain the nuclei. Fluor-
escence images were obtained by epifluorescence microscopy, and pyk-
notic nuclei were counted. For TUNEL assay, neurons were fixed with 4% 
paraformaldehyde in PBS for 15 min at room temperature and incubated 
with 0.1% Triton X-100 in PBS for 10 min. The samples were then incu-
bated with TUNEL reaction solution (15 U terminal deoxynucleotidyl trans-
ferase, 40 µM biotin–deoxy-UTP, 0.1 M potassium cacodylate, 2 mM 
CoCl2, and 0.2 mM DTT) for 1 h at 37°C and washed three times in PBS 
at room temperature before incubation with DTAF-streptavidin (1:800) for 

dx.doi.org/10.1091/mbc.E08-04-0405
dx.doi.org/10.1091/mbc.E08-04-0405
dx.doi.org/10.1038/nrn959
dx.doi.org/10.1038/nrn959
dx.doi.org/10.1111/j.1471-4159.2008.05286.x
dx.doi.org/10.1111/j.1471-4159.2008.05286.x
dx.doi.org/10.1146/annurev.cellbio.16.1.521
dx.doi.org/10.1146/annurev.cellbio.16.1.521
dx.doi.org/10.1038/nature05865
dx.doi.org/10.1038/nature05865
dx.doi.org/10.1038/nature05876
dx.doi.org/10.1016/S0197-4580(99)00068-8
dx.doi.org/10.1016/S0197-4580(99)00068-8
dx.doi.org/10.1038/nn1632
dx.doi.org/10.1038/nrn2055
dx.doi.org/10.1126/science.1063395
dx.doi.org/10.1126/science.1063395
dx.doi.org/10.1146/annurev.pathol.1.110304.100218
dx.doi.org/10.1146/annurev.pathol.1.110304.100218
dx.doi.org/10.1083/jcb.200512105


JCB • VOLUME 187 • NUMBER 2 • 2009 294

3phosphate 5kinase (PIKfyve) regulates endosometoTGN retrograde 
transport. J. Cell Sci. 119:3944–3957. doi:10.1242/jcs.03153

Sbrissa, D., O.C. Ikonomov, and A. Shisheva. 2000. PIKfyve lipid kinase 
is a protein kinase: downregulation of 5phosphoinositide product 
formation by autophosphorylation. Biochemistry. 39:15980–15989. 
doi:10.1021/bi001897f

Sbrissa, D., O.C. Ikonomov, Z. Fu, T. Ijuin, J. Gruenberg, T. Takenawa, and 
A. Shisheva. 2007. Core protein machinery for mammalian phospha
tidylinositol 3,5bisphosphate synthesis and turnover that regulates 
the progression of endosomal transport. Novel Sac phosphatase joins 
the ArPIKfyvePIKfyve complex. J. Biol. Chem. 282:23878–23891. 
doi:10.1074/jbc.M611678200

Schurr, A. 2004. Neuroprotection against ischemic/hypoxic brain damage: block
ers of ionotropic glutamate receptor and voltage sensitive calcium chan
nels. Curr. Drug Targets. 5:603–618. doi:10.2174/1389450043345209

Simonsen, A., R. Lippé, S. Christoforidis, J.M. Gaullier, A. Brech, J. Callaghan, 
B.H. Toh, C. Murphy, M. Zerial, and H. Stenmark. 1998. EEA1 links 
PI(3)K function to Rab5 regulation of endosome fusion. Nature. 394:494–
498. doi:10.1038/28879

Stotz, S.C., and G.W. Zamponi. 2001. Structural determinants of fast inactivation 
of high voltageactivated Ca(2+) channels. Trends Neurosci. 24:176–181. 
doi:10.1016/S01662236(00)017380

Thibault, O., and P.W. Landfield. 1996. Increase in single Ltype calcium chan
nels in hippocampal neurons during aging. Science. 272:1017–1020. 
doi:10.1126/science.272.5264.1017

Thibault, O., J.C. Gant, and P.W. Landfield. 2007. Expansion of the calcium hy
pothesis of brain aging and Alzheimer’s disease: minding the store. Aging 
Cell. 6:307–317. doi:10.1111/j.14749726.2007.00295.x

Tsien, R.W., D. Lipscombe, D.V. Madison, K.R. Bley, and A.P. Fox. 1988. 
Multiple types of neuronal calcium channels and their selective modula
tion. Trends Neurosci. 11:431–438. doi:10.1016/01662236(88)901944

Tsujita, K., T. Itoh, T. Ijuin, A. Yamamoto, A. Shisheva, J. Laporte, and T. 
Takenawa. 2004. Myotubularin regulates the function of the late endosome  
through the gram domainphosphatidylinositol 3,5bisphosphate inter
action. J. Biol. Chem. 279:13817–13824. doi:10.1074/jbc.M312294200

Westenbroek, R.E., M.K. Ahlijanian, and W.A. Catterall. 1990. Clustering of 
Ltype Ca2+ channels at the base of major dendrites in hippocampal 
pyramidal neurons. Nature. 347:281–284. doi:10.1038/347281a0

Zhang, Y., S.N. Zolov, C.Y. Chow, S.G. Slutsky, S.C. Richardson, R.C. Piper, 
B. Yang, J.J. Nau, R.J. Westrick, S.J. Morrison, et al. 2007. Loss of 
Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5 
bisphosphate, results in neurodegeneration in mice. Proc. Natl. Acad. Sci. 
USA. 104:17518–17523. doi:10.1073/pnas.0702275104

Efe, J.A., R.J. Botelho, and S.D. Emr. 2005. The Fab1 phosphatidylinositol ki
nase pathway in the regulation of vacuole morphology. Curr. Opin. Cell 
Biol. 17:402–408. doi:10.1016/j.ceb.2005.06.002

Gary, J.D., A.E. Wurmser, C.J. Bonangelino, L.S. Weisman, and S.D. Emr. 1998. 
Fab1p is essential for PtdIns(3)P 5kinase activity and the maintenance 
of vacuolar size and membrane homeostasis. J. Cell Biol. 143:65–79. 
doi:10.1083/jcb.143.1.65

GomezOspina, N., F. Tsuruta, O. BarretoChang, L. Hu, and R. Dolmetsch. 
2006. The C terminus of the Ltype voltagegated calcium channel 
Ca(V)1.2 encodes a transcription factor. Cell. 127:591–606. doi:10.1016/ 
j.cell.2006.10.017

Green, E.M., C.F. Barrett, G. Bultynck, S.M. Shamah, and R.E. Dolmetsch. 
2007. The tumor suppressor eIF3e mediates calciumdependent inter
nalization of the Ltype calcium channel CaV1.2. Neuron. 55:615–632. 
doi:10.1016/j.neuron.2007.07.024

Gu, C., Y.N. Jan, and L.Y. Jan. 2003. A conserved domain in axonal targeting of 
Kv1 (Shaker) voltagegated potassium channels. Science. 301:646–649. 
doi:10.1126/science.1086998

Haase, H., A. Kresse, A. Hohaus, H.D. Schulte, M. Maier, K.J. Osterziel, P.E. 
Lange, and I. Morano. 1996. Expression of calcium channel subunits in 
the normal and diseased human myocardium. J. Mol. Med. 74:99–104. 
doi:10.1007/BF00196785

Hell, J.W., R.E. Westenbroek, C. Warner, M.K. Ahlijanian, W. Prystay, M.M. 
Gilbert, T.P. Snutch, and W.A. Catterall. 1993. Identification and dif
ferential subcellular localization of the neuronal class C and class D 
Ltype calcium channel alpha 1 subunits. J. Cell Biol. 123:949–962. 
doi:10.1083/jcb.123.4.949

Ikonomov, O.C., D. Sbrissa, and A. Shisheva. 2001. Mammalian cell morphol
ogy and endocytic membrane homeostasis require enzymatically active 
phosphoinositide 5kinase PIKfyve. J. Biol. Chem. 276:26141–26147. 
doi:10.1074/jbc.M101722200

Jarvis, S.E., and G.W. Zamponi. 2007. Trafficking and regulation of neuronal 
voltagegated calcium channels. Curr. Opin. Cell Biol. 19:474–482. 
doi:10.1016/j.ceb.2007.04.020

Korenkov, A.I., J. Pahnke, K. Frei, R. Warzok, H.W. Schroeder, R. Frick, L. 
Muljana, J. Piek, Y. Yonekawa, and M.R. Gaab. 2000. Treatment with 
nimodipine or mannitol reduces programmed cell death and infarct 
size following focal cerebral ischemia. Neurosurg. Rev. 23:145–150. 
doi:10.1007/PL00011946

Lau, C.G., and R.S. Zukin. 2007. NMDA receptor trafficking in synaptic plas
ticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 8:413–426. 
doi:10.1038/nrn2153

Lawe, D.C., V. Patki, R. HellerHarrison, D. Lambright, and S. Corvera. 2000. 
The FYVE domain of early endosome antigen 1 is required for both phos
phatidylinositol 3phosphate and Rab5 binding. Critical role of this dual 
interaction for endosomal localization. J. Biol. Chem. 275:3699–3705. 
doi:10.1074/jbc.275.5.3699

Matsumoto, T.K., A.J. Ellsmore, S.G. Cessna, P.S. Low, J.M. Pardo, R.A. Bressan, 
and P.M. Hasegawa. 2002. An osmotically induced cytosolic Ca2+ tran
sient activates calcineurin signaling to mediate ion homeostasis and salt 
tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 277:33075–33080. 
doi:10.1074/jbc.M205037200

Michell, R.H., V.L. Heath, M.A. Lemmon, and S.K. Dove. 2006. 
Phosphatidylinositol 3,5bisphosphate: metabolism and cellular func
tions. Trends Biochem. Sci. 31:52–63. doi:10.1016/j.tibs.2005.11.013

Nicot, A.S., and J. Laporte. 2008. Endosomal phosphoinositides and human dis
eases. Traffic. 9:1240–1249. doi:10.1111/j.16000854.2008.00754.x

Nicot, A.S., H. Fares, B. Payrastre, A.D. Chisholm, M. Labouesse, and J. 
Laporte. 2006. The phosphoinositide kinase PIKfyve/Fab1p regulates 
terminal lysosome maturation in Caenorhabditis elegans. Mol. Biol. Cell. 
17:3062–3074.

Odorizzi, G., M. Babst, and S.D. Emr. 1998. Fab1p PtdIns(3)P 5kinase function 
essential for protein sorting in the multivesicular body. Cell. 95:847–858. 
doi:10.1016/S00928674(00)817079

Onishi, M., Y. Nakamura, T. Koga, K. Takegawa, and Y. Fukui. 2003. Isolation 
of suppressor mutants of phosphatidylinositol 3phosphate 5kinase defi
cient cells in Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem. 
67:1772–1779. doi:10.1271/bbb.67.1772

Orrenius, S., B. Zhivotovsky, and P. Nicotera. 2003. Regulation of cell death: 
the calciumapoptosis link. Nat. Rev. Mol. Cell Biol. 4:552–565. 
doi:10.1038/nrm1150

Rusten, T.E., L.M. Rodahl, K. Pattni, C. Englund, C. Samakovlis, S. Dove, A. 
Brech, and H. Stenmark. 2006. Fab1 phosphatidylinositol 3phosphate 
5kinase controls trafficking but not silencing of endocytosed receptors. 
Mol. Biol. Cell. 17:3989–4001. doi:10.1091/mbc.E06030239

Rutherford, A.C., C. Traer, T. Wassmer, K. Pattni, M.V. Bujny, J.G. Carlton, H. 
Stenmark, and P.J. Cullen. 2006. The mammalian phosphatidylinositol 

dx.doi.org/10.1242/jcs.03153
dx.doi.org/10.1021/bi001897f
dx.doi.org/10.1074/jbc.M611678200
dx.doi.org/10.2174/1389450043345209
dx.doi.org/10.1038/28879
dx.doi.org/10.1016/S0166-2236(00)01738-0
dx.doi.org/10.1126/science.272.5264.1017
dx.doi.org/10.1111/j.1474-9726.2007.00295.x
dx.doi.org/10.1016/0166-2236(88)90194-4
dx.doi.org/10.1074/jbc.M312294200
dx.doi.org/10.1038/347281a0
dx.doi.org/10.1073/pnas.0702275104
dx.doi.org/10.1016/j.ceb.2005.06.002
dx.doi.org/10.1083/jcb.143.1.65
dx.doi.org/10.1016/j.cell.2006.10.017
dx.doi.org/10.1016/j.cell.2006.10.017
dx.doi.org/10.1016/j.neuron.2007.07.024
dx.doi.org/10.1126/science.1086998
dx.doi.org/10.1007/BF00196785
dx.doi.org/10.1083/jcb.123.4.949
dx.doi.org/10.1074/jbc.M101722200
dx.doi.org/10.1016/j.ceb.2007.04.020
dx.doi.org/10.1007/PL00011946
dx.doi.org/10.1038/nrn2153
dx.doi.org/10.1074/jbc.275.5.3699
dx.doi.org/10.1074/jbc.M205037200
dx.doi.org/10.1016/j.tibs.2005.11.013
dx.doi.org/10.1111/j.1600-0854.2008.00754.x
dx.doi.org/10.1016/S0092-8674(00)81707-9
dx.doi.org/10.1271/bbb.67.1772
dx.doi.org/10.1038/nrm1150
dx.doi.org/10.1091/mbc.E06-03-0239

