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Phenotypic decanalization 
driven by social determinants 
could explain variance patterns 
for glycemia in adult urban 
Argentinian population
María Alejandra Petino Zappala  1*, Guillermo Folguera1 & Santiago Benitez‑Vieyra2

Type 2 diabetes, one of the major causes of death and disability worldwide, is characterized 
by problems in the homeostasis of blood glucose. Current preventive policies focus mainly on 
individual behaviors (diet, exercise, salt and alcohol consumption). Recent hypotheses state that 
the higher incidence of metabolic disease in some human populations may be related to phenotypic 
decanalization causing a heightened phenotypic variance in response to unusual or stressful 
environmental conditions, although the nature of these conditions is under debate. Our aim was to 
explore variability patterns of fasting blood glucose to test phenotypic decanalization as a possible 
explanation of heightened prevalence for type 2 diabetes in some groups and to detect variables 
associated with its variance using a nation-wide survey of Argentinian adult population. We found 
patterns of higher local variance for fasting glycemia associated with lower income and educational 
attainment. We detected no meaningful association of glycemia or its variability with covariates 
related to individual behaviors (diet, physical activity, salt or alcohol consumption). Our results 
were consistent with the decanalization hypothesis for fasting glycemia, which appears associated 
to socioeconomic disadvantage. We therefore propose changes in public policy and discuss the 
implications for data gathering and further analyses.

Diabetes is a health condition of global concern that afflicts an estimate of 422 million people worldwide, mostly 
from low-and middle-income countries1, and is predicted to become a problem affecting one-third of the world 
population in the next generations2. This chronic metabolic condition is characterized by high levels of blood 
sugar, which can cause heart disease, nerve damage, kidney failure, vision loss, problems during pregnancy, tis-
sue damage requiring leg amputation, and generally increase the risk of disease complications and premature 
death1,3. In addition, in the last year, a higher susceptibility to adverse outcomes for COVID-19 has been reported 
for people with diabetes or high blood sugar4,5.

Type 2 diabetes, the most common kind6, is caused by insulin resistance or the relatively inadequate produc-
tion of insulin for a given patient’s demand. Patients usually require medication, changes in the diet, physical 
activity and regular checking to maintain their blood sugar levels on a healthy range.

Much work has been done to uncover and describe risk factors for type 2 diabetes or high blood sugar and 
most public health approaches focus on the spread of information about “healthy habits”, i.e. adequate consump-
tion of fruits and vegetables, regular physical activity, avoidance of tobacco, alcohol and salty foods, and weight 
control1,3. Although socioeconomic factors related to increased prevalence of diabetes have been described, it 
is assumed that their effect occurs through the lack of resources (income, time and/or information) to exercise 
the aforementioned recommendations3.

Decanalization.  One of the hypotheses seeking to explain complex diseases such as type 2 diabetes points 
to the influence of environmental stressors in phenotypic variance. This hypothesis is based on the phenomenon 
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of canalization, a concept first coined by Waddington7 to explain the adoption of discrete cell “fates”; it was later 
extended to groups of individuals, to describe their relative phenotypic uniformity despite genetic or minor 
environmental changes8. In populations living in relatively stable environments, it is expected that stabilizing 
selection leads to the accumulation of epistatic interactions that restrict the population’s phenotypic variance 
for adaptive traits near the optima for the environmental range8. This means the trait would become “canalized” 
around these phenotypic values, and as a consequence a majority of the individuals within the population would 
present similar phenotypes spanning a restricted range. However, under stressful or uncommon environmental 
conditions, those epistatic interactions may become perturbed; thus, more individuals are expected to present 
extreme phenotypic values, leading to an augmentation of phenotypic variance at the level of the population 
(“decanalization”), a principle first described by Schmalhausen9. Here we will focus on this particular meaning 
of canalization, a term usually designing a population feature which stems from the robustness of individuals’ 
developments in the face of environmental change.

Figure 1 summarizes the expectations under the decanalization hypothesis for complex diseases. In stable 
environments, important physiological variables are tightly regulated in most individuals, so that most of them 
present trait values near the phenotypic optimum; i.e. the phenotype is canalized, and few individuals present 
extreme (possibly pathological) values. In populations subject to unusual or stressful environments, phenotypic 
decanalization would lead, even possibly in the absence of a change in the mean value for the trait, to a higher 
proportion of the individuals presenting extreme phenotypic values, with possible consequences for their health 
and life quality.

There are two different accounts for the decanalization hypothesis that can be applied to metabolic diseases 
such as diabetes in human populations. Both would consider the disease prevalence, in this case type 2 diabetes, 
as related to the phenotypic decanalization of an otherwise canalized trait (here, the homeostatic mechanism 
regulating blood glucose levels) in some groups within the population. They differ, however, in terms of which 
are the relevant environmental factors causing this decanalization. One of the hypotheses points towards the 
introduction of industrialized foods and changes in motor activity (i.e. sedentarism) as driving the augmenta-
tion of phenotypic variability for blood sugar levels in human populations and, therefore, leading to a higher 
prevalence of type 2 diabetes10. According to this version, it follows that efforts to tackle diabetes should be 
focused on the promotion of healthy habits2,10. A second version of the decanalization hypothesis was formulated 
by Lewontin and Levins11,12. The basis of this explanation is similar, but the authors, when discussing human 
populations, refer to the poor, excluded and marginalized communities suffering from multiple environmental 
stressors which are not under their control, that depend on the historical relationship of the populations with 
their environment, including social relations between individuals. According to this view, inequalities directly 
impact on physiological processes through a multitude of mechanisms (including psychological stress derived 
from the position within class hierarchies). Under the stressful conditions to which these groups are subjected, 
mechanisms buffering the phenotype from environmental variation break down, and latent differences between 
individuals become manifest11,13. According to Himmelstein et al.13, homeostatic capacity generally erodes with 
age through the accumulation of stressors, but differences can be found when accounting for factors such as race 
or income, so that underprivileged people’s homeostatic mechanisms deteriorate faster; therefore these groups 
present greater phenotypic variability earlier. These authors, and others focusing on the social determinants of 
health, argue that health policies that rely on the spread of information about healthy habits to tackle diabetes are 
not the best way to address the problem, and they also shift the responsibility to the individuals when the causes 
of disease would be of social origin and therefore outside of their control12,14. This version of the hypothesis is 
not incompatible with other approaches like the “psychosocial stress theory”, although it provides for a possible 
mechanism through which stimuli of very different kinds which are perceived as stressful (or protective) may 
affect the susceptibility to suffer from ill health15.

It is known that physiological levels of fasting blood glucose in humans are tightly regulated; according to cur-
rent guidelines the healthy range lies between 70 and 100 mg/dL. However, to our knowledge, the decanalization 

Figure 1.   Representation of phenotypic (de)canalization. Expected distribution for the trait values in a 
hypothetical population under usual and unusual or stressful environments, determining canalized and 
decanalized phenotypic distributions. A heightened phenotypic variance results in a higher proportion of 
individuals with extreme phenotypic values at both ends of the distribution.
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hypothesis for this trait in human populations has not been systematically assessed16. Evidence from experimen-
tal studies carried out in Drosophila melanogaster supports the idea that the likelihood of extreme metabolic 
phenotypes can be augmented by dietary changes leading to a higher phenotypic variance17. There are obvious 
obstacles to the testing of this hypothesis in humans, although some observational studies show results consist-
ent with it13,18.

A corollary to both decanalization hypotheses is that trying to model individual risk for diabetes would be 
fruitless, as would be looking for a difference in means of blood sugar levels between groups. Therefore, differ-
ent statistical approaches and, ideally, surveys designed to this end would be needed to identify groups with a 
higher susceptibility to diabetes and to design public health strategies to counteract this problem, an objective 
of the utmost importance3.

Diabetes in Argentina.  In Argentina, according to the last National Surveys on Risk Factors for Noncom-
municable Diseases the prevalence of diabetes and hyperglycemia (by self-report) has been on the rise in the 
last two decades19. Public health campaigns at the national and regional level have focused on the promotion of 
healthy habits20, and although a heightened prevalence was detected in the surveys for people with lower edu-
cational attainment and public (vs. private) health insurance, no mechanism was proposed other than lack of 
access to or noncompliance with dietary and physical exercise guidelines19.

In contrast to previous surveys, in order to assess the possible under-diagnosis of diabetes and high blood 
sugar, the last National Survey carried out in 2018 incorporated biochemical measurements, including capillary 
fasting blood glucose. In this work, using these determinations, we tested whether data from the Argentinian 
urban population support the decanalization hypothesis for glycemia, in order to explore the determinants of 
hyperglycemia and diabetes. Moreover, we were able to explore associations with socioeconomic and individual 
variables that could account for the differences observed in the patterns of fasting blood glucose. This setting 
provides us with a basis to discuss current public preventive approaches and propose changes in health policy 
and future survey design and analysis.

Materials and methods
Data.  The raw database from the 2018 National Survey on Risk Factors for Noncommunicable Diseases, 
consisting on several variables from 25,208 adults from all provinces randomly selected through a probabilistic 
multi-stage sample design, was obtained from the INDEC webpage. All raw data are available at https://​www.​
indec.​gob.​ar/​indec/​web/​Insti​tucio​nal-​Indec-​Bases​DeDat​os-2.

Although information on diabetes diagnosis (by self report) was available, it was not used for these analyses, 
as it did not allow us to test the decanalization hypothesis. Therefore, we used only the determinations of fasting 
blood sugar; data were filtered to exclude those cases where these determinations were not performed. The rel-
evant explanatory variables were chosen according to bibliography and availability of data on the survey. Those 
were age, sex, income, educational attainment for the interviewee and head of the household, density, utilities, 
paid working time, daily fruits and vegetables consumed, levels of alcohol and salt intake and sedentarism (see 
Additional Methodological note for more details).

Generation of new variables.  We generated a categorical variable for levels of fasting blood sugar (in mg/
dL) based on the raw values provided in the survey database. However, instead of the standard ranges of fasting 
plasma glucose used by convention to diagnose diabetes and prediabetes1, we implemented a numeric categori-
zation, with its levels 1 to 6 (see Additional Methodological note for more details).

Age is a well described risk factor for hyperglycemia and type 2 diabetes19,21,22. To account for its effect on 
blood sugar levels, we calculated residuals from the linear regression between glycemia and age and created 
a variable grouping absolute residuals in three categories: Normal (residual < 40), Outlier (40 ≤ residual < 80), 
roughly representing Q1 + IQR and Q3 + IQR, and Extreme (residual ≥ 80), approximately Q1 + 2.5 × IQR and 
Q3 + 2.5 × IQR. This variable serves to group individual values that deviate from the estimate in both directions 
and is therefore useful to detect decanalization.

Monthly household income was also categorized in four levels: high or A (income ≥ 40,000 pesos argentinos), 
middle or B (20,000 ≤ income < 40,000), low or C (10,000 ≤ income < 20,000) and very low or D (income < 10,000). 
At the time the survey was performed, the cutoff for indigence for an average family (two adults, two children) 
in Buenos Aires was of 10,122 pesos, approximately corresponding to 280 US Dollars23. In this sense an average 
family in group D would be considered as indigent.

Finally, Coefficients of Variation for glycemia were calculated as s/x , being s and x the estimators of standard 
deviation and mean for each group.

Statistical analyses.  All statistical analyses were performed in Rstudio24 using R version 3.6.325.
We applied several statistical analyses to test the decanalization and alternative hypotheses. First, we applied 

a “traditional” approach, i.e. we tested whether average glycemia values per individual can be predicted by the 
explanatory variables, which were detailed above. Contrarily to the decanalization hypothesis, which would 
search for an increased within-group variance to detect factors behind increased susceptibility to diabetes, all of 
these “traditional” analyses are aimed at modeling individual risk for diabetes.

For this approach, we applied supervised machine learning algorithms such as random forest (RF), Gradient 
Boosting Machine26, and regression Support Vector Machine27,28. These analyses were performed with random-
Forest, caret, and e1071 R packages29–31. See Additional Methodological note for more details.

Second, to test the predictions of the decanalization hypothesis and to inquire the explanatory variables 
influencing diabetes susceptibility, we first describe the multivariate space for our data. A Categorical Principal 

https://www.indec.gob.ar/indec/web/Institucional-Indec-BasesDeDatos-2
https://www.indec.gob.ar/indec/web/Institucional-Indec-BasesDeDatos-2
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Component Analysis (PCA) was performed using the princals function from the Gifi R package32,33, where all 
explanatory variables excepting sex were considered ordinal. No variables related to blood sugar level were used 
as active variables in this analysis. Therefore, the obtained components represented a multivariate space defined 
by the explanatory variables, where we mapped the Normal, Outlier, and Extreme residuals described above. 
As we used absolute residuals, those categories represent the variability of glycemia in relation to its expected 
value. Thus, they are an approximation to groups with different levels of decanalization, each one characterized 
by broader deviations from expectation. To test whether individuals from the Normal, Outlier, and Extreme 
groups occupied distinct sectors of the socioeconomic multivariate space, the scores for individuals in all PCA 
components were subjected to a Permutational Multivariate Analysis of Variance (PERMANOVA34) using the 
adonis function of the vegan R package35, having previously checked the assumption of multivariate homogeneity 
of variances (using functions betadisper and permutest from the same package). Bonferroni-adjusted pairwise 
comparisons were performed with the pairwise.adonis function36.

In the same multivariate space of socioeconomic explanatory variables, we determined regions of high and 
low variance for fasting blood glucose. With this aim, we used a procedure similar to a running average in two 
dimensions. The algorithm determines neighborhoods in the multivariate space and then computes the standard 
deviation for fasting blood glucose for all the observations within. This function returns a vector containing the 
running standard deviation for the neighborhood around each observation. This analysis was inspired by spatial 
analysis, in which marginalized neighborhoods should show higher values of standard deviation in glycemia. 
Our data sadly lacked detailed geographical information, but through PCA we could construct “neighborhoods” 
of individuals that share certain socioeconomic characteristics.

After identifying through the PCA and running standard deviation the variables that better explained dif-
ferences in neighborhood variability for glycemia, we tested whether these variables were associated to different 
patterns of blood sugar levels. With this aim, we performed a log likelihood ratio test of independence to explore 
if the individuals with normal, outlier or extreme glucose residual values were equally distributed in the different 
income and educational attainment groups. using the GTest function from the DescTools package37.

Informed consent.  All authors prepared, read and agreed with the content, gave consent to submit and 
obtained consent from the responsible authorities at their respective institutes.

Ethical approval.  This research involves only the use of public anonymized data and therefore was granted 
exemption from ethics committee approval. The study complies with the principles of the Declaration of Hel-
sinki.

Results
First, data from the National Survey were filtered. From a total of 4477 individuals on which blood glucose was 
measured, 4115 individuals were retained for which complete records were available for all variables (Table 1, 
Additional File 1). Distributions for all covariates were similar for the group of urban individuals on which 
blood glucose was not measured (Additional File 2). Given the reported relationship between glycemia and 
age, which was also confirmed by our exploratory analyses, we calculated residuals from the linear regression 
between glycemia and age and also created a categorical variable for groups according to absolute residuals (see 
“Materials and methods” section).

First, we performed the “traditional” analyses to model raw values or residuals for fasting blood glucose 
measurements. We found no regression algorithm that could satisfyingly fit our data, as they all explained a low 
proportion (< 10%) of variance for both variables (Additional File 3).

8 components of the Categorical Principal Component Analysis explained 81.1% of the total variance in 
glycemia (loadings are presented in Additional File 4).

The first principal component was negatively correlated with educational attainment (both for the interviewee 
and head of the household) and income, followed by working hours, while the second component presented 
higher loadings for density of inhabitants in the household and interviewee’s age (Additional File 4). Variables 
related to the usual lifestyle recommendations (level of physical activity, diet and alcohol consumption) did 
not have high loadings for the first two components, although they were the most correlated with the fourth 
component. Therefore, the first two components were mainly determined by socioeconomic variables while 
lifestyle influenced the third and fourth ones. The fifth and seventh component were mostly associated with salt 
and alcohol consumption, respectively, with the rest of the variables showing lower loadings (Additional File 4).

Superimposing smooth density estimates for Normal, Outlier or Extreme groups for fasting blood glucose 
residuals over the PCA biplot allowed us to explore how they differ in their characteristics for the explanatory 
variables. Figure 2a shows distinct groups partially separated by the first and second Principal Components; there 
was a higher density of individuals with extreme residual values in the sector corresponding to a low income and 
low educational attainment (both for the interviewee and the head of the household). The higher density for the 
normal group was found in the region of higher educational attainment, higher income and lower age. No clear 
pattern was found regarding lifestyle variables, and Fig. 2b shows that the three groups mostly overlapped for the 
third and fourth Principal Components. No clear patterns were found for the rest of the components (Additional 
File 5). Similar results were obtained by using residuals of the linear regression between glycemia and age (not 
shown), when removing the individuals who reported following a medical treatment to control glucose values 
(n = 312) or those already diagnosed with diabetes (n = 295) (Additional File 6).

To analytically determine whether there were distinct regions of higher density of normal, outlier or extreme 
values for fasting blood glucose in the space determined by the Principal Components, we performed a PER-
MANOVA, after confirming no significant departures from homogeneity of multivariate dispersion in this 
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multivariate space (F2,4112 = 0.729; p = 0.47). The PERMANOVA indicated that there were significant differences 
between Normal, Outlier and Extreme groups of blood glucose residuals for their position in the multidimen-
sional space regarding all components retained in the PCA (F2,4112 = 20.95; p = 0.001). Indeed, the three groups 
differed significantly in pairwise comparisons (Additional File 7).

The calculations of the running standard deviations showed a clear correlation between the first principal 
component and heterogeneity for fasting blood glucose (Fig. 3), with the regions corresponding with lower 
income and educational attainment presenting neighborhoods with a higher variance for the trait. For the third 
and fourth components, a small region of high variance was found corresponding to the higher scores for the 
third component (higher alcohol consumption, older age, male gender), but no clear tendency was apparent 
overall (Fig. 4). No defined pattern was observed either for the rest of the components (Additional File 8). These 
results did not change when correcting by running average (not shown).

As income and educational attainment appear as highly correlated relevant explanatory variables, we formed 
four income categories (see “Materials and methods” section) and estimated Coefficients of Variation of blood 
glycemia for all income and educational level combinations. Figure 5 shows the expected results: a trend for 
higher variability in low income groups. Also a reverse relationship between variability of glycemia and educa-
tional attainment can be found, although the latter is not clear in the higher and lower income groups, probably 
due to the scarcity of interviewees in the highest income—lowest educational attainment and lower income—
higher educational attainment groups.

Finally, to analytically test if the distribution within Normal, Outlier and Extreme groups for the residuals 
from the linear regression between glycemia and age is independent of these socioeconomic variables, we formed 
groups by combining categorized income with individual educational attainment and performed a G-test for 
independence. We found significant deviations from independence (G-testdf=22 = 68.69; p = 1.06e−06), indicat-
ing that the proportion of individuals within the Normal, Outlier or Extreme groups depends on the income-
educational attainment combination. The relative contributions to the statistic for each category can be found 
in Fig. 6. For the high income and high education group, individuals in the Normal category for the regression 
between glycemia and age were more frequent than expected, a relationship that held (albeit less markedly) in 
the medium–low income and high education (B-3 and C-3) groups. WOn the other hand there was an excess of 
individuals at the Extreme and Outlier categories in the lower income and lower education groups. We could not 

Table 1.   Summary for all covariates used as explanatory variables in the analyses.

Covariates Mean ± SD or %

Age (years) 50.2 ± 16.1

Sex
Male: 41.55%

Female: 58.45%

Max. educational attainment: interviewee

Incomplete elementary school: 8.41%

Incomplete high school: 33.90%

Complete high school and above: 57.69%

Max. educational attainment: head of household

Incomplete elementary school: 9.28%

Incomplete high school: 35.36%

Complete high school and above: 55.36%

Monthly income for the household (Argentine Pesos) 23,369 ± 18,313

Working time (weekly hours)

No working time: 38.5%

0 to 35: 22.2%

35 to 45: 23.1%

 > 45: 16.2%

Density (inhabitants/household rooms) 1.00 ± 0.70

Utilities (from 0 = no access to gas, water or sewage system to 1 = access to gas, water 
and sewage system) 0.64 ± 0.17

Level of physical activity

Low: 46.2%

Intermediate: 36.8%

High: 17.0%

Sedentarism (daily minutes spent sitting) 261.4 ± 174.0

Daily fruit and vegetable consumption (portions) 2.03 ± 1.62

Salt consumption

Does not add salt to meals: 21.6%

Sometimes adds salt to meals: 50.8%

Frequently adds salt to meals: 17.4%

Always adds salt to meals: 10.2%

Alcohol consumption

No problematic consumption: 82.9%

Regular or episodic problematic consumption: 13.2%

Regular and episodic problematic consumption: 3.8%
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evaluate if this trend held for the high income—low educational attainment and lower income—high educational 
attainment categories, as they contained comparatively few individuals.

Finally, we wanted to analyze whether these statistical trends also had a clinical significance, meaning whether 
the distribution of blood glycemia values in the different income-education groups represented particular pat-
terns of outcomes with impact on life quality. As expected, a higher proportion of individuals in the lower 
income and lower educational attainment groups presented levels of glycemia within the higher (4–6) categories 
(Fig. 7). It may be noted that low levels of fasting glycemia (< 70 mg/dL) are also more prevalent in the lower 
income groups.

Discussion
Here we have shown how data from an Argentinian National Health Survey fit the hypothesis of phenotypic 
decanalization (in this case, of fasting blood glucose values) in response to socioeconomic variables, with a 
gradient in which the most disadvantaged groups show a greater variance than those in the least disadvantaged 
position as defined by income and educational attainment. Our results contrast with the dominant conception 
according to which socioeconomic situation acts through making the adoption of healthy habits not feasible1,3. 
The data here analyzed show little to no evident relationship between lifestyle variables and variability for blood 

Figure 2.   Curves for Normal, Outlier and Extreme glycemia residuals. Biplots for the first and second 
components (a) and third and fourth components (b) of the PCA. Density curves for Normal, Outlier and 
Extreme groups (bins = 2) are superimposed.
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sugar values. It should be noted, however, that socioeconomic variables surely condition the adoption of healthy 
habits to some extent, as some answers to the survey indicate19.

These results are relevant for several different reasons. First, they are important in the statistical sense because 
of the issues they raise as a corollary: in case decanalization plays a role in disease etiology, predicting individual 
glycemic values would be ineffective for the affected subpopulations, as the augmentation of variance would 
make such predictions unreliable for individuals. However, robust patterns of variation would emerge as a group 
property. This is consistent with our inability to find any “traditional” model that would help explain or predict 
individual blood sugar values reliably. In fact, a higher group variance implies a heightened individual prob-
ability of both hyper and hypoglycemia. Therefore, if the decanalization hypothesis is true, a higher incidence 
of diabetes or high blood sugar could be found even without a change in means of glycemia by group, and this 
fact has important implications regarding statistical methods to search for factors affecting health and the design 
of population surveys.

But this finding is not only relevant in the statistical sense; these higher variances determine groups in which 
a higher proportion of individuals suffer from levels of blood glucose that are associated with pathology, or sig-
nificant susceptibility to develop a health condition, as we have shown in Fig. 7. These high fasting blood sugar 
values lower quality of life, increase the risk of short and long-term complications, some even life-threatening1, 
and worsen the prognosis for several other conditions4,5,38.

There are a number of advantages of this kind of analysis. First, it overcomes some of the most frequent cri-
tiques to traditional epidemiological research39 such as that it does not propose mechanisms behind increased 
prevalence, and therefore the real causes of ill health may remain obscure. Other objection is that traditional 
epidemiological analyses tend to disregard, minimize or simplify social and economic variables40. This is par-
ticularly troubling in the case of diseases affected by social or economic factors that may become masked by 
other variables more consistent with the idea of health as determined by individual (lifestyle or genetic) factors, 
therefore making the individuals responsible for their ill health, and promoting constant self-surveillance41,42. 
In contrast, our approach includes a possible mechanism behind the increased prevalence of complex disease 

Figure 3.   Running standard deviation for fasting glycemia in the first and second components of the PCA. (a) 
Biplot for the first and second components of the PCA; point size correlates with fasting blood glucose levels 
(mg/dL) and color scale indicates levels of running standard deviation (mg/dL). (b) GAM smoothed curves for 
the running standard deviation.
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in vulnerable (or vulnerated43) populations that can accommodate a more holistic understanding of health and 
pathology processes, including the shifting social and economic relationships in the explanation of phenotypic 
changes40, and also would lead to concrete strategies and public policy recommendations, without focusing on 
individual behaviors, when enough data are available to detect reliable variability patterns.

It should be noted that this approach is also not contingent on guidelines and rigid categorizations on healthy 
and ill individuals, which may be debatable, given the many interests and perspectives behind these discussions 
and the notions of health and disease themselves, and therefore result in heterogeneously adopted or changing 
criteria. In this sense, that this hypothesis does not rely in fixed boundaries between health and disease can be 
seen as an advantage and an opportunity to leave open the discussion on such boundaries.

In this sense, blood glucose determinations are an inestimable tool, as previous surveys only accounted for 
high blood glucose or diabetes by self-report as a categorical variable. Also, as they were performed in a proba-
bilistic fashion, they provide a sample that is representative of the adult urban population of Argentina. Should 
this methodology be retained for future surveys, it will also allow for a follow-up of patterns of diabetes in the 
Argentinian population.

However, our analysis has some disadvantages and limitations. First of all, biochemical determinations were 
only carried out in interviewees from districts with a population higher than 150.00019. Therefore, our conclu-
sions can only apply to an urban population, as previously mentioned. Another limitation on the survey concerns 
age, since all interviewees were adults (age ≥ 18 years), although this could in fact be advantageous because it 
weakens the weight of type 1 diabetes as a confounding factor, as it is usually detected at an earlier age (see below).

Also, the survey lacked detailed information on the geographical location of interviewees. Even as we could 
detect groups defined by their multivariate socioeconomic space, geographical information would have allowed 
us to find “natural” groups, clusters of interviewees that, we would expect, shared a more similar environment. 
This data would probably condense the information on general quality of life that is not available in the survey 
in its present form (type of neighborhood, exposure to pollutants, or other stressful environmental conditions 
not covered by the questionnaire).

Figure 4.   Running standard deviation for fasting glycemia in the third and fourth components of the PCA. (a) 
Biplot for the third and fourth components of the PCA; point size correlates with fasting blood glucose levels 
(mg/dL) and color scale indicates levels of running standard deviation (mg/dL). (b) GAM smoothed curves for 
the running standard deviation.
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Other modifications that could be suggested to better characterize the individuals’ situation include gathering 
more detailed information on housing conditions, employment stability, unpaid workload and also subjective 
assessments on life quality.

Another downside of this approach is the inability to distinguish, in case a pattern of high variability of glyce-
mia is found, if it could correspond to a subpopulation with a higher incidence of type 1 or gestational diabetes. 
However, as mentioned above, type 1 diabetes is usually detected in childhood or adolescence44 and has a low 
prevalence, with an estimate for Argentinian children and adolescents of 8.6 per 100,000 people45 and of 15 per 
100,000 people worldwide46. Estimates of its heritability are also somewhat higher than for type 2 diabetes47. 
Therefore it is safe to assume that it should not affect our results to a great extent. On the other hand, since the 
Risk Factor Survey does not account for a possible pregnancy, a high blood sugar level caused by gestational 
diabetes cannot be ruled out. According to the survey, from the total of women with a self-reported history of 
diabetes, 21.6% were pregnant when diagnosed. However, it would probably not change our present results, as a 
low percentage of women would have been pregnant at the time of the survey, when measurements were taken. 
In fact, it has been estimated that type 2 diabetes represents up to 95% of the cases in developing countries6, 
and therefore it is expected to account for the majority of the cases recorded in the survey. It should be noted, 
moreover, that removing individuals with a confirmed diabetes diagnosis, regardless of the type, did not alter 
the general variability patterns observed here, so we could expect this method to be useful to detect regions of 
high variability in the general population.

Finally, our design does not allow us to determine causality, although the similar results seen by other 
researchers in different countries are suggestive that the effect of these particular factors in the distribution of 

Figure 5.   Fasting glycemia and Coefficients of Variation by income group. Above: boxplots for values of 
glycemia (mg/dL) for the four income groups. Below: Coefficients of Variation for glycemia for the four income 
groups and the three levels of educational attainment.

Figure 6.   Results of the frequency analysis for categorized glycemia residuals. Residuals relative to G-statistic 
value for all combinations of income and educational attainment. Red color indicates that the frequency of 
individuals in the group is higher than expected if blood glucose residual levels were independent of income and 
educational groups, while blue denotes a lower frequency than expected under the assumption of independence.
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health outcomes can be pervasive in different groups14,48. In particular, the patterns observed for the different 
categories of educational attainment and family income (Figs. 5, 6) are worth mentioning. Because of our setting, 
we cannot differentiate between two possibilities: (i) that lower educational attainment is indicative of a situa-
tion of long-term vulneration so that the relatively higher prevalence of outlier/extreme values we have seen in 
middle-income individuals with lower educational attainment compared to those with higher education relates 
to this long-term effects; and/or (ii) that higher educational attainment acts as a “protective” factor (for example, 
through increased social bonding, favoring autonomy and empowerment, and/or securing stable living condi-
tions). Indeed, other researchers have already proposed that access to higher education may counterbalance to 
some extent the heightened susceptibility to ill health due to low income14. Our results are consistent with both 
explanations, although the pattern is less clear in the lower-income group, possibly because of the low number 
of individuals in the high educational attainment category, or else because even higher education cannot offset 
the stresses related to a family income below indigence threshold.

It should be noted, also, that even if income, and to some extent educational attainment, are recognized 
widely as affecting health in different contexts, our approach does not search for universal laws governing health. 
However, we argue that this methodology can be useful to detect local patterns of health outcomes, and that 
these insights should be integrated into a pluralistic framework including research at different levels, combining 
these more general quantitative analyses with in-depth, qualitative studies, to better understand the processes 
behind health disparities and how these are experienced by individuals and communities in different contexts49.

Although lower socieconomic status has been associated with poorer glycemic control in people diagnosed 
with diabetes50, to our knowledge, this is the first work that addresses a possible relationship between these 
socioeconomic variables and the decanalization hypothesis for fasting blood glucose in the general population 
(i.e. as part of the etiological mechanism). It is worth noting that, in case these results hold in further studies, the 
conclusions reached regarding public policy would be very similar to the ones proposed by Marmot14: adequate 
living standards in the broad sense should be granted, which means reinforcing support to vulnerated groups. 
If the stresses related to lack of stability (of housing, working conditions, etc.) and a subordinate social position 
are responsible for the heightened incidence of diabetes, policies that focus on healthy habits and/or access to 
health care will not suffice to prevent further cases. Himmelstein et al.13, who found results consistent with the 
decanalization hypothesis for blood pressure, suggest reducing the exposure to these stressors and protecting 
at-risk populations from environmental fluctuations. According to them, the strengthening of social networks 
and the access to behavioral “buffering” pathways would partly unload the burden posed on the physiological 
subsystem. Marmot14 similarly argues that empowerment acts as a protecting factor and suggests policies to 
improve income, education, housing stability, working conditions, etc., which may have more meaningful impacts 
than current health policies for diseases like type 2 diabetes, a growing economic burden both for individuals 
and health systems51.

We believe the decanalization hypothesis is a promising model for the study of the complex and histori-
cally changing patterns of susceptibility to ill health, particularly to chronic multi-factorial ailments related to 
homeostasis, which can incorporate biological (ecological, developmental, evolutionary) and socioeconomic 
determinants. We believe our approach, however, can be improved. Changes in data gathering methodology 
may benefit from interdisciplinary work to incorporate useful variables to further test this hypothesis, as cur-
rent survey designs and statistical methods are not well-tailored to this end. However, this is not the only reason 

Figure 7.   Levels of fasting glycemia per income and educational attainment. Relative frequency of individuals 
presenting each glucose level at each income and educational attainment combination.
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why we want to highlight the importance of the dialogue between social, biological, and health sciences. The 
limitations generated by disciplinary fragmentation on epidemiology have already been described, and different 
counter-strategies proposed12,39,40,49. The notion of human populations as immersed in their socio-ecosystems, 
constrained by social and material conditions that are affected by a myriad of factors with a particular history 
and contexts, is necessary to understand the processes behind health and disease through the incorporation of 
different approaches and methodologies. This requires avoiding the social-biological dichotomy and overcom-
ing disciplinary fragmentation. This issue has been raised for several subdisciplines of biology52 including those 
involved in human health12,40,53,54. But moreover, our own notions and concepts of health and disease and the 
frameworks used to understand the complexity of the processes behind them also require problematizing and 
rethinking, and interdisciplinary work may fuel constant revisions of our approaches and substantiate a more 
pluralistic take on these issues49.

Data availability
The datasets used in this study are referenced in the “Materials and methods” section (raw data) and uploaded 
as Supplementary Material.
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