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Large, nonsaturating thermopower in a quantizing
magnetic field
Brian Skinner* and Liang Fu*

The thermoelectric effect is the generation of an electrical voltage from a temperature gradient in a solid
material due to the diffusion of free charge carriers from hot to cold. Identifying materials with a large ther-
moelectric response is crucial for the development of novel electric generators and coolers. We theoretically
consider the thermopower of Dirac/Weyl semimetals subjected to a quantizing magnetic field. We contrast
their thermoelectric properties with those of traditional heavily doped semiconductors and show that, under
a sufficiently large magnetic field, the thermopower of Dirac/Weyl semimetals grows linearly with the field
without saturation and can reach extremely high values. Our results suggest an immediate pathway for
achieving record-high thermopower and thermoelectric figure of merit, and they compare well with a recent
experiment on Pb1–xSnxSe.
INTRODUCTION
When a temperature gradient is applied across a solid material with
free electronic carriers, a voltage gradient arises as carriers migrate
from the hot side to the cold side. The strength of this thermoelectric
effect is characterized by the Seebeck coefficient S, defined as the ratio
between the voltage difference DV and the temperature difference DT;
the absolute value of S is referred to as the thermopower. Finding
materials with a large thermopower is vital for the development of
thermoelectric generators and thermoelectric coolers—devices that
can transform waste heat into useful electric power or electric current
into cooling power (1–3).

The effectiveness of a thermoelectricmaterial for power applications
is quantified by its thermoelectric figure of merit

ZT ¼ S2sT=k ð1Þ

where s is the electrical conductivity, T is the temperature, and k is the
thermal conductivity. To design a material with a large thermoelectric
figure of merit, one can try in general to use either an insulator, such as
an intrinsic or lightly doped semiconductor, or ametal, such as a heavily
doped semiconductor. In an insulator, the thermopower can be large, of
the order E0/(eT), where e is the electron charge and E0 is the difference
in energy between the chemical potential and the nearest bandmobility
edge (4). However, obtaining such a large thermopower comes at
the expense of an exponentially small, thermally activated conduc-
tivity, s º exp (−E0/kBT), where kB is the Boltzmann constant. Be-
cause the thermal conductivity in general retains a power-law
dependence on temperature due to phonons, the figure of merit ZT
for insulators is typically optimized when E0 and kBT are of the same
order of magnitude. This yields a value of ZT that can be of order unity
but no larger (5).

On the other hand, metals have a robust conductivity, but usually
only a small Seebeck coefficient S. In particular, in the best-case scenario
where the thermal conductivity due to phonons is much smaller than
that of electrons, the Wiedemann-Franz law dictates that the quantity
sT/k is a constant of order (e/kB)

2. The Seebeck coefficient, however, is
relatively small in metals, of order k2BT=ðeEFÞ, where EF ≫ kBT is the
metal’s Fermi energy. If the temperature is increased to the point that
kBT > EF, then the Seebeck coefficient typically saturates at a constant of
order kB/e. Themaximum value of the figure ofmerit inmetals is there-
fore obtained when kBT is of the same order as EF and, once again, one
arrives at the conclusion that ZT is of order unity at best. Of course, real
thermoelectric materials are often far from the “best-case scenario” of
negligible thermal conductivity due to phonons so that even achieving
an order-unity value of ZT is difficult. Finding materials with low
thermal conductivity is often the bottleneck for optimizing thermoelec-
tric performance (2, 3).

Here, we show that these limitations on the figure of merit can be
circumvented by considering the behavior of doped nodal semimetals
in a strongmagnetic field, for which ZT≫ 1 is, in fact, possible. Crucial
to our proposal is a confluence of three effects. First, a sufficiently high
magnetic field produces a large enhancement of the electronic density of
states and a reduction in the Fermi energy EF. Second, a quantizing
magnetic field assures that the transverse E × B drift of carriers plays
a dominant role in the charge transport, and this allows both electrons
and holes to contribute additively to the thermopower, rather than sub-
tractively as in the zero-field situation. Third, in materials with a small
band gap and electron-hole symmetry, the Fermi level remains close to
the band edge in the limit of large magnetic field, and this allows the
numbers of thermally excited electrons andholes to growwithmagnetic
field even while their difference remains fixed. These three effects
together allow the thermopower to grow without saturation as a
function of magnetic field.
RESULTS
Relation between Seebeck coefficient and entropy
The Seebeck coefficient is usually associated, conceptually, with the en-
tropy per charge carrier. In a large magnetic field, and in a generic sys-
temwith some concentrationsne of electrons andnhof holes, the precise
relation between carrier entropy and thermopower can be derived using
the following argument. Let the magnetic field B be oriented in the z
direction and suppose that an electric field E is directed along the y
direction. Suppose also that the magnetic field is strong enough that
wct≫ 1, where wc is the cyclotron frequency and t is the momentum
scattering time so that carriers complete many cyclotron orbits with-
out scattering. In this situation, charge carriers acquire an E × B drift
velocity in the x direction, with magnitude vd = E/B. The direction of
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drift is identical for both negatively charged electrons and positively
charged holes so that drifting electrons and holes contribute additively
to the heat current but oppositely to the electrical current. This situa-
tion is illustrated schematically in Fig. 1.

To understand the Seebeck coefficient Sxx in the x direction, one
can exploit the Onsager symmetry relation between the coefficients Sij
of the thermoelectric tensor and the coefficients Pij of the Peltier heat
tensor Sij(B) = Pji(−B)/T. The Peltier heat is defined by JQi ¼ PijJej ,
where JQ is the heat current density at a fixed temperature and Je is
the electrical current density. In the setup we are considering, the elec-
trical current in the x direction is given simply by Jex ¼ evdðnh � neÞ.

In sufficiently large magnetic fields, the flow of carriers in the x
direction is essentially dissipationless. In this case, the heat current
in the x direction is related to the entropy current Jsx by the law
governing reversible processes: JQx ¼ TJsx. This relation is valid in gen-
eral when the Hall conductivity sxy is much larger in magnitude than
the longitudinal conductivity sxx; for a system with only a single sign
of carriers, this condition is met when wct ≫ 1. If we define se and sh
as the entropy per electron and per hole, respectively, then Jsx ¼
vdðnese þ nhshÞ, because electrons and holes both drift in the x direc-
tion. Putting these relations together, we arrive at a Seebeck coefficient
Sxx ¼ Pxx=T ¼ ðJQx Þ=ðTJexÞ that is given by

Sxx ¼ nhsh þ nese
eðnh � neÞ ≡

S
en

ð2Þ

In other words, the Seebeck coefficient in the x direction is given sim-
ply by the total entropy density S divided by the net carrier charge
density en. This relation between entropy and thermopower in a large
transverse magnetic field has been recognized for over 50 years and
explained by a number of authors (6–10), but it is usually applied only
to systems with one sign of carriers. As we show below, it has marked
implications for the thermopower in three-dimensional (3D) nodal
semimetals, where both electrons and holes can proliferate at small
EF ≪ kBT.

In the remainder of this paper, we focus primarily on the thermo-
power Sxx in the directions transverse to the magnetic field, which can
be described simply according to Eq. 2. At the end of the paper, we
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comment briefly on the thermopower along the direction of the
magnetic field, which has less marked behavior and saturates in all
cases at ~ (kB/e) in the limit of a large magnetic field.

We also neglect the contribution to the thermopower arising from
phonon drag. This is valid provided that the temperature and Fermi
energy EF are low enough that (kBT/EF)≫ (T/QD)

3, where QD is the
Debye temperature (11). These low-temperature and low-EF systems
are the primary focus of this paper [although it should be noted that
phonon drag tends to increase the thermopower (12)].

When the response coefficients governing the flow of electric and
thermal currents have finite transverse components, as introduced by
the magnetic field, the definition of the figure of merit ZT should be
generalized from the standard expression of Eq. 1. This generalized
definition can be determined by considering the thermodynamic effi-
ciency of a thermoelectric generator with generic thermoelectric,
thermal conductivity, and resistivity tensors. The resulting generalized
figure of merit is derived in the Supplementary Text and is given by

ZBT ¼ S2xxT
kxxrxx

1� Sxy
Sxx

kxy
kxx

� �2

1þ k2xy
k2xx

� �
1� S2xyT

kxxrxx

� � ð3Þ

where rxx is the longitudinal resistivity. Similarly, the thermoelectric
power factor, which determines the maximal electrical power that
can be extracted for a given temperature difference, is given by

PF ¼ S2xx
rxx

1� Sxy
Sxx

kxy
kxx

� �2

1� S2xyT

kxxrxx

ð4Þ

In the limit of wct ≫ 1 that we are considering, Sxy ≪ Sxx, and there-
fore, for the remainder of this paper, we restrict our analysis to the
case Sxy = 0.

In situations where phonons do not contribute significantly to the
thermal conductivity,we can simplifyEq. 3by exploiting theWiedemann-
Franz relation k̂ ¼ c0ðkB=eÞ2Tŝ, where c0 is a numeric coefficient of
order unity, and k̂ and ŝ represent the full thermal conductivity and
electrical conductivity tensors. This relation remains valid even in
the limit of large magnetic field as long as electrons and holes are good
quasiparticles (9). In the limit of strongly degenerate statistics, where
either EF ≫ kBT or the band structure has no gap, c0 is given by the
usual value c0 = p2/3 corresponding to the Lorenz number. In the limit
of classical, nondegenerate statistics, where EF ≪ kBT and the Fermi
level reside inside a band gap, c0 takes the value corresponding to
classical thermal conductivity c0 = 4/p. Inserting theWiedemann-Franz
relation into Eq. 3 and setting Sxy = 0 gives

ZBT ¼ S2xx
c0ðkB=eÞ2

ð5Þ

In other words, when the phonon conductivity is negligible, the ther-
moelectric figure of merit is given to within a multiplicative constant by
the square of the Seebeck coefficient, normalized by its natural unit kB/e.
As we show below, in a nodal semimetal, Sxx/(kB/e) can be parametri-
cally large under the influence of a strong magnetic field, and thus, the
E 

vd vd
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y 
x 
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e−  h+ 

Fig. 1. Schematic depiction of the E × B drift of carriers in a strong magnetic
field. Electrons (labeled e−) and holes (labeled h+) drift in the same direction under
the influence of crossed electric and magnetic fields. Both signs of carrier contribute
additively to the heat current in the x direction and subtractively to the electric cur-
rent in the x direction, which leads to a large Peltier heat Pxx and therefore to a large
thermopower Sxx.
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figure of merit ZBT can far exceed the typical bound for heavily doped
semiconductors.

In situations where phonons provide a dominant contribution
to the thermal conductivity so that the Wiedemann-Franz law is
strongly violated, one generically has kxx ≫ kxy, and Eq. 3 becomes

ZBT ¼ S2xxT
kxxrxx

ð6Þ

Heavily doped semiconductors
In this subsection, we present a calculation of the thermopower Sxx
for a heavily doped semiconductor, assuming for simplicity an iso-
tropic band mass m and a fixed carrier concentration n [in other
words, we assume sufficiently high doping that carriers are not lo-
calized onto donor/acceptor impurities by magnetic freeze-out
(13)]. This classic problem has been considered in various limiting
cases by previous authors (6, 8, 12, 14). Here, we briefly present a
general calculation and recapitulate the various limiting cases, both
for the purpose of conceptual clarity and to provide contrast with
the semimetal case.

Full details of the thermopower calculation at arbitrary B and T
are presented in the Supplementary Text, and an example of this
calculation is shown in Fig. 2. This plot considers a temperature
T≪Eð0Þ

F =kB, where E
ð0Þ
F is the Fermi energy at zero magnetic field.

The asymptotic behaviors evidenced in this figure can be under-
stood as follows.

In the limit of vanishing temperature, the chemical potential m is
equal to the Fermi energy EF, and the entropy per unit volume

S ≃
p2

3
k2BTnðmÞ ð7Þ
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where n(m) is the density of states at the Fermi level. At weak
enough magnetic field that ℏwc ≪ EF, the density of states is simi-
lar to that of the usual 3D electron gas, and the corresponding ther-
mopower is

Sxx ≃
kB
e

p
3
Nv

� �2=3 kBTm

ℏ2n2=3
ð8Þ

where Nv is the degeneracy per spin state (the valley degeneracy), m
is the effective mass, and ℏ is the reduced Planck constant. As the
magnetic field is increased, the density of states undergoes quan-
tum oscillations that are periodic in 1/B, which are associated with
individual Landau levels passing through the Fermi level. These os-
cillations are reflected in the thermopower, as shown in Fig. 2.

Of course, Eq. 8 assumes that impurity scattering is sufficiently
weak thatwct≫ 1. For the case of a doped and uncompensated semi-
conductor where the scattering rate is dominated by elastic collisions
with donor/acceptor impurities, this limit corresponds to (15) ‘B≪a*B,
where ‘B ¼ ffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

is the magnetic length and a*B ¼ 4pDℏ2=ðme2Þ is
the effective Bohr radius, with D denoting the permittivity. In the op-
posite limit of small wct, the thermopower at kBT≪ EF is given by the
Mott formula (9)

S ¼ kB
e
p2

3
kBT
s

dsðEÞ
dE

� �j
E¼m

; ðat B ¼ 0Þ ð9Þ

where s(E) is the low-temperature conductivity of a system with Fermi
energy E. In a doped semiconductor with charged impurity scattering,
the conductivity sºE3

F, and Eq. 9 gives a value that is twice larger than
that of Eq. 8.

When the magnetic field is made so large that ℏwc ≫ EF, electrons
occupy only the lowest Landau level, and the system enters the ex-
treme quantum limit. At these high magnetic fields, the density of
states rises strongly with increased B, as more and more flux quanta
are threaded through the system and more electron states are made
available at low energy. As a consequence, the Fermi energy falls re-
lative to the energy of the lowest Landau level, and EF and n(m) are
given by

EFðBÞ � ℏwc

2
¼ 2p4ℏ2n2ℓ4B

mN2
s N

2
v

º1=B2

nðmÞ ¼ mN2
s N

2
v

4p4ℏ2nℓ4B
ºB2

ð10Þ

Here, Ns denotes the spin degeneracy at high magnetic field; Ns = 1 if
the lowest Landau level is spin split by the magnetic field, and Ns = 2
otherwise. As long as the thermal energy kBT remains smaller than EF,
Eq. 7 gives a thermopower

Sxx ¼ kB
e
N2

s N
2
v

12p2
me2B2kBT

ℏ4n2
ð11Þ

However, if the magnetic field is so large that kBT becomes much
larger than the zero-temperature Fermi energy, then the distribution
of electron momenta p in the field direction is well described by a
10−1 100 101 102
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Fig. 2. Thermopower in the transverse direction, Sxx, as a function of magnetic
field for a degenerate semiconductor with parabolic dispersion relation. The
magnetic field is plotted in units of B0 = ℏn2/3/e. The temperature is taken to
be T ¼ 0:02Eð0ÞF =kB, and for simplicity, we have set Nv = 1 and g = 2. The dotted
line shows the limiting result of Eq. 8 for small B, and the dashed line shows the
result of Eq. 11 for the extreme quantum limit. At a very large magnetic field, the
thermopower saturates at ~ kB/e, with only a logarithmic dependence on B and T,
as suggested by Eq. 12.
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classical Boltzmann distribution: f º exp [−p2/(2mkBT)]. Using this
distribution to calculate the entropy gives a thermopower

Sxx ≃
1
2
kB
e
ln

mkBTN2
vN

2
s

ℏ2n2ℓ4B

� �
ð12Þ

In otherwords, in the limitwhere themagnetic field is so large thatℏwc≫
kBT≫ EF, the thermopower saturates at a value ~ kB/e with only a log-
arithmic dependence on the magnetic field [the argument of the loga-
rithm in Eq. 12 is proportional to kBT/EF(B)]. This result is reminiscent
of the thermopower in nondegenerate (lightly doped) semiconductors at
high temperature (16), where the thermopower becomes ~ (kB/e)ln(T).

Dirac/Weyl semimetals
Let us now consider the case where quasiparticles have a linear disper-
sion relation and no band gap (or, more generally, a band gap that is
smaller than kBT), as in 3DDirac orWeyl semimetals. Here, we assume,
for simplicity, that theDirac velocity v is isotropic in space so that, in the
absence of magnetic field, the quasiparticle energy is given simply by
e = ±vp, where p is the magnitude of the quasiparticle momentum.
The net charge density en is constant as a function of magnetic field,
because the gapless band structure precludes the possibility of magnetic
freeze-out of carriers. A generic calculation of the thermopower Sxx is
presented in the Supplementary Text, and an example of our result is
plotted in Fig. 3.

The limiting cases for the thermopower can be understood as
follows. In the weak-field regime ℏwc ≪ EF, the electronic density of
states is relatively unmodified by the magnetic field, and one can use
Eq. 7 with the zero-field density of states n(m) = (9Nv/p

2)1/3n2/3/ℏv. This
procedure gives a thermopower

Sxx ≃
kB
e

p4

3

� �1=3 kBT
ℏv

Nv

n

� �1=3

ð13Þ
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Here,Nv is understood as the number ofDirac nodes; for aWeyl semi-
metal, Nv is equal to half the number of Weyl nodes. Equation 13 ap-
plies only when wct ≫ 1. If the dominant source of scattering comes
from uncompensated donor/acceptor impurities (17), then the con-
dition wct≫ 1 corresponds to B≫ e3n2/3/[(4pD)2ℏv2]. In the opposite
limit of small wct, one can evaluate the thermopower using the Mott
relation (Eq. 9). A Dirac material with Coulomb impurity scattering
has s(E)º E4 (17), so in the limit wct≪ 1, the thermopower is larger
than Eq. 13 by a factor of 4/3.

As the magnetic field is increased, the thermopower undergoes
quantumoscillations as higher Landau levels are depopulated.At a large
enough field that ℏv=‘B > EF, the system enters the extreme quantum
limit, and the Fermi energy and density of states become strongly
magnetic field–dependent. In particular

m≃
2p2

Nv
ℏvn‘2Bº1=B

nðmÞ≃ Nv

2p2ℏvℓ2B
ºB

ð14Þ

The rising density of states implies that the thermopower also rises
linearly with magnetic field. From Eq. 7

Sxx≃
kB
e
Nv

6
kBTeB

ℏ2vn
ð15Þ

Remarkably, this relation does not saturate when m becomes smaller
than kBT. Instead, Eq. 15 continues to apply up to arbitrarily high values
of B, as m declines and the density of states continues to rise with
increasing magnetic field. One can think that this lack of saturation
comes from the gapless band structure, which guarantees that there is
no regime of temperature for which carriers can be described by classi-
cal Boltzmann statistics, unlike in the semiconductor case when the
chemical potential falls below the band edge.

In more physical terms, the nonsaturating thermopower is asso-
ciatedwith a proliferation of electrons and holes at large (kBT)/m. Unlike
in the case of a semiconductor with a large band gap, for a Dirac/Weyl
semimetal, the number of electronic carriers is not fixed as a function of
magnetic field. As m falls and the density of states rises with increasing
magnetic field, the concentrations of electrons and holes both increase
even as their differencen=ne−nh remains fixed. Because both electrons
and holes contribute additively to the thermopower (as depicted in Fig. 1)
in a strong magnetic field, the thermopower Sxx increases without
bound as the magnetic field is increased. This is notably different from
the usual situation of semimetals at B = 0, where electrons and holes
contribute oppositely to the thermopower (18).

The unbounded growth of Sxx with the magnetic field also allows
the figure of merit ZBT to grow, in principle, to arbitrarily large
values. For example, in situations where the Wiedemann-Franz
law holds, Eq. 5 implies a figure of merit that grows without bound
in the extreme quantum limit as B2T3. On the other hand, if the pho-
non thermal conductivity is large enough that the Wiedemann-Franz
law is violated, then the behavior of the figure of merit depends on
the field and temperature dependence of the resistivity. As we dis-
cuss below, in the common case of a mobility that declines inversely
with temperature, the figure of merit grows as B2T2 and can easily
become significantly larger than unity in experimentally accessible
conditions.
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Fig. 3. Thermopower in the transverse direction as a function of magnetic field
for a gapless Dirac/Weyl semimetal. Units of magnetic field are B0 = ℏn2/3/e. In this
example, the temperature is taken to beT ¼ 0:01Eð0ÞF =kB andNv = 1. The dotted line is
the low-field limit given by Eq. 13, and the dashed line is the extreme quantum limit
result of Eq. 15. Unlike the semiconductor case, at a large magnetic field, the thermo-
power continues to grow with increasing B without saturation.
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DISCUSSION
Thermopower in the longitudinal direction
So far, we have concentrated on the thermopower Sxx in the direction
transverse to the magnetic field; let us now briefly comment on the
behavior of the thermopower Szz in the field direction. At low tem-
perature kBT ≪ EF, the thermopower Szz can be estimated using
the usual zero-field expression (Eq. 9), where s is understood as
szz. This procedure gives the usual thermopowerSzzek2BT=ðeEFÞ. Such
a result has a weak dependence on magnetic field outside the extreme
quantum limit, ℏwc ≪ EF, and rises with magnetic field when the ex-
treme quantum limit is reached in the same way that Sxx does. That is,
Szz º B2 for the semiconductor case (as in Eq. 11) and Szz º B for the
Dirac semimetal case (as in Eq. 15), provided that EF ≫ kBT.

However, when themagnetic field ismade so strong thatEF(B)≪ kBT,
the thermopower Szz saturates. This can be seen by considering the
definition of thermopower in terms of the coefficients of the Onsa-
ger matrix S = L12/L11, where L11 = − ∫dEf ′(E)s(E) and L12 = −1/
(eT)∫dEf ′(E)(E − m)s(E) (19). In the limit where kBT ≫ |m|, the co-
efficient L11 is equal to s, whereas L12 is of order kBs/e. Thus, unlike
the behavior of Sxx, the growth of the thermopower in the field direction
saturates when Szz becomes as large as ~ kB/e. As alluded to above, this
difference arises because in the absence of a strong Lorentz force, elec-
trons and holes flow in opposite directions under the influence of an
electric field and thereby contribute oppositely to the thermopower. It
is only the strongE×B drift, whichworks in the same direction for both
electrons and holes, that allows the Dirac semimetal to have an un-
bounded thermopower Sxx in the perpendicular direction.

Experimental realizations
In semiconductors, achieving a thermopower of order kB/e is relatively
common, particularly when the donor/acceptor states are shallow and
the doping is light.Nonetheless, we are unaware of any experiments that
demonstrate the B2 enhancement of Sxx implied by Eq. 11 for heavily
doped semiconductors. Achieving this result requires a semiconductor
that can remain a good conductor even at low electron concentration
and low temperature so that the extreme quantum limit is achievable at
not-too-high magnetic fields. This condition is possible only for semi-
conductors with a relatively large effective Bohr radius a*B, because of
either a small electron mass or a large dielectric constant. For example,
the extreme quantum limit has been reached in 3D crystals of HgCdTe
(20), InSb (21), and SrTiO3 (22, 23). SrTiO3, in particular, represents a
good platform for observing large-field enhancement of the thermo-
power, because its enormous dielectric constant allows one to achieve
metallic conduction with extremely low Fermi energy. For example,
using the conditions of the experiments in the study of Bhattacharya
et al. (23), where n ~ 5 × 1016 cm–3 andT = 20mK, the value of Sxx can
be expected to increase≈ 50 times between B = 5 T and B = 35 T. The
corresponding increase in the figure of merit is similarly large, al-
though at these low temperatures, the magnitude of ZBT remains rel-
atively small.

More interesting is the applicationof our results to nodal semimetals,
where Sxx does not saturate at ~ kB/e, but continues to grow linearlywith
B without saturation. Similar behavior was recently seen by Liang et al.
(24). These authors measured Sxx in the Dirac material Pb1–xSnxSe as
a function of magnetic field and observed a result strikingly similar to
that of Fig. 3, with quantum oscillations in Sxx at low field followed by a
continuous linear increase with B upon entering the extreme quantum
limit. Our theoretical results for Sxx agree everywhere with their
measured value to within a factor 2 (the slight disagreement may be
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due to spatial anisotropy of the Dirac velocity). The experiments of
Liang et al. (24) were performed in the degenerate limit, EF ≫ kBT,
where the magnitude of the thermopower is relatively small, but our
results show that the linear increase in Sxx with B should continue
without bound as one enters the nondegenerate limit, kBT ≫ EF, by
increasing B and/orT. We emphasize that, while our theory for Dirac/
Weyl semimetals has formally assumed a vanishing band gap, the the-
ory can still be applied in situations where there is a finite gap whose
magnitude is much smaller than either kBT or EF. In Pb1–xSnxSe, for
example, the band gap is a function of both the alloy composition x
and the temperature T, and experiments suggest that there is a line in
the space of x and T at which the band gap vanishes (25, 26). Points
along this line represent ideal conditions for realizing a large, field-
enhanced thermopower.

Given such a small band gap, one can quantitatively estimate the
expected thermopower and figure of merit for Pb1–xSnxSe under
generic experimental conditions using Eq. 15. Inserting the measured
value of the Dirac velocity (24) gives

Sxx ≈ 0:4
mV
K

� �
� ðT½K�ÞðB½T�Þ

n½1017cm�3�

So, for example, a Pb1–xSnxSe crystal with a doping concentration n =
1017 cm–3 at temperatureT= 300K and subjected to amagnetic fieldB =
30T can be expected to produce a thermopower Sxx≈ 3600mV/K.At this
low doping, theWiedemann-Franz law is strongly violated due to a pho-
non contribution to the thermal conductivity that ismuch larger than the
electron contribution, andkxx is of order 3W/(mK) (27). The value ofrxx
can be estimated from themeasurements of Liang et al. (24), which show
a B-independent mobility me that reaches≈ 105 cm2V−1 s−1 at zero tem-
perature, andwhich at temperatures aboveT≈ 20K is limitedby phonon
scattering and declines as me≈

1:5�106cm2V�1s�1

T½K� : [This result for rxx is
consistent with previous measurements (26, 28).] The large magnetic
field limit wct ≫ 1 is equivalent to meB ≫ 1 so that, for Pb1–xSnxSe
at temperatures above ≈ 20 K, our theory is applicable at all fields
B≫ 1/me≈ (7 × 10−3 T) × (T [K]). This corresponds toB≫ 2T at room
temperature. Inserting the experimental result for mobility into Eq. 6,
and using rxx = 1/(neme), gives a figure of merit

ZBT ≈ 1:3� 10�7 � ðT½K�Þ2ðB½T�Þ2
n½1017cm�3�

So, for example, at n = 1017 cm–3, T = 300 K, and B = 30 T, the figure
of merit can apparently reach an unprecedented value ZBT≈ 10. These
experimental conditions are already achievable in the laboratory so that
our results suggest an immediate pathway for arriving at record-
large figure of merit. The sample studied by Liang et al. (24) has n
≈ 3.5 × 1017 cm–3 so that, at B = 30 T and T = 300 K, this sample
should already exhibit ZBT ≈ 3. If the doping concentration can be re-
duced as low as n = 3 × 1015 cm–3 [as has been achieved, for example, in
the Dirac semimetals ZrTe5 (29, 30) and HfTe5 (31)], then one can ex-
pect the room temperature figure ofmerit to be larger thanunity already
at B > 1 T. The corresponding power factor is also enormously
enhanced by the magnetic field

PF ≈ 4� 10�3 mW

cm K2

� �
� ðT½K�ÞðB½T�Þ2

n½1017cm�3�
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reaching PF ≈ 1000 mW/(cm K2) at n = 1017 cm–3, T = 300 K, and
B = 30 T.

Note that the numerical estimates in this section have used a
B-independent mobility, as reported by Liang et al. (24). Experiments
probing transport in other Dirac and Weyl semimetals, however,
have reported a nonsaturating linear magnetoresistance at large
magnetic field, rxx º B [see, for example, the studies of Shekhar et al.
(32) and Liang et al. (33)]. This linear magnetoresistance tends to
blunt the growth of the figure of merit ZT at large B, reducing the
dependence ZT º B2 implied by Eqs. 6 and 15 to ZT º B. We em-
phasize, however, that even in the presence of a large, linear magne-
toresistance, the figure of merit continues to grow without saturation
as B is increased.

Finally, note that Eq. 15 implies a thermopower that is largest in
materials with low Dirac velocity and high valley degeneracy. In this
sense, there appears to be considerable overlap between the search
for effective thermoelectrics and the search for novel correlated elec-
tronic states.
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