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Abstract
Combined chemo-gene therapy is one of the treatment modalities that have attracted exten-

sive research interests; however, there is little information regarding the influence of drug

application on gene transfer. This study bridges this gap by examining how chemotherapeu-

tic drugs (teniposide, cis-diamminedichloroplatinum(II) and temozolomide) interfere with

polyplex formation and transfection of chitosan-graft-poly(ethylenimine). Our results indi-

cate that the degree of drug interference varies with the mechanism of drug action, with the

transgene expression being severely suppressed when the plasmid is co-delivered with cis-
diamminedichloroplatinum(II) or teniposide but not temozolomide. In addition, the interfer-

ence with transfection by drugs varies with different gene/drug co-formulations. This is the

first study to evidence that, though combined chemo-gene therapy has therapeutic poten-

tial, some chemotherapeutic drugs may reduce the treatment efficiency of gene therapy.

Introduction
Chemotherapy is one of the most widely adopted regimes in cancer treatment, yet its efficiency
has been impeded by drug resistance developed in cancer cells [1–6]. One of the emerging ap-
proaches to coping with drug resistance is combined chemo-gene therapy [7,8], which aims at
enhancing the action of chemotherapeutic drugs and re-sensitizing drug-resistant cells to che-
motherapy. The promising potential of combined chemo-gene therapy was evidenced in vitro
by an earlier study in human hepatocellular carcinoma HepG2 cells [9]. In the study, the cell
treatment was mediated by double-walled microspheres, which comprised poly(D,L-lactic-co-
glycolic acid) (PLGA) cores and poly(L-lactic acid) (PLLA) shell layers. The microspheres de-
livered doxorubicin concomitantly with chitosan/DNA nanoparticles containing the p53-en-
coding plasmid. The combined treatment was shown to enhance cancer cell death more
efficiently than treatment with either the polyplexes or the drug [9]. In addition, p53 over-ex-
pression could activate caspase-3, thereby enhancing the anti-proliferative effect of doxorubi-
cin in HepG2 cells [9]. More recently, transfection of cis-diamminedichloroplatinum(II)
(CDDP)-resistant SKOV3/DDP cells with a p53 gene/MDM2-siRNA plasmid was found to
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reduce the protein expression of MDR1/P-gp while increasing p53, PUMA and NOXA expres-
sion [10]. Such a change in protein expression increased the sensitivity of the cells to CDDP by
suppressing apoptotic resistance and enhancing intracellular platinum accumulation. This re-
duced the protein expression of HIF-1, VEGF, MMP-9 and MMP-2, and finally inhibited cell
invasion and migration [10]. Apart from in vitro studies, the potential of chemo-gene therapy
was supported by an in vivo study, which used a human adenovirus type 5 (dE1/E3) containing
the human ABCA10 transgene under the control of the CMV promoter to enhance the effect of
CDDP in lung cancer treatment [11]. The increase in the expression of ABCA proteins aug-
mented the therapeutic effect of CDDP. This, along with other evidence in the literature [9–
14], has illustrated the prospects of combined chemo-gene therapy in future cancer treatment.

Despite the prospects mentioned above, there is still a limited understanding of the interfer-
ence with gene transfer by chemotherapeutic drugs. This study has used chitosan-graft-poly
(ethylenimine) (CP) to examine the effect of three chemotherapeutic drugs [teniposide (VM-
26), CDDP and temozolomide (TMZ)] on polyplex formation and transfection. CP copolymers
are one of the chitosan derivatives that have been extensively studied for non-viral gene deliv-
ery. An earlier study has reported that the transfection efficiency of the CP copolymers is com-
parable to that of Fugene HD in B16, U87, HeLa and C666-1 cells [15]. A similar observation
of the high transfection efficiency of CP was also reported by Hu and co-workers [16], who
found that CP not only has a higher transfection efficiency than PEI 25 kDa in vitro but can
also effectively deliver the CCL22 gene to reduce the tumor growth rate in vivo [16]. Regarding
the potential of CP in cancer treatment, this copolymer has been used as a non-viral vector in
this study to evaluate the interference with gene delivery by chemotherapeutic drugs.

Materials and Methods

2.1 Plasmid preparation
The plasmid pEGFP-N1 was purchased from BD Biosciences (San Jose, CA). It was trans-
formed into competent DH5α cells, and plated onto LB plates supplemented with 100 μg/mL
ampicillin. Afterwards, it was purified with the Plasmid Giga Kit (Quiagen, Valencia, CA) ac-
cording to the manufacturer's guidelines. The quality and quantity of the purified plasmid were
analyzed by measuring its optical densities at 260 and 280 nm.

2.2 Cell culture
Human glioblastoma U87 cells were purchased from ATCC (American Type Culture Collec-
tion). The cells were cultured in minimum essential medium (MEM) containing 10% fetal bo-
vine serum, penicillin (100 units/mL) and streptomycin (100 μg/mL).

2.3 Depolymerization of chitosan
Chitosan was depolymerized according to a method modified fromMao, et al. [17]. Briefly, 1 g
of chitosan was suspended in 98 mL of distilled water. 1 mL of 99% acetic acid and 4 mL of
0.15 M sodium nitrite solution were then added. The reaction mixture was allowed to stay at
25°C for 3 hours. Afterwards, the reaction mixture was filtered, and its pH was adjusted to 8.0.
The reaction mixture was centrifuged at 3500 × g for 15 minutes, and the pellet was collected.
The pellet was washed with distilled water thrice prior to lyophilization.

2.4 Polymer synthesis
The depolymerized chitosan (0.4 g) was dissolved in 4 mL of 0.1% acetic acid. 30 mL of degassed
dimethyl sulfoxide (DMSO), 60 μL of triethylamine and 0.6 g of 1,1’-carbodiimidazole (CDI)
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were added. After 4 hours, poly(ethylenimine) (PEI) (Mw = 1.3 kDa) in DMSO (0.14 g/mL) was
added drop-wise. The reaction mixture was stirred overnight before dialysis and lyophilization.

2.5 Transfection with gene/drug co-formulations
The polymer solution was prepared by solubilizing CP in distilled water at a concentration of
5 μg/μL. VM-26, CDDP and TMZ were dissolved in distilled water at desired concentrations to
obtain different drug solutions. The DNA solution was prepared by dissolving pEGFP-N1 in
Tris/EDTA buffer at a concentration of 1 μg/μL. Different methods were then adopted for poly-
plex preparation (Fig 1). In all formulations, the polymer/DNA (m/m) ratio was taken as 20/1.

CP/DNA/(Drug). The polymer and DNA solutions were vortexed for 30 seconds, and
then left at 37°C for 30 minutes. Afterwards, the polyplex solution was mixed with an aqueous
solution of the chosen drug right before transfection.

CP/DNA/Drug. The polymer, drug and DNA solutions were vortexed for 30 seconds, and
then left at 37°C for 2 hours

(CP/DNA)/Drug. The polymer and DNA solutions were vortexed for 30 seconds, and
then left at 37°C for 30 minutes. Afterwards, the polyplex solution was mixed with an aqueous
solution of the chosen drug, and left at 37°C for 2 hours.

(CP/Drug)/DNA. The polymer and drug solutions were mixed, and left at 37°C for 2
hours. Afterwards, the mixture was mixed with the DNA solution, and left at 37°C for
30 minutes.

24 hours before transfection, U87 cells were seeded in a 24-well plate at a density of 20,000–
50,000 cells per wel1. During transfection, the cell culture medium was replaced with 0.5 mL of
fresh culture medium. The formulation prepared above was added to each well, and the plate
was incubated at 37°C for 5 hours. After that, the transfection medium was removed and re-
placed with fresh culture medium. The cells were incubated at 37°C for 48 hours before
further examination.

2.6 Transfection of pre-treated cells
U87 cells were seeded in a 24-well plate at a density of 20,000–50,000 cells per wel1, and incu-
bated at 37°C for 24 hours. After that, an aqueous solution of the chosen drug was added to
each well until the desired drug concentration was reached. The cells were incubated at 37°C
for 2 hours. Then the medium was replaced with 0.5 mL of fresh culture medium. Polyplexes
were prepared by first mixing the polymer and DNA solutions together at a polymer/DNA (m/
m) ratio of 20/1, followed by an incubation of the solution mixture at 37°C for 30 minutes. The
polyplex solution was added to each well, and the plate was incubated at 37°C for 5 hours.
After that, the transfection medium was removed and replaced with fresh culture medium. The
cells were incubated at 37°C for 48 hours before further examination.

2.7 Quantification of transfected cells
The expression of EGFP in transfected cells was monitored by confocal fluorescence microsco-
py after 48 hours of post-transfection incubation. The percentage of transfected cells was an av-
erage of the number of EGFP-expressing cells in five fields randomly selected at 200 X
magnification. The experiment was replicated thrice.

2.8 Cytotoxicity tests
The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was per-
formed as previously described [18]. In brief, after 48 hours of post-transfection incubation,
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20 μL of the filtered MTT reagent (0.5 mg/mL) was added to each well. The cells were incubat-
ed at 37°C for 5 hours. The unreacted reagent was then aspirated, and the cells were washed
with PBS. The violet crystals in each well were dissolved in 100 μL of DMSO. The color intensi-
ty was measured by an ELISA reader at a wavelength of 595 nm. Cell viability (%) in each well
was determined by dividing the absorbance value (A595) of the test well by the A595 value of the
control well, followed by a multiplication of the quotient by 100.

Fig 1. Schematic representations of different approaches of drug/gene co-formulation.

doi:10.1371/journal.pone.0126367.g001
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Results

3.1 Effects of gene/drug co-formulation
Compared to that attainable by CP/DNA polyplexes, the expression of EGFP was significantly
reduced when the polyplexes were formulated with either VM-26 or CDDP (Figs 2 and 3).
Contrary to VM-26 and CDDP, the interference with transfection by TMZ was relatively mild.
In addition, among all gene/drug co-formulations prepared with TMZ, the formulation of
“CP/DNA/Drug” led to the lowest transgene expression (Fig 3C).

3.2 Cytotoxicity of different gene/drug co-formulations
The MTT assays revealed that the cytotoxicity of polyplexes alone was negligible in U87 cells,
with over 80% of cells being alive after 48 hours of post-transfection incubation (Fig 4). The cy-
totoxicity was substantially increased when polyplexes were formulated with chemotherapeutic
drugs. As shown in Fig 4, the cell viability dropped to 30–50%, 10–30% and 40–60% after treat-
ment with polyplexes formulated with VM-26, CDDP and TMZ, respectively.

3.3 Effects of drug pre-treatments
The effects of pre-treatment with chemotherapeutic drugs on subsequent CP-mediated trans-
fection were presented in Figs 5–7. Compared to the control, cells pre-treated with drugs
showed lower transfection efficiency (Figs 5 and 6) and higher cytotoxicity (Fig 7).

Fig 2. Representative EGFP fluorescence and combined phase-fluorescence micrographs of U87 cells treated with different drug/gene co-
formulations. Those co-formulations were (A, E, I) CP/DNA/(Drug), (B, F, J) CP/DNA/Drug, (C, G, K) (CP/DNA)/Drug and (D, H, L) (CP/Drug)/DNA. They
were prepared with various concentrations of (A-D) VM-26, (E-H) CDDP and (I-L) TMZ.

doi:10.1371/journal.pone.0126367.g002
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Fig 3. The percentage of U87 cells expressing the EGFP protein after treatment with different drug/
gene co-formulations. Those co-formulations were prepared with various concentrations of (A) VM-26, (B)
CDDP and (C) TMZ.

doi:10.1371/journal.pone.0126367.g003
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Fig 4. Cytotoxicity of U87 cells treated with different drug/gene co-formulations. Those co-formulations
were prepared with various concentrations of (A) VM-26, (B) CDDP and (C) TMZ.

doi:10.1371/journal.pone.0126367.g004
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Discussion
Combined chemo-gene therapy is one of the treatment modalities that have received consider-
able research attention in recent years [7,8,19]; however, the drug interference with gene

Fig 5. Representative EGFP fluorescence and combined phase-fluorescence micrographs of
transfected U87 cells, with or without drug treatment prior to transfection. (A) Micrographs of untreated
U87 cells transfected with CP/DNA polyplexes. (B) Micrographs of U87 cells pre-treated with different
concentrations of (i) VM-26, (ii) CDDP and (iii) TMZ prior to transfection.

doi:10.1371/journal.pone.0126367.g005
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delivery is ill-understood. In this study, the effects of VM-26, CDDP and TMZ on gene delivery
have been studied. VM-26 is a potent drug belonging to the class of semisynthetic epipodo-
phyllotoxin glucopyranosides (which are semisynthetic agents shown to be active against a
range of leukemias and solid tumors) [20]; whereas CDDP is a common drug for treatment of
malignancies including bladder, esophageal, head and neck, ovarian, and testicular cancers
[21]. Finally, TMZ is a prodrug that undergoes spontaneous degradation at the physiological

Fig 6. The percentage of transfected U87 cells expressing the EGFP protein. Treatments with various
concentrations of (A) VM-26, (B) CDDP and (C) TMZ were applied to cells prior to transfection.

doi:10.1371/journal.pone.0126367.g006
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Fig 7. Cytotoxicity of U87 cells transfected with CP/DNA polyplexes. Treatment with various
concentrations of (A) VM-26, (B) CDDP and (C) TMZ were applied to cells prior to transfection.

doi:10.1371/journal.pone.0126367.g007
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pH to form 5-(3-methyl-triazen-1-yl) imidazole-4-carboxamide (MITC) [22]. MITC then in-
terferes with DNA replication by forming methyl adducts at the N3-position of adenine and
the N7- and O6-positions of guanine [23]. As VM-26, CDDP and TMZ are drugs that have
been extensively used in chemotherapy, they are ideal models to illustrate how gene/drug co-
formulation potentially interferes with polyplex formation and transfection.

As shown in Figs 2 and 3, the expression of EGFP has been substantially reduced when the
plasmid is co-delivered with VM-26 or CDDP. The reduction caused by VM-26 is thought to
be due to the drug-mediated gene damage [24]. As shown by an earlier study in A549 cells
[24], VM-26 introduces single-strand and double-strand DNA breaks by inhibiting the DNA
ligase activity of type II topoisomerase [24]. It is expected that administration of VM-26 during
CP-mediated transfection may induce breakage of the plasmid, making the transgene no longer
functional for expression. Similar to VM-26, CDDP enhances the formation of DNA adducts
(such as DNA monoadducts, DNA-protein cross-links, and interstrand and intrastrand DNA
cross-links) [21]. Earlier experiments revealed that 1,2-intrastrand d(ApG) and d(GpG) cross-
links account for 25% and 65%, respectively, of CDDP adducts formed in vitro [21,25,26]. By
using X-ray diffraction, the two guanines in the cross-linked dinucleotide cis-Pt(NH3)2(d
(pGpG)) were found to be destacked, with the deoxyribose sugar of the 5’-deoxyguanosine
being in a C3’-endo pucker [21,27]. This suggests that CDDP can distort the DNA double
helix, causing unwinding and kinking [27]. As CDDP can inhibit DNA synthesis and damage
DNA by forming adducts, this explains its inhibition of transgene expression. But contrary to
VM-26 and CDDP, TMZ acts mainly on DNA replication, which may not directly impact on
the expression of the transgene. Therefore, the interference with transfection by TMZ is rela-
tively mild (Figs 2 and 3). Our results show that the action mechanism of the drug is an impor-
tant factor determining the degree of interference with transfection.

In addition to drug action, different methods of drug/gene co-formulation have been found
to influence transfection. As shown in Fig 3C, the formulation of “CP/DNA/Drug” has led to
the lowest transgene expression. It is hypothesized that due to the concomitant addition of
both TMZ and DNA, the competition between TMZ and DNA for CP is the most intense. This
may lead to more severe inhibition of polyplex formation. Our results suggest that the interfer-
ence with transfection by drugs can be partially determined by the efficiency of polyplex forma-
tion, which varies with different methods of gene/drug co-formulation. Here it is worth noting
that, due to the highly similar electrostatic nature between DNA and RNA, the electrostatic in-
teractions of a cationic polymeric vector with DNA was principally identical to that with RNA
[28]. Even though only the interference with DNA/polymer complexation has been examined
in this study, the interference is expected to be applicable to RNA delivery.

In order to evaluate whether the effect of drugs on transfection is mediated solely by increas-
ing the cell death, we have examined the viability of cells after treatment. As observed in Fig 4,
the reduction in cell viability varies with different drugs. This is attributed to the variations in
pharmacological profiles of different drugs. In Figs 4 and 5, the viability of cells has dropped to
approximately 30–50% after treatment with various VM-26/DNA co-formulations; however,
the transfection efficiency obtained has been reduced by 95%. Similar observations have also
been made in CDDP/DNA co-formulations. Contrary to VM-26 and CDDP, there is no appre-
ciable change in the cytotoxicity across all methods of TMZ/gene co-formulation adopted in
this study, yet the reduction in transfection efficiency obtained varies substantially across dif-
ferent formulations. Such a discrepancy between cytotoxicity and transfection efficiency sug-
gests that the drug-mediated interference with transfection is not simply due to toxicity of the
drug, but the action of the drug on gene delivery also plays a significant role.

Finally, the effect of pre-treatment with chemotherapeutic drugs on the efficiency of subse-
quent transfection has been studied. Cells pre-treated with VM-26, CDDP and TMZ have
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exhibited a reduction in transfection efficiency as compared to untreated cells (Figs 5 and 6).
This demonstrates that even though the drug has been removed prior to transfection, those
drug molecules that have been taken up by cells still interfere with subsequent transfection. As
shown in Figs 6 and 7, changes in the degree of cell viability are not correlated with the changes
in the percentage of transfected cells. This implies that it is the drug interference, rather than
the cytotoxicity of the drug itself, that causes a reduction in transfection efficiency.

Conclusions
Combined chemo-gene therapy has gained increasing attention in cancer treatment since the
turn of the last century; however, the interference with transfection by drugs is ill-understood.
This study has employed three commonly used chemotherapeutic drugs to evaluate the effect
of drug/gene co-formulation on polyplex formation and transfection. Our results evidence that
the degree of drug interference varies with the mechanism of drug action as well as the method
of gene/drug co-formulation. Based on the findings, though combined chemo-gene therapy
has therapeutic potential, the incompatibility of chemotherapeutic drugs with gene delivery
may reduce the efficiency of gene therapy in practice.
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