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Background: Identifying objective and accurate markers of cocaine dependence (CD) 
can innovate its prevention and treatment. Existing evidence suggests that CD is char-
acterized by a wide range of cognitive deficits, most notably by increased impulsivity. 
Impulsivity is multidimensional and it is unclear which of its various dimensions would 
have the highest predictive utility for CD. The machine-learning approach is highly prom-
ising for discovering predictive markers of disease. Here, we used machine learning to 
identify multivariate predictive patterns of impulsivity phenotypes that can accurately 
classify individuals with CD.

Methods: Current cocaine-dependent users (N  =  31) and healthy controls (N  =  23) 
completed the self-report Barratt Impulsiveness Scale-11 and five neurocognitive tasks 
indexing different dimensions of impulsivity: (1) Immediate Memory Task (IMT), (2) Stop-
Signal Task, (3) Delay-Discounting Task (DDT), (4) Iowa Gambling Task (IGT), and (5) 
Probabilistic Reversal-Learning task. We applied a machine-learning algorithm to all 
impulsivity measures.

results: Machine learning accurately classified individuals with CD and predictions were 
generalizable to new samples (area under the curve of the receiver-operating character-
istic curve was 0.912 in the test set). CD membership was predicted by higher scores 
on motor and non-planning trait impulsivity, poor response inhibition, and discriminability 
on the IMT, higher delay discounting on the DDT, and poor decision making on the IGT.

conclusion: Our results suggest that multivariate behavioral impulsivity phenotypes 
can predict CD with high degree of accuracy, which can potentially be used to assess 
individuals’ vulnerability to CD in clinical settings.
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inTrODUcTiOn

Substance misuse is one of the biggest public health problems that 
have a major impact on our societies and nations. The total cost of 
substance use disorders (SUDs) is estimated at over $500 billion a 
year in the United States (1). Unfortunately, efficacious pharma-
cological and behavioral interventions are limited for most SUDs 
[but see Ref. (2)]: some medications exist for tobacco- and opiate 
dependence, but none are available for cocaine-, methampheta-
mine-, or cannabis dependence (3).

One of the key features of SUDs is impulsivity, defined as “a 
predisposition toward rapid, unplanned reactions to internal 
or external stimuli with diminished regard to the negative 
consequences of these reactions to the impulsive individual or to 
others.” (4, 5). Impulsivity is a multidimensional construct mani-
fested in various ways (5, 6). Most often, impulsivity is measured 
by self-report measures of trait impulsivity, which assess impul-
sivity as a long-lasting personality characteristic. Impulsivity is 
also indexed by laboratory neurocognitive measures that most 
commonly assess two main processes: (1) impulsive action (7), 
i.e., compromised ability to inhibit inappropriate behaviors, and 
(2) impulsive choice (8), reflecting suboptimal choices in the 
face of delay contingencies or potential reward/risk. Note that 
these two constructs are classified differently in value-based 
decision-making literature (e.g., action selection and valuation 
systems, respectively) (9). Importantly, these various dimensions 
of impulsivity often do not correlate to each other (10–13), sug-
gesting that self-report and neurocognitive tasks of impulsivity 
reflect different processes (14).

Previous studies show that different dimensions of impulsivity 
are strong predictors of drug initiation and maintenance (15–18) 
and are also associated with clinical treatment outcomes, such 
as poor treatment response and increased propensity for relapse 
[e.g., Ref. (19)]. Cocaine dependence (CD), among other SUDs, 
is strongly related to increased impulsivity (20). Cocaine-
dependent individuals (CDIs) score consistently higher than 
healthy controls (HCs) on self-report trait impulsivity measures 
(19, 21, 22). Numerous neurocognitive studies also demonstrate 
that CDIs are characterized by both impulsive action and impul-
sive choice. With regards to impulsive choice, CDIs discount 
delayed rewards more steeply compared to HCs (23, 24); show 
decision-making deficits on gambling tasks, such as the Iowa 
Gambling task (IGT) (11, 25); and have difficulties adaptively 
reversing their choice preference, evidenced by increased per-
severative errors on Probabilistic Reversal-Learning (PRL) tasks 
(26). On measures of impulsive action, CDIs show impaired 
response inhibition compared to HCs on neurocognitive tasks, 
such as the Immediate Memory Task (IMT) (21, 22) and the 
Stop-Signal Task (SST) (27, 28).

These results suggest that a multivariate battery of multiple 
behavioral measures could more accurately predict cocaine 
dependence compared to single (i.e., univariate) measures. 
The discovery of strong and generalizable markers of CD could 
help us more objectively diagnose CD and lead to important 
innovations in clinical settings, such as personalized prevention 
and intervention programs. Clearly, identifying predictors or 
classifiers of CD and more generally of SUDs would be a useful 

aim, but the field is still in its infancy (29). One of the most 
promising approaches is the application of machine-learning 
methods. Unlike conventional univariate methods, which 
compare healthy and psychiatric groups on each measure at a 
time, machine-learning (supervised learning) methods select 
multivariate predictive patterns of data in a way that optimizes 
prediction accuracy in new samples (29–31). A machine-
learning approach is particularly useful when there are a large 
number of predictor variables (i.e., the dimensionality of feature 
space is large) compared to the number of samples or when our 
focus is on the reliability and generalizability of measures (30). 
However, to our knowledge, few studies have investigated SUDs 
from a machine-learning perspective (32, 33) and no studies have 
employed multiple dimensions of impulsivity as predictors in a 
machine-learning model.

We address these gaps by using the machine-learning method 
and a battery of behavioral measures assessing various aspects 
of trait impulsivity, impulsive choice, and impulsive action. The 
main goal of the study was to identify multivariate patterns 
of impulsivity that (1) best predict CD and (2) make accurate 
predictions that are generalizable to new samples. Here, we 
demonstrate that a machine-learning algorithm can identify 
multivariate impulsivity profiles that predict CD in new samples 
with high degree of accuracy.

MaTerials anD MeThODs

Participants
The sample consisted of 23 HCs and 31 CDIs recruited from ongo-
ing studies at the Institute for Drug and Alcohol Studies (IDAS) 
at Virginia Commonwealth University (VCU). Participants 
were recruited via newspaper advertisements and were initially 
screened by a brief telephone interview. Individuals were excluded 
if they indicated significant psychiatric or medical conditions, 
including a self-reported history of severe brain injury. Following 
the phone screen, eligible participants attended an in-person 
intake assessment session, where they were screened for psychiat-
ric disorders using the structured clinical interview for DSM-IV 
(SCID-I) (34), and completed a medical history and physical 
examination. Information about the participants’ demographic 
and drug use history was also collected at the intake interview. 
All participants were urine tested for cocaine (benzoylecgonine), 
tetrahydrocannabinol (THC), opiates, amphetamine, metham-
phetamine, and benzodiazepines using integrated E–Z split key 
cup II (Innovacon Company, San Diego, CA, USA) on each visit 
to the clinic. Eligible cocaine-dependent participants met current 
DSM-IV criteria for CD; did not meet DSM-IV current depend-
ence criteria for drugs other than cocaine, marijuana, nicotine, or 
alcohol; and did not have current or past medical disorders affect-
ing the central nervous system. The cocaine-dependent sample 
included both treatment-seeking (n  =  22) and non-treatment-
seeking (n = 9) participants. The treatment seekers were part of 
studies, in which they received manualized cognitive behavioral 
therapy and were randomized to either placebo or any one or 
combination of the following medications: levodopa/carbidopa 
and/or citalopram. All data from treatment seekers were collected 
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at intake prior to the start of medication or behavioral therapy; 
therefore, treatment seekers and non-treatment seekers have 
been grouped together for the analyses.

The HC group consisted of participants who had negative 
urine drug screen, negative breathalyzer test, and did not have 
any current or past DSM-IV axis I disorders (including substance 
dependence) or medical disorders affecting the central nervous 
system. HCs were recruited via similar advertising procedures as 
the cocaine-dependent participants.

All participants were free of alcohol at the time of testing as 
determined by a breathalyzer (Intoximeters, Inc., St. Louis, MO, 
USA). Female participants were excluded if they had a positive 
urine pregnancy test. All data were collected at the VCU IDAS. 
All participants were compensated for their participation. 
Participants were fully informed of the nature of the research 
and provided written consent for their involvement in accord-
ance with the Declaration of Helsinki. The studies from which 
subject data were included were approved by the Committee for 
the Protection of Human Participants at VCU.

impulsivity Measures
Trait Impulsivity
Barratt Impulsiveness Scale-11
The Barratt Impulsiveness Scale-11 (BIS-11) is one of the most 
commonly used measures of trait impulsivity. The BIS-11 is a 
30-item self-report scale with three oblique factors: (1) attentional/ 
cognitive impulsivity, measuring tolerance for cognitive com-
plexity and persistence; (2) motor impulsivity, measuring the 
tendency to act on the spur of the moment; and (3) non-planning 
impulsivity, measuring the lack of sense of the future. Total scores 
range from 30 to 120, with non-psychiatric controls generally 
scoring 50–60 (35, 36).

Impulsive Action
Immediate Memory Task
The IMT is a more complex version of the continuous perfor-
mance test (CPT) designed to measure sustained attention, 
working memory, and response inhibition. The IMT consists of 
two blocks of 180 trials each. In each trial, a series of five-digit 
numbers (e.g., 73021) are displayed on the monitor for 0.5  s 
and separated by a 0.5-s interstimulus interval. Participants 
are instructed to respond when a five-digit number (the target 
stimulus) is identical to the preceding stimulus. The probability 
of a target stimulus is set at 33%. Three types of stimuli are 
presented: target (33%), catch (33%), and filler (34%). A target 
stimulus is a five-digit number that is identical to the preced-
ing number. Responses to target stimuli are recorded as correct 
detections (or “hits”), whereas a failure to respond to a target 
stimulus is recorded as an omission error (or “false-negative”). 
A catch stimulus is a number that differs from the preceding 
number by only one digit (position and value determined 
randomly). Responses to catch stimuli are recorded as commis-
sion errors (or “false positives”). A filler stimulus is a random 
five-digit number that appears whenever a target or catch trial is 
not scheduled to appear. Responses to filler stimuli are recorded 
as random errors. We used four indices of impulsivity from 

the IMT: non-parametric discriminability (A′) that does not 
require the underlying distributions to be normally distributed, 
response bias (BD) (22) derived from signal detection theory 
(38), commission errors, and omission errors (37).

Stop-Signal Task
The SST measures motor impulsivity/impulsive action, defined 
as the inability to inhibit an already triggered motor response. In 
this task, participants are required to make quick key responses to 
visually presented “go” signals and to inhibit any response when 
an auditory stop signal is suddenly presented. The task consists 
of two phases: a practice phase of 32 trials and an experimental 
phase of three blocks of 64 trials per block. The primary task is 
a shape judgment task that requires participants to discriminate 
between a square and a circle. In no-signal trials (75% of the tri-
als), only the primary-task stimulus is presented, and participants 
are instructed to respond to the stimulus as fast and accurately as 
possible. Occasionally (25% of the trials), a stop signal (750 Hz, 
75 ms) is presented shortly after the stimulus onset in the primary 
task. In the stop-signal trials, the primary-task stimulus is fol-
lowed by the auditory stop signal presented after a variable stop-
signal delay (SSD), and participants are instructed to withhold 
their responses. The SSD is initially set at 250 ms and is adjusted 
continuously with the staircase tracking procedure: when inhibi-
tion is successful, SSD increases by 50 ms and when inhibition is 
unsuccessful, SSD decreases by 50 ms. The index of impulsivity 
of the SST is stop-signal reaction time (SSRT), which is the speed 
of the inhibitory process. SSRT was estimated by subtracting 
average SSD of the three blocks from median no-signal reaction 
time (39, 40).

Impulsive Choice
Adjusting Delay-Discounting Task
This task is designed to measure participants’ discounting rate 
when they are presented with the possibility of receiving a hypo-
thetical reward determined using a choice algorithm. The task is 
presented on a computer screen displaying two large command 
buttons, one on the left and the other on the right side of the 
screen. The left button always displays an immediate adjusting 
reward (e.g., “$5.00 now”), and the right button displays a delayed 
reward (e.g., “$10.00 in 1 week”). Participants are exposed to a 
series of choices where the delay reward magnitudes are $10, $25, 
$100, $250, $1,000, or $2,500 at delay periods of 1 day, 1 week, 
1 month, 6 months, 1 year, 5 years, or 25 years. The computer 
program varies the smaller, immediately available amounts across 
trials according to the algorithm. However, the larger delayed 
amount stays the same until an indifference point (i.e., where 
subjective values of immediate and delayed rewards are equiva-
lent) is determined. After an indifference point is determined, 
the delay for the larger reward increases to the next duration. 
Participants are randomly assigned to complete the assessment 
in either ascending or descending order of delays. Non-linear 
regression was used to fit a hyperbolic function that has a single 
free parameter, k (discounting rate) and natural logarithm of 
transformation, log(k), was used to normalize the distribution of 
k across participants (23, 41).
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The Kirby Monetary-Choice Delay-Discounting Questionnaire
Participants are presented with a fixed set of 27 choices between 
smaller, immediate rewards (SIRs) and larger, delayed rewards 
(LDRs). For example, in the first trial, participants are asked, 
“Would you prefer $54 today or $55 in 117 days?” The partici-
pant indicates which alternative s/he would prefer by circling it 
on the questionnaire. The order is contrived such that the trial 
order does not correlate to the SIR or LDR amounts, their ratio, 
their difference, the delay to the LDR, or the discount rate cor-
responding to indifference between the two rewards. An estimate 
of a participant’s log(k) was made from the participant’s pattern 
of choices across the 27 questions on the monetary-choice 
questionnaire and by fitting a hyperbolic function with logistic 
regression (42, 43).

The Iowa Gambling Task
In this computerized version of the task, participants are asked 
to choose between four decks of cards that result in hypothetical 
monetary rewards, with the goal to maximize gains. Each deck 
(labeled A–D) contains 60 cards. Participants must make 100 
choices over the testing session. Two of the decks (A and B) are 
disadvantageous in that they are associated with high immedi-
ate rewards but even higher subsequent losses. Decks C and D 
are considered advantageous because they result in an overall 
long-term gain. The index of decision-making performance 
on the IGT is a “net score” based on the total number of cards 
selected from the advantageous minus the disadvantageous decks 
[(C + D) − (A + B)] across the 100 trials. Lower net score indicate 
less advantageous decision making (44).

The Probabilistic Reversal-Learning Task
In the Reversal-Learning task, participants are required to choose 
between two stimuli that differ in color. One stimulus is “correct” 
and the other one is “wrong,” and participants have to discover 
which of the two cards is correct using trial-by-trial experience 
and are instructed to win as much money as possible. Selection 
of the correct or wrong stimulus leads to positive feedback 80 or 
20% of the trials, respectively. After 40 trials (stage 1), the con-
tingencies for correct and incorrect stimuli are reversed for the 
subsequent 40 trials (stage 2). In other words, the correct stimulus 
in stage 1 becomes an incorrect stimulus in stage 2, and vice versa 
for incorrect stimulus. Only participants who pass stage 1 (eight 
consecutive correct responses) are included in the analysis. The 
ability to reverse the acquired stimulus–reward association is 
measured by the number of consecutive responses to the incor-
rect stimulus immediately following the reversal in contingencies 
(perseverative errors), which was uniquely impaired among 
chronic cocaine users in a previous study (26, 45).

Machine-learning approach
To identify multivariate profiles that correctly classify and distin-
guish CDIs from HCs, we applied a machine-learning algorithm 
called the “least absolute shrinkage and selection operator” 
[LASSO (46)] to self-report and neurocognitive measures of 
impulsivity and demographic variables. Our goal was to find 
the precise combination of impulsivity indices that contains the 

minimal number of measures for the shortest testing duration, 
yet provides comprehensive evaluation of impulsivity and accu-
rate group classification. The LASSO is a penalized regression 
method, which imposes L1 penalty indicating that the sum of 
absolute values of coefficients is constrained. The LASSO auto-
matically selects variables that are important for predictions and 
shrinks the coefficients of unimportant variables toward 0, which 
improves the prediction accuracy of the regression model to new 
samples. We chose the LASSO in this study because it searches 
for the most parsimonious model compared to other penalized 
regression methods. Note that unlike our approach, traditional 
multiple regression methods are unable to select variables and 
fitted models are more suceptible to over-fitting.

With the exception of the LASSO and fivefold cross-validation 
(CV), the core procedures for generating out-of-sample predic-
tion (penalized logistic regression) are identical to those used in 
a previous study (47), which provides detailed illustration of the 
method and step-by-step procedures. The dependent variable 
we aimed to classify was whether an individual meets criteria 
for CD or not. For computing out-of-sample predictions, we 
randomly split the whole dataset into a training set (67% of the 
data) and a test (validation) set (33% of the data). After splitting 
the dataset into the training (67% of the data) and test (33% 
of the data) sets, we fitted the LASSO model that minimized 
binomial deviance in the training set using 1,000 iterations of 
fivefold CV (i.e., divided the training set into five partitions, 
trained the LASSO using only four partitions, tested the model 
on the remaining 1 partition, and repeat the CV procedure five 
times, with each of the five partitions used only once as the 
validation data) (32, 47). Then, we made predictions on the test 
set based on the LASSO model estimated only with the training 
set. We also report prediction performance of the model on the 
training set for completeness.

For identifying predictors of cocaine dependence, we used 
fivefold CV across all samples, in which we used the same data 
as the training set and the test set. The goal was to identify 
predictors that are most robust across all samples. Alternatively, 
we could divide data into the training and test sets, identify beta 
coefficients of survived predictors in the training set, repeat the 
procedure for each randomly selected training set, and average the 
beta coefficients over all repetitions. Estimated beta coefficients 
remain essentially the same for both approaches. The mean beta 
coefficients over 1,000 iterations were plotted in Figure 1 where 
we set the mean beta coefficients of measures that survived less 
than 5% of 1,000 iterations to 0 for visualization purposes (their 
actual values are close to 0 anyway).

For the estimation of the LASSO model, we used the glmnet 
package (48). Model performance was indexed using the area 
under the curve (AUC) of the receiver-operating characteristic 
(ROC) curve, which quantifies the ability of the model to cor-
rectly assign a participant to the CD group. The pROC package 
(49) was used for generating a ROC curve and computing the 
AUC. A perfect model and a random model will score an AUC 
of 1.0 and 0.5, respectively. AUC values between 0.9 and 1 are 
considered outstanding discrimination and values between 0.8 
and 0.9 are considered excellent (50). Note that in each of 1,000 
iterations, we computed each individual’s “response” or fitted 
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probabilities (0: HC and 1: CDI). A ROC curve was generated by 
first computing the mean fitted probabilities out of 1,000 itera-
tions in each individual and then using the mean response and 
actual group information (47).

Robustness of Out-of-Sample Classification 
Accuracy
Although our procedure uses separate data for training the 
LASSO model and testing its out-of-sample classification accu-
racy, because of our relatively small sample size (N = 54 in total), 
one may wonder if the findings will generalize to new samples. 
To test the robustness of out-of-sample classification accuracy, 
we permuted the selection of training and test sets 1,000 times 
(while matching the proportion of CDIs and HCs in each set) and  
evaluated classification accuracy. In other words, we tested 
whether we would get similar AUC values when we differently 
divided data into training and test sets. In each of 1,000 repeti-
tions, we first randomly divided data into training (67%) and test 
(33%) sets, and then we used the identical procedure (except that 
the number of iterations of fivefold CV was 100 instead of 1,000) 
described above to compute the distribution of AUCs on test sets. 
The data and codes for running the LASSO model are available at 
https://figshare.com/s/d4b558da3f6af69fc577.

resUlTs

subject characteristics
Demographic and impulsivity data for all participants are pre-
sented in Table 1. The CDIs were older (t = −4.02; p < 0.001), and 
reported fewer years of education (t = 5.09; p < 0.001) compared 
to HCs. CDIs and HCs also differed in their ethnic distribution 
(χ2 = 6.28, p < 0.05). CDIs reported the duration of their regular 
cocaine use to be 16.0 ± 9.6 years. Rates of current regular tobacco 
use, regular cannabis use, and alcohol dependence in the cocaine-
dependent groups were 74.2, 41.9, and 22.6%, respectively, which 
is consistent with findings from previous studies (51–53).

Machine-learning results
The training set (67% of the data) included 21 CDIs and 15 
HCs, and the test set (33% of the data) included 10 CDIs and 
8 HCs. Figure 1 shows multivariate patterns of impulsivity and 
demographic indices predicting CD, revealed by the machine-
learning method. Among trait impulsivity measures, higher 
scores on BIS motor and BIS non-planning impulsivity predicted 
CD. With respect to impulsive choice, lower IGT net score and 
higher discounting rate predicted cocaine dependence. On 
impulsive action, lower IMT discriminability (A′) and higher 
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TaBle 1 | characteristics of participants with complete data sets for machine-learning analyses.

healthy controls (N = 23) cocaine users (N = 31) Test statistic sig.

Mean sD Mean sD

Age 35.39 12.1 47 7.78 −4.02 2.89E−04

Sex (% male) 43.48 64.52 1.59 n.s.

Race (% W/AA/mixed) 26.09/69.56/4.35 3.23/93.54/3.23 6.28 0.043

Education (years) 15.22 2.09 12.26 2.14 5.09 5.84E−06

Yrs of cocaine use 0.00 0.00 16.02 9.56 −9.32 2.28E−10

Yrs of cigarette use 0.00 0.00 20.29 14.03 −8.05 5.49E−09

Yrs of marijuana use 0.00 0.00 12.48 12.43 −5.59 4.39E−06

Curr. alcohol abuse (%) 0.00 12.90 1.60 n.s.

Curr. alcohol dep (%) 0.00 22.58 4.13 0.042

Curr. reg. tobacco use (%) 0.00 74.19 32.93 9.53E−09

Past reg. tobacco use (%) 0.00 12.90 9.13 0.003

Curr. reg. marijuana use (%) 0.00 41.94 15.10 1.02E−04

Past reg. marijuana use (%) 8.70 29.03 6.80 0.009

BIS attention 12.43 2.06 14.58 3.44 −2.85 0.006

BIS motor 20.48 3.29 24.35 3.96 −3.92 2.61E−04

BIS non-planning 18.87 3.82 25.9 5.78 −5.38 1.88E−06

SSRT 293.73 86.27 316.08 84.75 −0.95 n.s.

IMT omission errors 14.78 8.53 16.28 10.85 −0.57 n.s.

IMT commission errors 20.9 12.94 35.43 16.42 −3.64 0.001

IMT discriminability (A′) 0.88 0.07 0.83 0.07 2.91 0.005

IMT response bias (BD) −0.15 0.39 −0.41 0.46 2.22 0.031

ln(k) −6.31 1.96 −4.04 2.42 −3.81 3.66E−04

ln(k), Kirby −3.92 1.35 −3.07 1.44 −2.24 0.030

PRL perseverance errors 4.74 3.26 11.55 9.70 −3.64 0.001

IGT net score 23.83 32.25 −4.87 26.98 3.46 0.001

Independent t-tests were used to compute significance values, which were uncorrected for multiple comparisons. Regular use is defined as the use of a substance at least  
3 days/week for the past 6 months. Curr, current; Reg, regular; W/AA, White/African-American; BIS, Barratt Impulsiveness Scale; SSRT, stop-signal reaction time; IMT, Immediate 
Memory Task; PRL, Probabilistic Reversal Learning; IGT, Iowa Gambling Task; n.s., non-significant (p > 0.10). All tests are t-tests except for sex, race, and % drug use variables 
where χ2 tests were used.
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IMT commission errors predicted CD. Among demographic 
variables, lower years of education and higher age predicted CD. 
Other measures were not critical for the prediction of CD and 
their coefficients shrank to 0.

Figure  2 shows the ROC curve and its mean AUC for the 
prediction of CD. The AUC was 0.952 for the training set and 
0.912 for the test set. Because the age difference between the 
two groups could be potentially arbitrary, we computed out-of- 
sample classification accuracy without the age variable in Figure 3 
(AUC = 0.900 for the test set).

Note that our out-of-sample classification accuracy was 
reliably robust (i.e., accuracy was consistently high and above 
chance) even when we randomly chose training and test sets 
and computed AUC repeatedly over 1,000 repetitions (see 
Robustness of Out-of-Sample Classification Accuracy). Figure 4 
shows the distribution of AUCs over 1,000 repetitions in training 
(Figure 4A) and test (Figure 4B) sets. Mean AUC values were 
0.974 and 0.887 for the training and test sets, respectively. These 
results over 1,000 repetitions further increase our confidence 
that our findings are robust and would be generalizable to 
new samples. Lastly, we examined classification accuracy with 
leave-one-out CV [i.e., LASSO is trained on all samples except 
one and a prediction is made for the left-out participant and the 
procedure is repeated N (=54) times], where the AUC was even 
higher (0.976, Figure 5).

DiscUssiOn

This study demonstrates that a multivariate battery of behavioral 
impulsivity measures can accurately predict CD using machine-
learning approaches. The LASSO algorithm selected a subset of 
measures that were most predictive of CD (BIS motor, BIS non-
planning, IMT commission errors, IMT A′, discounting rate of 
delayed rewards, and IGT net score), while the effects of other 
measures were 0 due to our use of a shrinkage method (i.e., the 
LASSO). While some neuroimaging studies have reported mod-
erate to high predictive accuracy for a SUD [e.g., Ref. (33)], to our 
knowledge, this is one of the first machine-learning studies (32) 
that achieved such high out-of-sample classification accuracy 
(AUC = 0.912 on the test set) using only behavioral measures.

Current findings with behavioral and self-report measures of 
impulsivity replicate previous findings in cocaine users, suggesting 
that our task selection was adequate [for a complete review, see Ref. 
(20)]. Consistent with previous studies (19, 21, 22) in which CDIs 
score higher than HCs on motor, non-planning and attentional 
subscales of the BIS-11 when tested with univariate approaches, 
the non-planning and motor subscales were most predictive of 
CD in the current machine-learning model. On measures of 
impulsive action, consistent with previous studies (21, 22), CDIs 
had higher commission errors and poorer discriminability com-
pared to controls but did not differ from HCs on omission errors 
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FigUre 2 | classification accuracy as indexed by the receiver-operating characteristic (rOc) curves and their area under the curve (aUc), 
separately on the (a) training and (B) test sets.

March 2016 | Volume 7 | Article 347

Ahn et al. Machine Learning, Impulsivity, and Cocaine Dependence

Frontiers in Psychiatry | www.frontiersin.org

on the IMT. We failed to observe significant group differences on 
the SST where previous studies have revealed mixed findings (27, 
54). With regards to impulsive choice, the literature suggests that 
CDIs have higher k values on both the Monetary-Choice Delay-
Discounting Questionnaire (MCDDT) and Delay-Discounting 
Task (DDT) compared to HCs (23, 24);  however, only the DDT 
task was predictive in our machine-learning model. Consistent 
with the literature, CDIs also displayed lower net-scores on the 
IGT (11, 25). It is important to note that the LASSO tends to select 
only one variable if several are correlated to each other. Thus, dis-
crepancy between t-test results (Table 1) and machine-learning 

results could be due to the nature of the LASSO algorithm, which 
is desirable when the goal is to reduce the number of tasks in the 
battery as much as possible.

The current study further supports the notion that trait-like 
and laboratory measures of impulsivity assess non-overlapping 
and distinct constructs (11, 13, 55). We used both self-report 
trait impulsivity and laboratory impulsivity measures (impulsive 
choice and impulsive action), and as seen in Figure 6, they showed 
weak to mild correlations (except for within-measure correlations, 
most absolute values of Pearson correlation coefficients <0.4). 
The results suggest that using a battery of impulsivity measures, 
instead of a single measure, increases prediction accuracy.

Strong predictive markers of SUDs may innovate their preven-
tion and treatment (56), and this study bears important implica-
tions for the development of affordable and easy-to-administer 
standardized assessment batteries that can evaluate individuals’ 
risk to CD in clinical settings. A rapidly growing literature sug-
gests that there are several neurobiological markers of SUDs, 
including genetic mutations (57), dopamine D2 receptors levels 
(58, 59), and prefrontal-cortical function (60, 61), which serve 
as vulnerabilities or resilience to SUDs. These neuroimaging 
and genetic measures, however, are very costly, which makes 
their use in some clinical settings unsustainable. In contrast, our 
battery of impulsivity measures (BIS-11, IMT, DDT, and IGT) 
is cost-effective, brief, and easy to administer, requiring less 
than an hour to complete. In line with the “precision medicine” 
 initiative (62), this approach may also have utility for personal-
ized personality-targeted prevention and intervention programs 
[e.g., Ref. (56)], which can be supplemented with various cognitive 
remediation strategies that address the specific type of impulsiv-
ity deficits (action or choice) (63). In another work, we identify 
distinct substance-specific behavioral profiles for dependence 
on heroin vs. amphetamines by using a similar machine-
learning approach (32). These findings suggest that the efficacy of  
prevention/intervention programs for SUDs may be improved 
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by targeting not only individual differences in neurocognitive 
and personality high-risk profiles but also tailoring preventions/
interventions to dissociable substance-specific high-risk profiles. 
In line with other studies using a multivariate machine-learning 
approach (33), some of the strongest predictors of CD in the 
current study were self-report personality measures, such as 
the BIS-11. We have previously demonstrated that baseline trait 

impulsivity (BIS-11) significantly predicts treatment retention 
and cocaine use among treatment-seeking cocaine users (19, 64). 
We believe the BIS-11 should be considered as a standard measure 
for studies involving SUDs (36), and we expect our multivariate 
battery of impulsivity including trait impulsivity measures may 
be helpful in predicting response to treatment.

In the current study, the predictors of the machine-learning 
model were all behavioral measures of impulsivity, but ample 
literature suggests that at least some of them could be linked to 
biological processes (29): for the IGT, making adaptive choices is 
related to the function of the prefrontal cortex (PFC), especially 
its ventromedial part (vmPFC) (65–67). Brain regions related 
to encoding the subjective values of delayed monetary rewards 
and choosing delayed rewards have been also well documented  
(68, 69), which include the medial/lateral PFC and ventral 
striatum. Future studies linking neuroimaging and surrogate 
measures, such as neurocognitive tasks (70) and eye movements 
(71), are needed for identifying such surrogate markers of CD.

The current study had several limitations. First, our sample 
size was relatively small and we acknowledge that larger sample 
sizes would result in more generalizable findings (72). However, 
note that out-of-sample classification accuracy was robustly 
high when we randomly divided data into training and test sets 
and repeated the procedure. Also, our sample size is greater or  
comparable to sample sizes in recent neuroimaging studies 
utilizing machine-learning methods [e.g., Ref. (73–75)]. These 
neuroimaging studies typically use leave-one-out CV and have 
substantially higher number of predictors (i.e., voxels) than 
our study. Still, we achieved excellent classification accuracy 
(AUC = 0.912 on our test set with fivefold CV and AUC = 0.976 
with leave-one-out CV), which is higher or comparable to that of 
neuroimaging studies. Taken together, these results suggest that 
our findings might generalize in new samples. To our knowledge, 
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FigUre 6 | a correlation matrix between all impulsivity measures. Numbers in cells and color bars indicate Pearson correlation coefficients. Significant 
correlations ( p < 0.05, uncorrected) are filled with blue (positive correlation) or red (negative correlation) colors. BIS, Barratt Impulsiveness Scale; SSRT, stop-signal 
reaction time; IMT, Immediate Memory Task; FP, false-positive (commission) errors; FN, false-negative (omission) errors; ln(k), natural log of delay-discounting rate; 
PRL, Probabilistic Reversal Learning; IGT, Iowa Gambling Task.
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this is one of the first studies applying a machine-learning method 
for the development of accurate and cost-effective behavioral 
markers, and the current study might promote awareness and 
interests in this “big data” approach in the field. The second 
limitation is that our current participant population abused other 
substances in addition to cocaine, which is representative of the 
patterns of drug use in the United States (76), but complicates 
our attempts to dissociate effects unique to CD/stimulants from 
those of other classes of drugs (e.g., opiates) (77). Some of our 
CDIs also met dependence for substances other than cocaine, 
including alcohol, nicotine, and marijuana; therefore, our predic-
tors might not be specific to CD in particular. Also, our CDIs 
are current users, and thus, we are unsure whether their profiles 
are due to their current state of CD or their preexisting traits 
related to impulsivity and whether these profiles would persist 
with abstinence. Lastly, impulse control can be impacted by other 
conditions including subclinical depression, which we did not 
measure. However, we believe the impact of depression on our 
findings would be minimal as we excluded participants meeting 
DSM-IV criteria for a mood disorder. We address some of these 

limitations in another study (32), where we recruit individuals 
in Bulgaria with mono-dependence on heroin or amphetamines 
who are currently in protracted abstinence.

In summary, the current study demonstrates that a standard-
ized, multivariate behavioral assessment approach to impulsivity, 
combined with advanced statistical learning approach could 
advance the field of SUDs in several important ways. With 
machine-learning algorithms and a multivariate approach, we 
can refine the design of our studies and improve the prediction 
accuracy for clinical outcomes. Application of this approach to 
longitudinal studies might enable us to identify cost-effective 
behavioral markers for SUDs and identify high-risk neurocogni-
tive or personality profiles (78), which may be targeted indepen-
dently by prevention/intervention programs.
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