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Abstract

Protein quality control (PQC) systems play essential roles in the recognition, refolding and clearance of aberrant
proteins, thus ensuring cellular protein homeostasis, or proteostasis. Especially, continued proliferation and
differentiation of stem cells require a high rate of translation; therefore, accurate PQC systems are essential to
maintain stem cell function. Growing evidence suggested crucial roles of PQC systems in regulating the stemness
and differentiation of stem cells. This review focuses on current knowledge regarding the components of the
proteostasis network in stem cells, and the importance of proteostasis in maintaining stem cell identity and
regenerative functions. A complete understanding of this process might uncover potential applications in aging
intervention and aging-related diseases.
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Background
Stem cells serve as the origin of a multicellular organism.
They can divide to give rise to daughter cells that remain
as stem cells or become differentiated with a specific func-
tion. The multi-differentiation potential gives stem cells
unparalleled advantages in regenerative medicine. Origin-
ally, stem cells can be categorized into two main groups:
embryonic stem cells (ESCs) and adult stem cells (ASCs).
Yet with the development of reprogramming technologies,
somatic cells can also be reprogrammed into ESC-like
cells, termed as induced pluripotent stem cells (iPSCs).
Collectively, ESCs and iPSCs are referred to as pluripotent
stem cells (PSCs) because of their high capacity for self-
renewal and their ability for multipotent differentiation,
offering far-reaching potential in disease modeling and
transplant therapies (Evans and Kaufman, 1981; Shu et al.,
2013; Yamanaka, 2009). On the other hand, ASCs are
undifferentiated cells distributed throughout the body, and
have the ability to differentiate into several restricted cell
types and to participate in tissue regeneration (Passier and

Mummery, 2003; Wagers and Weissman, 2004). Due to
their lower immunogenicity and higher safety profile, cer-
tain ASCs (eg. MSCs) are recognized as the most promis-
ing source for cell therapy (Kode et al., 2009; Pessina and
Gribaldo, 2006).
Researches focused on stem cells have attracted much

attention in recent years, with a particular focus on the
transcription factor networks that regulate their stemness
and differentiation (Avilion et al., 2003; Chambers et al.,
2003; Cui et al., 2018; Nichols et al., 1998; Wang et al.,
2019b). Other aspects of regulation, such as miRNAs and
epigenetic modifications, have also been studied exten-
sively (Atlasi and Stunnenberg, 2017; Avgustinova and
Benitah, 2016; Croce and Calin, 2005; Foshay and Galli-
cano, 2009; Hsieh and Gage, 2004; Martinez and Gregory,
2010; Meissner, 2010; Shenoy and Blelloch, 2014; Wang
et al., 2007; Wu and Sun, 2006; Yu et al., 2012). Although
there has been less focus on posttranslational mechanisms
of regulation, recent studies indicate that there is a close
connection between protein quality control (PQC) and
stem cell function (Assou et al., 2009; Bradley et al., 2012;
Buckley et al., 2012; Fernandes et al., 2019; García-Prat
et al., 2017; Geng et al., 2015; Heijmans et al., 2013;
Hernebring et al., 2013; Jang et al., 2014; Kapetanou et al.,
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2017; Noormohammadi et al., 2018; Saretzki et al., 2004;
Schroter and Adjaye, 2014; Vilchez et al., 2013).
A single cell contains billions of proteins with a total

concentration ranging from 50 to 300mg/ml (Asherie,
2004; Finka and Goloubinoff, 2013). Genetic mutation,
transcriptional or translational errors, protein misfolding
and aggregation can all lead to the generation of aberrant
proteins (Goldberg, 2003; San Jose et al., 2020; Sigurdsson
and Miharada, 2018). These aberrant proteins may form
toxic aggregates and cause deleterious effects on cell func-
tion and viability, which may ultimately lead to human
diseases (Balch et al., 2008; Bennett et al., 2005; Gidalevitz
et al., 2011; Koyuncu et al., 2018; Powers et al., 2009; San
Jose et al., 2020). In addition, accumulation of aberrant
proteins in stem cells may also contribute to the aging
process (Kapetanou et al., 2017; Vilchez et al., 2014b;
Wang et al., 2018b).
To prevent aberrant proteins from accumulating, cells

have evolved an elaborate network of PQC systems to
recognize abnormal proteins and to facilitate their refold-
ing or degradation (Fig. 1) (Chen et al., 2011; Goldberg,
2003; Leeman et al., 2018; Revuelta and Matheu, 2017;
Richter et al., 2010). PQC systems operate since the begin-
ning of polypeptide synthesis to avoid creating aberrant
proteins, by altering the rate of translation that is
dependent on the organization of ribosomes (Gingold and
Pilpel, 2011; Wolff et al., 2014). There are also several
pathways that ensure proteostasis after protein synthesis.
Under stress conditions, the accumulation of misfolded
and unfolded proteins in the cytoplasm, endoplasmic
reticulum (ER), and mitochondria triggers the unfolded
protein response (UPR). If aberrant proteins cannot be
rescued by chaperones and the UPR pathway, they will be
degraded via the ubiquitin-proteasome system (UPS) or
autophagy pathways for the cell to regain protein homeostasis
(Vilchez et al., 2014b). A study of the proteomic features

of human embryonic stem cells (hESCs) during self-
renewal stage, classified about 60 proteins as the most
abundant proteins. Most of these are chaperones and UPS
components (Baharvand et al., 2006), indicating that PQC
systems are of great importance in maintaining stem cell
pluripotency.
In this review, we highlight the importance of proteosta-

sis in stem cells with recent advances that revealed central
mechanisms by which the proteostasis network regulates
stem cell function. A thorough understanding of these
mechanisms will be crucial for harnessing the therapeutic
potentials of stem cells and for maximizing their utility as
models to understand development and diseases.

Pathways controlling protein folding in stem cells
Proteostasis has been recognized as the cornerstone of
stem cell homeostasis. The regulation of protein folding
and recognition of abnormal products involve multiple
components, which mainly belong to the chaperone family
and the UPR pathway (García-Prat et al., 2017). In the fol-
lowing subsections, we discuss the critical roles of molecu-
lar chaperones and UPR in regulating cell stemness.

Chaperones
Chaperones, which themselves are under precise regula-
tion in the cell, are initially considered as protein folding
assistants (Fink, 1999). Later, some chaperones are also
found to involve in signaling the ER stress response, deliv-
ering misfolded proteins for degradation, and breaking up
protein aggregates (Jarosz et al., 2010; Mcclellan et al.,
2005; Taipale et al., 2010; Trepel et al., 2010). There are
several different groups of chaperones, whose nomencla-
ture is typically based on their molecular weight and stim-
uli in the original studies. The first group consists of high-
molecular weight heat shock proteins (HSPs), including
the HSP110, HSP90, HSP70, and HSP60 families. The

Fig. 1 The Pathways of Protein Quality Control in Stem Cells. The four main pathways of protein quality control in stem cells are depicted here.
Chaperones can facilitate the folding of polypeptides into the right structure. The unfolded protein response (UPR) is activated by misfolded
proteins to aid refolding and to maintain protein homeostasis. Misfolded and damaged proteins can be degraded through the ubiquitin-
proteasome system (UPS) or autophagy
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second group of HSPs, induced by glucose starvation, in-
cludes glucose-regulated proteins (GRPs) 75 (HSPA9), 78
(HSPA5), and 94 (HSP90B1). The third group of HSPs,
mainly located in the extracellular matrix, includes
HSP40, HSP47, and HSP56 (Boudesco et al., 2018; Jee,
2016; Michels et al., 1997; Sterrenberg et al., 2011). Small
HSPs including HSPB1-B10, whose molecular weights
range from 12 to 30 kDa, are categorized as the fourth
group (Fan and Kranias, 2011; Kappe et al., 2003; Sciandra
and Subjeck, 1983). By analyzing proteomic profiles of hu-
man cells, numerous chaperones and co-chaperones have
been identified as potential regulators that help to delay
aging and aging-related diseases (Baharvand et al., 2006;
Brehme et al., 2014).
Levels of HSPs are higher in stem cells than in differenti-

ated cells. For instance, HSPs such as HSPA1a, HSPA1b,
HSPA9, and HSPB1 are highly expressed in both human
and mouse embryonic stem cells (mESCs), while such high
levels of expression diminish during differentiation (Bahar-
vand et al., 2006; Battersby et al., 2007; Saretzki et al.,
2004; Saretzki et al., 2008). Joint analysis of expression pro-
files of chaperones in human ESCs, mesenchymal stem
cells (MSCs), and neural stem cells (NSCs) showed that
high levels of HSPA5, HSPA8, and Stip1 expression are
shared by these different types of stem cells (Baharvand
et al., 2007). hESCs show a unique chaperone expression
signature of HSPA4, HSPB1, and HSPCb (Baharvand
et al., 2007). On the other hand, changes in the expression
of certain HSPs may serve as differentiation markers of
ESCs (Fan, 2012). For example, expression of HSP60,
HSP70, HSP25 and co-chaperone Hop were greatly re-
duced during mESC differentiation (Baharvand et al.,
2008; Baharvand et al., 2007; Battersby et al., 2007). Simi-
larly, expression of HSPB1, HSPB5, and HSP60 decreases
during differentiation of human adipose-derived ASCs
(Delany et al., 2005). Yet, certain HSPs, such as HSPB1, do
not decrease during hESC differentiation, but decrease
during mESC differentiation (Saretzki et al., 2008), indicat-
ing differences in the proteostasis network between hESCs
and mESCs. Nonetheless, high levels of chaperones may
capacitate stem cells with greater abilities to cope with ab-
errant proteins and to maintain cellular homeostasis than
differentiated cells. The main differences in the levels of
chaperones between stem cells and differentiated cells are
summarized here in Fig. 2.
In addition to the aforementioned correlative links,

causal relationships have also been established between
chaperones and stemness. For example, suppressing
HSP90 expression contributed to mESC differentiation,
at least partially because HSP90 protects Oct4 and
Nanog from degradation by the proteasome (Bradley
et al., 2012). Hsp90β knockout mice are embryonically
lethal (Voss et al., 2000). The expression of HSP70 and
HSP90 promotes survival of bone marrow MSCs after

heat shock treatment (Wang et al., 2019a). HSP90 plays
an important role in controlling the formation of hepatic
progenitor cells by directly interacting with HNF4A pro-
tein, an essential transcription factor for hepatic progeni-
tor specification from hPSCs (Jing et al., 2017). In
addition, the absence of HSP60 is associated with the si-
lencing of Oct4, and its deficiency can inhibit the prolif-
eration and self-renewal of mESCs, and promote
apoptosis as well (Seo et al., 2018).
Besides individual chaperone proteins, hPSCs also ex-

hibit enhanced assembly of the TRiC/CCT complex, a
chaperonin that promotes the folding of roughly 10% of
the whole proteome and reduces toxic protein aggregation
(Noormohammadi et al., 2016). CCT8, one subunit of the
TRiC/CCT complex, has been identified as a key pro-
moter of its assembly and ectopic expression of CCT8 is
also sufficient to increase its assembly (Noormohammadi
et al., 2016). On the contrary, during the differentiation of
neural stem and progenitor cells (NSPCs), the level of
TRiC/CCT complex is reduced, while small heat shock
proteins are induced, thus promoting the sequestration of
misfolded protein into protective inclusions and maintain-
ing proteostasis (Vonk et al., 2020). A thorough investiga-
tion of chaperone networks in stem cell maintenance and
differentiation is needed to aid our understanding of its
vital role in enhancing cellular function.

Unfolded protein response
The endoplasmic reticulum (ER) is a central cellular or-
ganelle in proteostasis. It is involved in the synthesis,
modification, and delivery of proteins to their target sites
in the secretory pathway and the extracellular space
(Schroder and Kaufman, 2005). Under ER stress condi-
tions, the ER unfolded protein response (UPRER) is acti-
vated to cope with misfolded proteins, either facilitating
their proper re-folding or delivering them for degrad-
ation via the proteasome or autophagy pathways (Araki
and Nagata, 2011). Growing evidence has revealed the
significance of UPR in the pathogenesis of diseases, such
as cancer, metabolic syndromes and aging-related dis-
eases (Hetz et al., 2020; Huang et al., 2019; Martínez
et al., 2018; Urra et al., 2016; Wang et al., 2018a).
In the ER homeostasis, GRP78 (also named as BiP) is a

central regulator, as it plays a vital role in protein folding,
ER calcium binding, and regulating the activities of trans-
membrane ER stress sensors. Consistently, Grp78 homo-
zygous knockout mouse embryos failed to hatch from
zona pellucida, and exhibited proliferation defects and ex-
tremely high levels of apoptosis in the inner cell mass,
demonstrating that Grp78 is crucial for embryonic cell
growth and pluripotent cell survival (Luo et al., 2006). The
signals of protein folding status are transduced to the
cytosol and nucleus through activation of three different
ER transmembrane proteins: ATF6 (activated
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transcription factor 6), PERK (double stranded RNA acti-
vated protein kinase-like ER kinase), and IRE1α (inositol-
requiring transmembrane kinase and endonuclease) (Hetz,
2012). Clear proof for the impact of the UPR in ESC dif-
ferentiation comes with activation of ATF6 by Dickkopf
homolog 3, which promotes the differentiation of ESCs
into smooth muscle cells (Wang et al., 2015).
Besides ESCs, the UPR pathway also regulates the self-

renewal and differentiation of ASCs. For example, overex-
pressing the co-chaperone ERDJ4 (also named as DNAJB9)
enhances ER protein folding, thereby increasing the re-
population capacity of hematopoietic stem cells (HSCs) in
xenograft assays, connecting the UPR to the maintenance
of HSC properties (van Galen et al., 2014). In human
iPSC-derived cardiomyocytes, PAK2 (p21-activated kinase
2) activation can enhance ER function, reduce cell apop-
tosis, and protect from heart failure through the IRE1α/
XBP1 (X-box binding protein 1)-dependent pathway
(Binder et al., 2019). On the contrary, hematopoietic stem
and progenitor cells (HSPCs) with HIF-2α knockout

exhibit high levels of reactive oxygen species (ROS), which
subsequently induces ER stress and apoptosis via activation
of the UPR pathway (Rouault-Pierre et al., 2013). Similarly,
inactivation of ATF6 impairs the ER tubular network of
human MSCs and eventually leads to cellular senescence
(Wang et al., 2018b). Likewise, human HSCs show a proa-
poptotic phenotype to prevent the proliferation of dam-
aged stem cells after activation of the PERK branch of the
UPR pathway during ER stress, as damaged HSCs are rap-
idly cleared whereas closely related progenitors are spared
(van Galen et al., 2014). The PERK branch of the UPR has
also been found to regulate the homeostasis of skeletal
muscle stem cells (also known as satellite cells) during re-
generative myogenesis and is crucial for their survival after
activation from quiescence (Xiong et al., 2017). On the
other hand, during the differentiation of rat bone marrow
stromal cells and mESCs into neurons, three branches of
the UPR are activated, accompanied by the expression of
neuronal markers (Cho et al., 2009). ER stress during the
transition from stem cells to differentiated cells activates

Fig. 2 Differences of Unfolded Protein Response (UPR) Networks in Stem Cells and in differentiated Cells. Molecular chaperones facilitate the
folding of nascent polypeptides into native protein and the refolding of misfolded proteins as well. If refolding fails, the chaperones deliver
misfolded proteins for degradation. High levels of chaperones are present in stem cells, suggesting that stem cells have a greater capacity to
assure the proper folding of proteins (Baharvand et al., 2008; Battersby et al., 2007; Saretzki et al., 2004). Similarly, the proteasome activity is also
activated in stem cells, regulating the levels of key transcriptional factors and degrading misfolded proteins (Vilchez et al., 2012). Consequently, ER
stress, UPR, and apoptosis are kept at a lower level in stem cells. In contrast, during differentiation, the levels of chaperones decrease, whereas ER
stress increases (DeLany et al., 2005). The three signal transducers (PERK, IRE1α, and ATF6) of UPR are activated upon the increase of ER stress at
the transition from stem cells to mature cell types (Hetz, 2012; Sugiura et al., 2009), suggesting their potential as markers for differentiation
(Heijmans et al., 2013)

Yan et al. Cell Regeneration            (2020) 9:22 Page 4 of 11



UPR, and multipotency is lost in a PERK-eIF2-dependent
manner after ER stress (Heijmans et al., 2013).
In addition to UPRER, the mitochondrial unfolded pro-

tein response (UPRMT) also plays an important role in
the maintenance of stem cell characteristics and homeo-
stasis (Mohrin et al., 2018; Shen et al., 2020). SIRT7 in-
activation can increase mitochondrial protein folding
stress, reduce the regeneration ability of HSCs, and ul-
timately lead to aging (Mohrin et al., 2015). During stem
cell reprogramming, UPRER and UPRMT are both acti-
vated to ensure proteostasis, and the transient activation
of UPRER is an important step in the process of repro-
gramming (Simic et al., 2019).

Pathways of aberrant protein degradation in stem
cells
With the decline of chaperone activity, aberrant proteins
accumulate and are detrimental to stem cell function
and homeostasis. Therefore, aberrant proteins are con-
stantly removed by the UPS or through autophagy (Ta-
naka and Matsuda, 2014). Below we discuss recent
evidence of the importance of the UPS and autophagy
pathways in stem cells.

Ubiquitin-proteasome system (UPS)
In the UPS, damaged proteins are first tagged with multiple
ubiquitin molecules and then recognized and proteolyzed by
the proteasome (Glickman and Ciechanover, 2002; Mukho-
padhyay and Riezman, 2007; Seifert and Kruger, 2008). Active
proteasomes are mainly constituted by the 20S core particle,
which is the catalytic center, and the 19S regulatory particle,
which identifies the polyubiquitylated substrate and unfolds it
for translocation into the 20S proteolytic core (Finley, 2009;
Vilchez et al., 2014a). Thus, damaged proteins are digested to
short peptides (Vilchez et al., 2014b).
The UPS is involved in the maintenance of pluripotency

in ESCs by both promoting the degradation of
differentiation-associated proteins and maintaining the
homeostasis of pluripotency-associated proteins (Fig. 1)
(Assou et al., 2009; Buckley et al., 2012; Cho et al., 2014;
Hernebring et al., 2013; Jang et al., 2014; Vilchez et al.,
2013; Vilchez et al., 2012). In general, proteasome activity
is considerably higher in pluripotent cells than in differen-
tiated cells (Vilchez et al., 2012). For example, both hESCs
and iPSCs exhibit high proteasome activity, which is corre-
lated with increased levels of the 19S proteasome subunit
PSMD11 (Vilchez et al., 2012). And differentiation of
hESCs to neural progenitor cells and to mature neurons is
accompanied by downregulation of PSMD11 (Vilchez
et al., 2012). Consequently, ubiquitin ligases, such as
LIN41, UBR5 and USP21, are also regarded as important
regulators in maintaining pluripotency and reprogramming
of PSCs (Koyuncu et al., 2018; Liu et al., 2016b; Nguyen
et al., 2017). When stem cells are treated with MG132, a

proteasome inhibitor, the levels of pluripotency markers
decrease and the levels of specific germ-layer markers
(FGF5 and GATA4) increase (Assou et al., 2009; Vilchez
et al., 2012). Transcription factors can also function
through proteasome to control stem cell fate decision. For
example, nuclear factor erythroid 2-like 2 (Nrf2) activates
the expression of proteasome maturation protein (POMP),
which in turn participates in hESC pluripotency and som-
atic cell reprogramming (Jang et al., 2014). Other research
revealed that the proteasome could prevent transcription
factors from binding to tissue-specific gene regions in
ESCs, so that the differentiation-associated genes are re-
stricted at the pluripotent cell stage (Szutorisz et al., 2006).
There is also growing evidence of the importance of the

UPS in ASCs. Studies revealed that F box E3 ubiquitin lig-
ase (FBXW7) plays a crucial role in the self-renewal and
differentiation of HSCs and NSCs (Matsumoto et al.,
2011; Matsuoka et al., 2008; Reavie et al., 2010; Saez et al.,
2018; Thompson et al., 2008). Furthermore, a combination
of RNAi screening and shotgun proteomic analysis char-
acterizes the opposing effects between deubiquitinating
enzyme PSMD14 and the E3 ligase FBXW7 in maintain-
ing cellular pluripotency (Buckley et al., 2012). In satellite
cells, deficiency of an essential proteasomal component
Rpt3 can reduce the proteasome activity, impair cell pro-
liferation, and eventually lead to cell-cycle arrest (Kitajima
et al., 2018). Furthermore, proteasomes also prevent the
binding of certain transcription factor and RNA polymer-
ase Pol II to tissue-specific genes in ESCs, which could
contribute to cell fate determination (Szutorisz et al.,
2006). In addition, vimentin, a key regulator of cellular
protein stability, can recruit proteasomes to aggresomes to
remove aggregates in NSCs, and to facilitate the activation
of quiescent NSCs (Maybury-Lewis and Webb, 2020;
Morrow et al., 2020).
Taken together, the UPS is essential for maintaining

stemness in both PSCs and ASCs, and dysfunction of the
UPS may contribute to perturbed stem cell function and
fate control. The main differences between UPS-related cel-
lular reactions in stem cells and those in differentiated cells
were summarized in Fig. 2. Furthermore, ER-associated
degradation (ERAD) is yet another quality control mechan-
ism that allows for the proteasomal degradation of mis-
folded proteins in the ER (Carvalho et al., 2006; Hampton
et al., 1996). However, the function of ERAD in stem cells
has not been well studied. Recently, a bioRxiv preprint re-
vealed the essential role of ERAD in preserving the function
of quiescent HSCs (Liu et al., 2019). Deficiency of an ERAD
associated gene, Sel1L, reduced self-renewal and resulted in
HSC depletion (Liu et al., 2019).

Autophagy
Misfolded and aggregated proteins can also be degraded
by a separate autophagy-mediated pathway. Autophagy
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is a highly conserved intracellular process, in which
damaged or unwanted proteins, cytosolic fractions, and
organelles are degraded by the lysosome (He and
Klionsky, 2009). It is characterized by the engulfment of
the targeted cytoplasmic components with a double-
membrane vesicle, forming the autophagosome. The
autophagosome then fuses with the lysosome, where the
encapsulated contents are released and degraded by
lysosomal enzymes. In this process, the released nutri-
ents, i.e. peptides, free amino acids, and fatty acids, can
be recycled for ATP generation or protein synthesis
(Mizushima, 2007). Intrinsic and extrinsic stress condi-
tions, such as ER stress, ROS, hypoxia, starvation, and
bacterial infections, are well-characterized inducers of
autophagy (Chen et al., 2009; Singh and Cuervo, 2011;
Yorimitsu and Klionsky, 2007).
Despite extensive research on autophagy in somatic cell

physiology, relatively little is known about the roles of au-
tophagy in stem cell biology. Recent studies report that
autophagy is crucial for ESCs and for various ASCs, i.e.
HSCs, MSCs, NSCs, and gut stem cells, although with dif-
ferent requirements for its activity (He et al., 2020; Liu
et al., 2017; Mizushima et al., 2001; Mortensen et al., 2011;
Peng et al., 2017; Sanchez et al., 2011).
In contrast to the high levels of proteasome activity

observed during self-renewal, high levels of autophagy
activity was exhibited during early differentiation of
ESCs and NSCs (Tra et al., 2011; Vazquez et al., 2012).
For example, deficiency of Apg5 in mESCs causes defects
in autophagosome formation and consequent accumula-
tion of proteins in the cytoplasm (Mizushima et al.,
2001). Mutant mice lacking beclin-1, a mammalian
ortholog of the yeast autophagy-related gene 6, die early
in embryogenesis, and the autophagic response in
mESCs is significantly altered as a result of the beclin-1
deficiency (Yue et al., 2003). Additionally, immunogold-
electron microscopy directly confirmed the localization
of OCT4 molecules within autophagosomes, and inhibit-
ing autophagy increases the accumulation of
pluripotency-associated proteins in hESCs (Cho et al.,
2014). In dormant NSCs, lysosomal pathways are acti-
vated to clear protein aggregates, thus restoring them to
the young state (Leeman et al., 2018). Inhibition of this
pathway has been related to some neurodegenerative
disorders, cancers, and aging (Chen et al., 2011;
Levine and Kroemer, 2008; Rubinsztein et al., 2011).
Furthermore, increasing the expression of several
autophagy-related genes promotes the differentiation
of NSCs into neurons (Vazquez et al., 2012). NSCs
with heterozygous deficiency of Ambra1, an autoph-
agy gene, are impaired for neuronal generation (Vaz-
quez et al., 2012).
Different from ESC sand NSCs, in which autophagy ac-

tivity is required during differentiation, autophagy activity

is decreased during the differentiation of MSCs, HSCs, der-
mal stem cells, and epiblast stem cells (Mortensen et al.,
2011; Nuschke et al., 2014; Oliver et al., 2012; Pan et al.,
2013; Salemi et al., 2012). Although hMSCs exhibit high
levels of intrinsic autophagy during self-renewal, upon dif-
ferentiation into osteoblasts or neurons, autophagy is at-
tenuated to a relatively low level (Oliver et al., 2012).
Similarly, upon the induction of osteogenic and adipogenic
differentiation, the autophagosome marker LC3 II is lost in
the early stage of differentiation (Nuschke et al., 2014). On
the other hand, slightly increasing autophagy activity can
protect MSCs from hypoxia- or ischemia-induced injury
(Hu et al., 2019). Similarly, microRNA (miR)-142-5p was
found at a high level in MSCs derived from bone marrow
of aged mice and can cause ROS accumulation through
the disruption of selective autophagy for peroxisomes (pex-
ophagy). Thus, endothelial PAS domain protein 1 (EPAS1)
targeted by miR-142-5p has been identified as a regulatory
protein of pexophagy (Houri et al., 2020). Under starvation
conditions or rapamycin treatment, autophagy is activated
to cope with DNA damage induced by oxidative stress and
to maintain MSC pluripotency. When the activity of au-
tophagy is inhibited, the stemness of MSC is lost (Hou
et al., 2013). Moreover, impaired autophagy activity in
HSCs caused by knocking out either autophagy gene Atg7
or Fip200 in the hematopoietic system results in the loss of
normal HSC function and death of the mice, suggesting
that both autophagy genes are necessary for adult HSC
maintenance (Liu et al., 2010; Mortensen et al., 2011).
Maintaining a high basal autophagy flux can attenuate pro-
teotoxicity in quiescent satellite cells (García-Prat et al.,
2016). While in dormant breast cancer stem cells, targeted
removal of Atg3 or Atg7 can inactivate autophagy and re-
store the expression of 6-photofructo-2-kinase/frutose-2,6-
biphosphatase 3, which can in turn restart cell proliferation
(Flynn et al., 2019). Blocking the expression of ATG5 or 3-
methyladenine (3-MA) with shRNAs, thereby inhibiting
autophagy, impairs the self-renewal capacity in epidermal
stem cells, dermal stem cells, and HSCs. Atg5 plays a key
role in the maintenance of HSCs, and the reconstitution
ability of Atg5-deficient HSCs in bone marrow of chimeric
mice is significantly impaired (Jung et al., 2019). Inhibiting
the sphingolipid enzyme DEGS1 can induce autoph-
agy to maintain functional HSCs (Xie et al., 2019).
Autophagy-related genes such as Atg5, Atg7, and
Atg12 can mediate the self-renewal, differentiation,
and regeneration of the muscle and hematopoietic
system, and the overexpression of Atg7 can rejuvenate
aged satellite cells and HSCs and restore their regen-
eration ability (García-Prat et al., 2016; Ho et al.,
2017). Moreover, the transcription factor FOXO3 is
involved in autophagy induction of NSPCs and func-
tions through autophagy-dependent pathways in
NSPC maintenance (Audesse et al., 2019). These
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findings strongly suggested that autophagy participates
in maintaining the stemness and homeostasis of vari-
ous adult stem cells.
Likewise, autophagy is essential for iPSC reprogram-

ming. A distinguishing feature of iPSCs is that the exist-
ing number and mass of mitochondria in the somatic
cell origins are strikingly diminished during reprogram-
ming. Hence, their metabolic pattern is switched from
oxidative phosphorylation to glycolysis and this is con-
sidered as an important mechanism in iPSC reprogram-
ming. ATG3-dependent autophagy can act as an
executor for mitochondrial clearance during somatic cell
reprogramming (Liu et al., 2016a). Even though it is de-
batable whether or not the ATG5-dependent canonical
autophagy is necessary for reprogramming, the two re-
search groups agreed on that autophagy is indispensable
for iPSC reprogramming (Ma et al., 2015; Wang et al.,
2013). Furthermore, during the reprogramming process
induced by the four Yamanaka factors, Oct4, Sox2, Klf4,
and c-Myc, the expression level of mTORC1 is downreg-
ulated and autophagy-related genes are induced (Wang
et al., 2013; Wu et al., 2015). However, there is also
some debates about how these phenomena are triggered
by the four reprogramming factors. Introducing these
factors into reprogramming cells individually showed
that only ectopic expression of Sox2 downregulates
mTOR expression and facilitates the induction of au-
tophagy (Wang et al., 2013). By contrast, another study
suggested that the four factors repress mTORC1 collab-
oratively, while only Klf4 and c-Myc promote the induc-
tion of autophagy-related genes, and Sox2 and Oct4
inhibit their expression (Wu et al., 2015). In summary,
the role of autophagy is crucial for successful repro-
gramming, but the underpinning mechanisms need to
be further studied.

Conclusions and perspectives
Previous studies have revealed that genomic and epigen-
etic stability is essential for stem cell identity. Yet recent
years have seen increasing evidence that supported a
pivotal role for proteostasis in regulating pluripotency
and differentiation of stem cells as well. Under physio-
logical conditions, the proteostasis network is equipped
with high versatility in response to distinct stimuli (Balch
et al., 2008; Labbadia and Morimoto, 2015; Powers et al.,
2009). During the differentiation of hESCs, both prote-
asome and autophagy are activated to prevent the deliv-
ery of damaged proteins to their self-renewed and
differentiated counterparts. Unlike somatic cells, stem
cells exhibit a highly regulated network for protein
homeostasis as related to their biological characteristics
(Lee et al., 2017). Even though transcriptional factors
and epigenetic regulators have been recognized as the
determinant of stem cell properties, there are also

mounting evidence suggesting that an elaborate proteos-
tasis network is crucial for stemness (Aguilo et al., 2015;
Heintzman et al., 2009; Lee et al., 2017; San Jose et al.,
2020; Yan et al., 2020; You et al., 2015). For example, de-
fects in tRNA editing increase the accumulation of mis-
folded protein, which overwhelms the proteasomes in
HSCs, and eventually impair its proliferation (San Jose
et al., 2020). Likewise, chaperones also serve as signifi-
cant determinants for stem cell pluripotency and differ-
entiation (Bradley et al., 2012). In mESCs, the absence of
Hsp60 and Hsp90 inhibits the expression of Oct4 by
participating in the processing of Oct4 mRNA (Bradley
et al., 2012; Seo et al., 2018). Therefore, deciphering the
proteostasis network and their interaction with the regu-
lators of epigenome and transcriptome for maintaining
the function of stem cells is worthy of further research.
Furthermore, defects in proteostasis lead to the dysfunc-

tion of somatic stem cells, and eventually result in impair-
ment of organismal development and aging, which
encourages studies of PQC in search of treatment of aging
and aging-related diseases. Pathological conditions, envir-
onmental and metabolic stresses, and aging contribute to
the production of aberrant proteins in addition to the nor-
mal and physiological sources of misfolded proteins (Hai-
gis and Yankner, 2010). To maintain cellular protein
homeostasis and restore viability, cells have developed a
precise network to regulate and preserve the integrity of
the proteome. Chaperones are essential for assisting pro-
tein folding and refolding of nascent and aberrant proteins.
If the aberrant proteins cannot be refolded, they will be
degraded through the ubiquitin-proteasome system or
autophagy. Hence, deciphering in more detail the role of
proteostasis during these events and the mechanisms
underlying these changes will shed new light on the rela-
tionship between PQC and stem cell biology. As reviewed
here, increasing evidence demonstrates that proteostasis
plays a key role in the regulation of pluripotency (Lee
et al., 2017). In addition, the regulators of PQC can also be
core components in assisting the reprogramming process
(Buckley et al., 2012).
Study of the regulatory network in proteostasis will

also provide new aspects in understanding embryonic
development, aging, and pathogenesis. For instance, mis-
folded proteins have been linked to many neurodegener-
ative diseases such as Huntington’s disease, Parkinson’s
disease, and Alzheimer’s disease, in which aberrant pro-
tein aggregates overwhelm the cellular clearance ma-
chinery (Bosco et al., 2011; Finkbeiner, 2011; Schmidt
and Finley, 2014; Selkoe, 2011). Recent researches sug-
gested that protein misfolding is a key contributor to the
progression of several diseases (Crunkhorn, 2015; Hartl
et al., 2011) and loss of proteostasis has been implicated
in stem cell aging (García-Prat et al., 2016). Failure of
autophagy in physiologically aged satellite cells or

Yan et al. Cell Regeneration            (2020) 9:22 Page 7 of 11



genetic impairment of autophagy in young satellite cells
results in senescence due to loss of proteostasis, accom-
panied by mitochondrial dysfunction and oxidative stress
(García-Prat et al., 2016; Kapetanou et al., 2017). Further
support for the link between PQC and longevity comes
from studies demonstrating the activation of protein
clearance mechanisms in longevity promoting pathways,
which contribute to the amelioration of age-related dis-
eases (Chondrogianni et al., 2000; Kapeta et al., 2010;
Kenyon, 2010; Pérez et al., 2009). Further studies in
mammals, especially in non-human primates, are re-
quired to unravel the potential links among PQC, aging,
neurodegenerative disorders, and cancer. Nonetheless,
increasing evidence supports the assertion that modulat-
ing PQC systems in stem cells will facilitate cell differen-
tiation and reprogramming, interfere with cellular
senescence, and sequentially reveal treatments with po-
tential applications in clinical cell therapy. With this in
mind, it will be crucial to develop drugs that activate the
PQC systems to maintain proteostasis, potentially pro-
viding valuable therapeutic approaches for the treatment
of aging and aging-related diseases.
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