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Abstract: Cancer still remains a leading cause of death despite improvements in diagnosis, drug dis-
covery and therapy approach. Therefore, there is a strong need to improve methodologies as well as
to increase the number of approaches available. Natural compounds of different origins (i.e., from
fungi, plants, microbes, etc.) represent an interesting approach for fighting cancer. In particular,
synergistic strategies may represent an intriguing approach, combining natural compounds with
classic chemotherapeutic drugs to increase therapeutic efficacy and lower the required drug con-
centrations. In this review, we focus primarily on those natural compounds utilized in synergistic
approached to treating cancer, with particular attention to those compounds that have gained the
most research interest.

Keywords: ascorbic acid; cancer; cancer therapy; capsaicin; curcumin; epigallocatechin-3-gallate;
natural compounds; resveratrol; synergy

1. Introduction

Cancer is considered, in our century a leading cause of death and the single most
significant obstacle to increasing life expectancy in every country in the world.

So, cancer remains a worldwide challenge with significant influence, not only on
human health, but also on the global economy.

According to World Health Organization (WHO) data, cancer is reported to be the
first- or second-most common cause of death in people under 70 years of age in 91 of
172 countries, and the third- or fourth-most common in an additional 22 countries [1].
Neoplasm incidence and mortality are fast rising all around the world, reflecting both the
population’s increasing growth and age.

In addition, the escalating rise of tumours as a cause of death is nearly equal to the
noticeably declining mortality rates for coronary heart disease and stroke in many countries.
It is interesting, today, to notice that changes in tumour incidence are most pronounced
in emerging economies. There, history is repeating itself in the shift from poverty- and
infection-related malignancies to those diseases that are already dominant in developed
areas (e.g., in North America and Europe). These kinds of cancers are often described
as “caused by the westernization of lifestyle”, however, the differing cancer profiles in
several countries and regions show that marked geographic disparities still exist; in fact,
there are local risk factors persisting in populations at quite different phases of social and
economic transition.
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The significant changes in infection-associated cancer rates (liver, cervix, and stom-
ach), described in countries with different levels of economic development, confirm this
theory [1].

Even if substantial improvements have been achieved in early diagnosis and in
new drug improvement, there is a strong need to develop new methodologies and new
molecules that are able to advance the therapeutic approaches currently available [1].

2. Natural Compounds for Cancer Therapy

In ancient times, as reported in the medical literature, doctors used both surgery
and natural compounds (especially plant products) to treat patients. There is, similarly,
historical evidence for the use of natural compounds in traditional Chinese medicine and
Indian Ayurvedic practise.

Natural compounds from the plant, microbial and fungus kingdoms represent an
uncountable resource of new molecules, potentially usable as antitumor remedies if their
availabilities, toxicities and activities are tolerable.

There is much data supporting the use of natural compounds in cancer treatment;
nevertheless, the validity of their use is not completely verified by scientific evidence.

Natural compounds represent an interesting point of comparison with current health
culture. Natural products are an important option in cancer therapy today; there are cur-
rently a significant number of anticancer agents available, both natural and derived from
natural products (from animals, plants, and microorganisms, also from marine environ-
ment) [2].

Recently, natural product-based drug discovery has been growing due to the develop-
ment of new approaches, such as combinatorial synthesis and its associated methods.

There are many examples of plant-derived compounds; for example, irinotecan,
vincristine, paclitaxel and etoposide. Microbes are also proving to be an important source
thereof; mitomycin C, actinomycin D, bleomycin, l-asparaginase and doxorubicin are drugs
obtained from bacteria. In addition, citarabine is the first drug originating from a marine
source [3].

Today, a new generation of taxanes, anthracyclines, alkaloids from Vinca, camp-
tothecins and epothilones have been developed. Some of these are already in clinical use,
others are under study.

Other molecules deriving from marine animals and plants (e.g., trabectedin, ET-743,
bryostatin-1, neovastat) have also reached clinical trials.

There are many different classes of natural compounds, such as terpenes, carotenoids,
phenolic compounds (flavonoids, stilbenes, phenolic acids, tannins, coumarins), alkaloids,
nitrogen compounds and organosulphates (isothiocyanates and indoles, allysulphates),
which have aroused much interest [3].

Marine environments have yielded several classes of compounds with diverse biologi-
cal activities [4]. Many molecules extracted from marine organisms have been investigated
recently; for example, arabinosides (isolated from marine sponge Cryptotethya crypta),
didemin B (Trididemnum solidum) and bryostatins (Bugula Neritina and other Bryozoa) have
shown anticancer activity [5].

Soil fungi contain a huge number of defence metabolites, allowing them to survive
amidst other organisms (other fungi, nematodes, insects and bacteria) and helping them
to inhabit more preferential areas by way of effective antagonism. Non-cytotoxic and
host-mediated antitumor polysaccharides have been obtained from various fungi (Basid-
iomycetes and Ascomycetes) [6].

Many organisms produce venoms and toxic substances; these compounds are very
attractive candidates for drug development. They often show physiological effects on
animals, humans among them. Examples include cantharidin, which is produced by blister
beetles, or solenopsins, produced by fire ants (Solenopsins invicta), among others [6].
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These drugs from natural environments exert their effects on cancer cells by a plethora
of mechanisms of action, for example, interference with tumor signal transduction, the
inhibition of topoisomerases I or II, DNA alkylation, interaction with microtubules, etc. [7].

Several natural molecules are able to interact with signalling pathways and regulate
the gene expression involved in cell differentiation, cell cycle regulation, and apoptosis [8].

3. Synergy

Cancer is a multifaceted clinical condition in which several cellular and molecular
pathways are altered. Each cancer type expresses a specific genetic fingerprint.

However, all cancers share a mutual behaviour centred on unrestrained proliferation,
migration, and invasion. This aggressive phenotype is the tangible clinical problem and
remains unsolved.

Recent anti-tumour strategies, as well as drug discovery efforts, are constantly growing
the therapeutic resource base, with important improvements being made in terms of
personalised options [9].

An important number of drugs, such as antibody-based drugs or particular inhibitors
of specific targets, have been developed following the concept “one-drug-one-target” [10].

Yet, the heterogeneity of some molecules, such as those from natural origins [11],
permits their potentially multi-targeted affect.

In fact, these compounds can reach several cellular and molecular targets, altering
some pathways or diverse signalling cascade elements.

Furthermore, this multi-targeted activity is not only due to single compound efficacy,
but also to a combination of molecules, as present in numerous natural extracts. So, each
compound may be able to reach one or more targets, increasing the pharmacological
activity of the whole extract [12].

Another intriguing option is the combination of natural extracts, or at least of their
main components, with conventional chemotherapy, with the main aim of reducing the
incidence of resistance, thereby increasing cancer cell toxicity and generally diminishing
the injuriousness of chemotherapy drugs [13].

Today, growing evidence has pointed out that combined therapies are much more
effective than single-drug-based treatments. Therefore, a combination of different therapies
is deployed to treat not only neoplasms but also other illnesses, such as viral and bacterial
infections, inflammatory diseases, etc. [14].

Combined therapies normally require the co-administration of two or more drugs.
These combinations may be combinations of pure compounds or drugs based on mixtures
from natural extracts.

Synergy is consequently the most appropriate characteristic of combined therapies,
including those using natural extracts.

In pharmacology, the sum synergic effecta of some combinations are more powerful
than their individual components, separately. Synergy is not a binary factor; the pharmaco-
logical interaction between the components of a mixture can be synergic to varying degrees.

Combinations of natural products with cancer drugs that exhibit synergy have been
developed to further improve upon existing treatment strategies, due to the propensity
of some natural products to provide improved therapeutic efficacy or overcome drug
resistance with decreased risk for adverse side effects and toxicity in normal cells [12,15].

Specific natural compounds and constituents have been extensively demonstrated to
lessen chemotherapy drugs’ cytotoxic activity in various cell lines, thereby widening the
therapeutic window and also lowering required drug concentrations, while providing the
same effect [13].

In Table 1, we summarize a list of natural molecules with their molecular effects on
cancer cells and their synergistic effects in combination with chemotherapeutic agents in
some cancer models.
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Table 1. Natural products, their effects on cancer cells and their synergy with chemotherapeutics.

Natural
Product

Common
Sources Mechanisms of Action Chemotherapy Drug and

Synergistic Effects

Ascorbate //
Ascorbate’s toxicity on cancer cells is due to
hydrogen peroxide formation with ascorbate
radical as an intermediate state [15].

Ascorbate showed synergistic effects in
in vitro [15] and in vivo experiments with
common anti-cancer drugs [16]. Ascorbate
is used in synergistic approaches at mM
concentrations.

Podophyllotoxin Podophyllum

Podophyllotoxin inhibits tubulin
polymerisation, arresting the cell cycle at
metaphase [17]. It is effective in treating
Wilms’ tumours, various types of genital
cancer and in non-Hodgkin’s and other
lymphomas [18], lung tumours [19,20], and
neuroblastoma [21].

Podophyllotoxin (ranging from 7.5 to
15 nM) showed synergistic effects
with [21]:

- Cisplatin
- Methotrexate

Neem extract Azadirachta
indica

Neem components’ modify the tumour
environment, decreasing vessel formation [22].
They are employed against cervical, breast,
and ovarian cancer.

Neem extract showed synergistic effects
with [23]:

- Cisplatin
- Genduin

Capsaicin Red and chili
peppers

The antitumor mechanism of capsaicin
increases apoptosis and cell cycle arrest [24]

Capsaicin (at µM concentrations) showed
synergistic activities with other agents,
such as resveratrol and genistein [25].

Curcumin Curcuma longa

In colon cancer, AMPK causes invasion
through the inhibition of NF-kB, uPA, and
MMP9. Curcumin is able to inhibit this
pathway [26]. In fact, it can reduce TNF-a,
COX-2, and IL-6 production, contrasting
inflammation [27]. It also inhibits cell
proliferation by increasing the activity of
glutathione-S-transferases and p21, which are,
respectively, a biotransformation enzyme and
a cell-cycle protein [28,29].
Moreover, it increases some pro-apoptotic
proteins’ expression (Bax, Bim, Bak, Noxa)
while inhibiting anti-apoptotic elements
(Bcl-2, Bcl-xL) [30].
In addition, curcumin reduces the expression
of VEGF and matrix metalloproteases,
preventing metastases’ development [31].

Curcumin (at µM concentrations) shown
synergistic activity with:

- Bevacizumab [32]
- Capecitabine [33]
- Dasatinib [34]
- FOLFOX [34]

Resveratrol Almost 70 plant
species

Resveratrol interacts with several targets.
In fact, it acts on cytochrome P450 isoenzymes
and may downregulate some elements that
are often upregulated in tumoral cells.
Among these are cyclooxygenase
inflammation mediator enzymes and NF-kB
transcription factor [35].

Resveratrol (for clinical studies, at
concentrations ranging from 20 to
120 g/day) showed synergistic effects
with [36]:

- 5-FU
- Etoposide
- Mitomycin
- Oxaliplatin
- Curcumin

GLC (Ganoderma
lucidum extract)

Ganoderma
lucidum

GLC induces NK cell toxicity by NKG2D
augmented expression and natural
cytotoxicity receptors (NCR), increased
intracellular MAPK phosphorylation, and the
secretion of granulysin and perforin [37]. In
some human cell lines, Ganoderma lucidum
promotes the arrest of mitosis [38].
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Table 1. Cont.

Natural
Product

Common
Sources Mechanisms of Action Chemotherapy Drug and

Synergistic Effects

GLP (Polysac-
charides

extracted from
Ganoderma

lucidum)

//

GLP shows anti-tumoral effects and can play an
important role in downregulating inflammation and
blood sugar. In addition, it has immunostimulatory
effects and inhibits ROS formation, reducing
oxidative DNA damage [37–40]. In colorectal cancer
CRC, GLP shown pro-apoptotic activity on the
HCT116 cell line, increasing caspase-3, caspase-8,
and Fas activities [41]. Moreover, GLP is able to
reactivate mutant p53 (as seen in HT-29 and SW480
colorectal cell lines) [42].

It is possible to be dosed up with
5-FU [42].

GLT (triterpene
extract) //

It has shown suppression activity on colon cancer
carcinoma cells (HT-29), and also inhibited colon
cancer growth in a xenograft model. Its activity is
related to the ability to arrest cell cycles in the
G0/G1 phase and to induce apoptosis. GLT allows
the formation of autophagous vacuoles and
increases the expression of some proteins, like
Beclin-1 and LC-3. Autophagy is facilitated by p38
MAPK inhibition [43].

D9-THC (and
other) Cannabis sativa

It may induce apoptosis in tumoral cells, inhibiting
proliferation and angiogenesis. Furthermore, it
inhibits cancer cell migration, allowing
anti-metastatic effects [44–48].
D9-THC has been shown in vitro some anticancer
effects on different tumoral diseases, such as breast
cancer, epithelioma, glioma, lung cancer, lymphoma,
neuroblastoma, pancreatic carcinoma, prostate
carcinoma, skin cancer, thyroid epithelioma, and
uterine-carcinoma [49].

Cannabidiol
(CBD) //

It has shown anti-growth effects on two tumoral cell
lines (HCT116 and DLD-1), however, cannabidiol
derivatives are ineffective against healthy cells’
proliferation [50].
In vivo, CBD extract proved effective in reducing
pre-neoplastic lesions and polyps (induced through
azoxymethane) as well as in xenograft models [50].
In addition, CBD displayed chemopreventive effect
on HCT116 and Caco-2 cell lines, protecting them
from oxidative damage and decreased cell
proliferation through CB1, TRPV1, and PPARg [47].

Flavonoids
Several plant
organs and

compounds.

Flavonoids are able to promote a protective effect on
cells against cancer evolution in several ways [13].

Epigallocatechin
(EGCG) Camellia Sinensis

It acts on cell signalling. In fact, it can stop both the
growth and migration of CRC cells. These effects are
due to the inhibition of the TF/VIIa/PAR2
signalling pathway, which is very important for
inducing ERK1/2 phosphorylation and activation of
NF-kB. In particular, EGCG reduces NF-kB
transcription factor activity, induces increased
expression of caspase-7, and decreased expression of
MMP-9 [51]. Moreover, epigenetic process could be
regulated by EGCG, it allows the ubiquitination of
colorectal cells sensitive to methylation, helping in
DNMT3A (DNA methyltransferase 3A) and HDAC
(histone deacetylases) degradation [52,53]

EGCG showed synergistic effect
with 5-FU [54].
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Table 1. Cont.

Natural
Product

Common
Sources Mechanisms of Action Chemotherapy Drug and

Synergistic Effects

Genistein soy, beans, lentils, and
chickpeas

In the HT-29 cell line, genistein up-regulates
the expression of Bax, p21 proteins and
glutathione peroxidase expression. However, it
can also inhibit some molecules like NF-kβ,
topoisomerase II and MMP2 (this last function
helps to prevent mestastases in CRC
patients) [55,56]

Genistein showed synergistic effects
with [57]:

- 5-FU
- Cisplatin

For in vivo studies mice were
injected 50 mg genistein/kg
body weight.

Apigenin Several plants species

Apigenin induces colorectal cell growth
inhibition, decreases angiogenesis, promotes
cell arrest and apoptosis in vitro [58]. In both
in vitro and in vivo studies the expression of
NAG-1, P53 and p21 (cell cycle inhibitor) are
increased by apigenin, reducing intestinal
tumour load and number [59]. Apigenin is
able to inhibit ABC receptors that increase the
efflux of a chemotherapeutic agent in cancer
cells, on the other hand it increases their
bioavailability [55].

Apigenin showed synergistic effects
with Irinotecan [60].

Chrysin

honey, propolis,
chamomile and

martyrs (Passiflora
caerulea)

Chrysin has shown, in HCT116, DLD-1 and
SW837 cells, the ability to induce cell apoptosis.
This compound increases TNFα and TNFβ
genes, activating the TNF and AHR (aryl
hydrocarbon receptor) signalling
pathways [61]. Moreover, chrysin can induce a
cell cycle arrest at the G2/M transition phase,
as seen in a study on the colorectal cell line
SW480 [62].

Chrysin can reduce cisplatin side
effects [56]. Furthermore, it has
shown a synergistic effect with
Apigenin [62].

Isoliquiritigenin
& Formotenin

Glycyrrhiza Glabra
(Isoliquiritigenin) &

Some plants

They inhibited growth of cancer cells lines,
promoting also apoptosis [63].

Isoliquiritigenin has shown a
synergistic effect with cisplatin [64].

Kaempferol Propolis and several
plants

Kaempferol increases chromatin condensation
and DNA fragmentation. It is also able to
increase the cleavage of caspase-9, caspase-3,
and caspase-7.
Together, this is how this compound induces
apoptosis [65].

Quercetin Many types of
vegetables and fruits.

Quercetin is an antiproliferative compound. It
prevents the activation of RAS and inhibits
migration and invasion [66,67].

Artesunate Artemisia annua

Artesunate displays anti-proliferative activity,
for these reasons it is a potential anticancer
agent. It is cytotoxic, allowing it to induce cell
cycle arrest in the G1 phase.
Furthermore, Artesunate has shown the ability
to reverse immunosuppression in the cancer
microenvironment [68].

Artesunate has shown synergistic
effects with oxaliplatin [69].

Ginsenosides Panax ginseng, Panax
notoginseng

Ginsenosides decrease adhesion, inhibit
migration, and cause apoptosis [70,71]

Gisenosides have shown synergistic
effects with 5-FU [72].

Betulinic acid

Betula pubescens,
Pseudocydonia sinensi,

Prunella vulgaris,
Piteroporus betulinus,
Innonotus obliquus.

Betulinic acid targets the apoptotic
mitochondrial pathway [73].

Betulinic has shown synergistic
effects with [74]:

- 5-FU
- Oxaliplatin
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Table 1. Cont.

Natural Product Common
Sources Mechanisms of Action Chemotherapy Drug and

Synergistic Effects

Gossypol Gossypium
In tumour cells, Gossypol can inhibit proliferation,
inducing apoptosis [75]. It was tested on CRC and
prostate cancer [75].

Gossypol has shown synergistic
effects with 5-FU [75].

Isothiocyanates
and indoles

Cruciferous
vegetables

It has an important antitumoral effect, blocking
cytochromes P450, and also inducing the phase II
detoxification enzymes glutathione S-transferases,
and promotes the elimination of carcinogens from
the organism [76]. Cell metastasis and its tumoral
properties (migratory and invasive mechanisms)
can be inhibited by allyl isothiocyanate [77].

Allysulfates Alliaceae
They suppress proliferation and induce apoptosis
by increasing the production of ROS in cancer cells.
They also inhibit growth [78,79].

Ethanol extract of
Aaptos suberiotides Aaptos suberiotides

The ethanol extract of Aaptos suberiotides inhibits
cell proliferation and migration in HER2-Positive
breast cancer [80].

It can reduce resistance to
Trastuzumab [80].

β-Caryophyllene Many plants

BCPO suppresses PC-3 (a prostate cancer cell line)
and MCF-7 (a breast cancer cell line) growth in a
dose-dependent way.
Furthermore, it promotes ROS production, triggers
MAPK and inhibits the PI3K/AKT/mTOR/S6K1
signalling pathway [81].

Ethanol Extract of
Marine Sponge
Stylissa carteri

Stylissa carteri This extract inhibits growth and migration, and
also induces apoptosis in breast tumour cells [82].

It has shown a synergistic effect
with [82]:

- Doxorubricin
- Paclitaxel

Cecropins Many insect sp.

Cecropins show cytotoxic activity only against
cancer cells (leukaemia, colon carcinoma, stomach,
small cell lung and ovarian cancer with a
multi-drug resistant phenotype) [83].

Mycalamide A/B
and Onamide
extracted from

sponges

Mycale sp. and
Theonella sp.

These inhibit the cell-free translation of RNA in
cancer cells (leukaemia) [84].

Emericellipsin A

Extremophilic
Fungus and

Emericellopsis
alkalina

Emericellipsin induces apoptosis in cancer cells
(hepG2 and HeLa) [85].

PSK Coriolus vescicolor

PSK inhibits the growth of various types of
tumours (fibrosarcoma, colon adenocarcinoma).
Data suggest that PSK-induced immunity is
tumour-specific and that T lymphocytes play an
important role in antitumor memory
functions [86].

It has shown a synergistic
function with 5-FU [86].
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Table 1. Cont.

Natural
Product

Common
Sources Mechanisms of Action Chemotherapy Drug and

Synergistic Effects

AraC Cryptotethya crypta

It induces apoptosis through many mechanisms.
AraC, and its different metabolites, contribute to
its cytotoxicity, the including incorporation of
AraCTP into DNA and AraUMP into RNA,
inhibition of polymerase α and β, and the
impairment of repair mechanisms [87]. Besides
this DNA synthesis impairment, AraC causes
several signalling events, the including activation
of PKC and MAPK [88] and the upregulation of
AP-1 and NF-κB [89–91].

It has shown a synergistic effect
with [92]:

- Idarubicin
- Daunorubicin

Ara-C was tested at a concentration
of 10 micrograms/mL

didemin B
Trididemnum
solidum and

Tistrella mobilis

didemin B is cytotoxic, in vitro, for cancer cells
(A549 for lung cancer and HT-29 for colorectal
cancer) [93].

bryostatins Bugula Neritina
and other sp.

Bryostatins cause the down-regulation of PKCs,
which are translocated to the membrane and then
degraded by a proteasome [94].

It has shown a synergistic effect
with [94]:

- AraC;
- Taxol;
- Tamoxifen;
- Staurosporin;
- Dolastatin 10;
- Auristatin PE;
- Vincristine;
- 2-CdA;
- Vincristine-AraC Phase II

dose of bryostatin suggested
50 µg/m2/24 h [95].

cantharidin Blister beetles

It causes apoptosis by a p53-dependent
mechanism in leukaemia cells. Cantharidin
induces both DNA single- and double-strand
breaks [96].

It has shown synergy with
Tamoxifen [97].

solenopsins Solenopsins invicta solenopsins inhibit PKCs’ pathway and
angiogenesis [28].

4. Natural Compounds and Sinergy

After the extensive review of many natural compounds of different origins, in the
present work we want to focus, in particular, on those compounds that, over the years,
have collected the greatest interest from researchers, demonstrating synergistic behaviours
with some drugs used in the therapies of different tumors (Table 2).

4.1. Ascorbic Acid

Ascorbate is an important redox cofactor and catalyst for many biochemical reactions.
In humans, it cures or prevents scurvy (this word comes from skjoerberg or skorbjugg that,
in the Scandinavian language, mean ‘rough skin’) [98–100].

Vitamin C is contained in several well-known plants and fruits, but also in animal
organs (brain, kidney, liver), yeasts and prokaryotes (but not in cyanobacteria) [101]. In
superior plants, vitamin C is obtained from D-glucose, and it is involved in many metabolic
processes, for example the scavenging of H2O2 [102], the maintenance of the α-tocopherol
pool [103] and, also, it behaves like violaxanthin deoxidase cofactor [104].

In animals, ascorbic acid is synthetized from glucose by enzyme L-gluconolactone
oxidase, and has been found in the kidneys of reptiles but, in mammals, it is found in
the liver. Most animals can synthesize ascorbic acid, but some species (humans, other
primates, guinea pigs, Passeriformes birds and flying mammals) must get it from their
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diets. This condition is due to a deficiency in gluconolactone oxidase that does not allow
the conversion of L-gluconolactone to 2-keto-L-gluconolactone [105].

Table 2. Natural compounds currently used in cancer treatment and described in the chapter “Natural
Compounds and Sinergy”.

Natural Product Synergy

Ascorbic acid Some studies have demonstrated the synergistic effects of
ascorbate with other classic anti-cancer drugs.

Curcumin
Phase II clinical studies have suggested that a combination of

gemcitabine and curcumin is a conceivable treatment for
pancreatic cancer patients.

Epigallocatechin-3-gallate
EGCG possess synergistic effects with other anticancer drugs,
such aschrysin, curcumin, erlotinib, etoposide, 5-fluorouracil,

tamoxifen and temozolomide.

Resveratrol Resveratrol exhibits synergistic effects with anti-cancer drugs,
such as doxorubicin, cisplatin and vinorelbine.

Capsaicin Some studies have suggested combinational use of capsaicin
with other chemotherapeutics drugs or dietary molecules.

Vitamin C, as highlighted in Vitamin C and the Common Cold [106], is linked to the
immune system. This is confirmed by the rapid decrease in ascorbate and leucocytes during
stress and infection [106]. Ascorbate is also an antiviral agent; it acts against viruses aiding
in the degradation of their nucleic acids [107–109]. Furthermore, Vitamin C accelerates the
destruction of histamine, a molecule that mediates allergy and cold symptoms, reducing it
by 30–40% [110–112].

Recently, Vitamin C was studied on some chronic diseases, in particular, atherosclero-
sis. An ascorbate deficiency (<0.2 mg/dL) is inversely related to this condition [113,114].
Atherosclerosis is related to the oxidation of low-density lipoprotein, but the consumption
of Vitamin C by hospitalized patients can reduce myocardial infarction [115] and, in acute
smokers, which have two-fold LDL oxidation levels, ascorbate supplementation can reverse
LDL peroxidation [116–118].

The poor intake of Vitamin C and E is related to an increase in fractures, especially in
female smokers, up to five-fold. However, among women smokers with a high intake of
both vitamins (>200 mg/day), the probability of fractures is not increased [119].

The use of ascorbate as a cancer therapy is under controversy. Seventy years ago
William McCormick [120] described how tumour patients often showed low blood levels of
vitamin C and featured scurvy-like symptoms, leading him to assume that vitamin C might
protect against cancer by increasing collagen synthesis. In 1972, Ewan Cameron theorised
that ascorbate could suppress cancer development by inhibiting hyaluronidase, weakening
the extracellular matrix and enabling tumours to form metastases. In 1976, Cameron and
Pauling published a study of 100 patients with terminal neoplasms treated with ascorbate.
Even though the study was not guided by modern clinical standards, mainly because
they lacked a placebo control group, their results revealed that ascorbate-treated patients
showed improved quality of life of life and increased mean survival time [121,122]. Other
clinical trials have independently indicated similar results. So, interest in the potential of
ascorbate for tumour treatment grew.

However, double-blind randomized clinical trials directed by Charles Moertel of
the Mayo Clinic failed to show any positive effects of high-dose vitamin C in cancer
patients [123]. So, the enthusiasm for the results obtained by the Cameron–Pauling trials
was dampened by these data and the research on ascorbate was silenced for many years.

At the beginning of the 2000s, some studies at the National Institute of Health (NIH)
established dietary recommendations for ascorbate [124,125]. When people received
oral doses, low plasma concentrations of ascorbate were achieved (around 100–200 µM),
while intravenous administration allowed 100-fold higher concentration than oral (around
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15 mM) [126]. This is due to partial intestinal absorption, excretion and renal re-absorption
during oral administration. Intravenous administration evades this control, allowing high
plasmatic concentrations [126]. So, a high (“pharmacologic”) ascorbate level is achievable
only with intravenous administration, not with oral administration (“physiologic” level).
So, while only pharmacologic vitamin C level could be considered as a drug, the attention
for using ascorbate as an anti-tumour agent has re-emerged.

After the basic information about ascorbate pharmacokinetics was understood, some
studies described the effects of ascorbate on cancer cells. The in vitro analyses showed
that ascorbic acid, at around 20 mM concentration, is able to selectively kill cancer cells,
without affecting normal cell lines [127]. Additionally, other authors found that ascorbate
toxicity in cancer cells was due to hydrogen peroxide formation, with ascorbate radical as
an intermediate [128,129].

Some studies also explored the intravenous administration of vitamin C in cancer pa-
tients. Padayatty and co-workers and Hoffer and colleagues demonstrated that intravenous
ascorbate, at high doses, is well tolerated by patients with different cancer types [126,130].
Other studies have highlighted that ascorbate. administered intravenously, improves
quality of life of life in cancer patients [131].

Some studies concentrated their attention on the intravenous effect of ascorbate in
cancer patient’s survival. Ascorbate treatment could increase quality of life and decrease
chemotherapy-related side effects in cancer patients [130,132].

Moreover, in vitro tests [15,133] and in vivo xenografts have also demonstrated the
synergistic effects of ascorbate with other classic anti-cancer drugs [16]. Recently, some
clinical studies are demonstrating that ascorbate, in combination with chemotherapeutic
drugs, displays promising clinical efficacy [134,135].

4.2. Curcumin

Curcumin has fascinated humankind since ancient times due to its numerous bi-
ological effects, including anti-antioxidant, inflammatory and antitumor abilities [136].
Curcumin is obtained from the rhizome of Curcuma longa (ginger family) and recognised,
from a chemical point of view, as 1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-
dione. Curcuma longa extracts and its components have been utilized in traditional Chinese
medicine for thousands of years.

A huge number of experiments, both in vitro and in vivo, have established that cur-
cumin could impede various cancers’ growth including ovarian, gastric and colorectal
neoplasms, by activating apoptosis.

Although it is well tolerated by patients, curcumin is poorly adsorbed by organisms,
therefore, it is very difficult to utilize. Some approaches have tried to improve its bioavail-
ability; in particular, the main strategies are its combination with adjuvants, the utilization
of chemical analogues and the development of novel delivery approaches.

The pharmacodynamics data available for humans are limited and there is debate
as to whether its efficacy is due to some curcumin components, or to other mechanisms,
acting indirectly. At present, several clinical trials (phase I or II) are ongoing to investigate
the benefits of curcumin as a chemo-preventive and chemotherapeutic agent in a variety of
tumours [137–139].

A clinical study (phase I) on twenty-five patients with different lesions both (pre-
malignant and high-risk lesions) revealed that oral curcumin can be chemopreventive [140,141].
The Cleveland Clinic carried out research with five patients with familial adenomatous poly-
posis, who were treated three times a day with a combination of curcumin and quercetin for
a mean duration of 6 months. Data showed that polyps’ number and size were decreased
in all patients, compared with controls [142].

Carrol et al. [143], in a recent phase II clinical trial, investigated curcumin and its
potential activity for prevention of colorectal neoplasia in smokers with aberrant crypt
foci (ACF). The results showed a significant reduction of ACF number by a 4-g dose
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curcumin at the level and indicated that curcumin may have cancer-preventive effects
against pre-invasive neoplastic lesions [143].

Unfortunately, interpretation of this study is limited, asACF is a controversial biomarker
of colon carcinogenesis.

Human pancreatic cancer treatment with curcumin has been evaluated in a phase II
clinical trial. Curcumin (8 g) was administered to 25 patients orally, daily, with restaging
every two months, of whom 21 were evaluable for response [139].

Some phase II clinical studies suggested that a gemcitabine and curcumin combination
is a conceivable treatment for pancreatic cancer patients [144].

In a study by Bayet-Robert et al. [145], 14 advanced and metastatic breast cancer pa-
tients were treated with curcumin and docetaxel combined therapy. The research confirmed
that this combination reduced the level of vascular endothelial grow factor (VEGF) with
optimistic results [146].

4.3. Epigallocatechin-3-gallate

Tea is a popular diffusion beverage, obtained from the plant Camellia sinensis. There
are many chemical compounds in tea, but the most abundant are catechins (especially
in green tea), which include: (-)-epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin,
(-)-epicatechin-3-gallate and (-)-epicatechin.

EGCG represents more than 50% of the total catechins, is one of the best-studied con-
stituents of green tea and appears to be the most effective one. EGCG seems promising for
chemoprevention according to in vitro, animal, clinical and epidemiological studies. EGCG
can induce the reduction of some cancer cell lines’ growth and apoptosis in vitro [127,147],
inhibiting tumour incidence in in vivo experiments, for example colon, liver, lung, mam-
mary glands, pancreas, prostate, and skin neoplasm models [148].

Anticancer effects ascribed to EGCG are: antioxidant activities, apoptosis induction,
carcinogen metabolism modification, cell cycle arrest, DNA damage prevention, metas-
tasis inhibition modulation of multiple pathways of signal transduction and proteasome
blocking [149].

Yoshizawa et al. in 1987, described how EGCG administration suppressed 7,12-
dimethylbenz[a]anthracene (DMBA) plus teleocidin-initiated carcinogenesis. EGCG causes
a significant reduction in the incidence of tumours compared with controls [150].

However, the EGCG antitumoral effect observed in animals is not confirmed, at
moment, for green tea consumption in humans. Probably, these epidemiological studies’
inconsistent results were caused by various confounding factors, for example the quantity
and the quality of the tea consumed or, possibly, the effect of caffeine [151].

Moreover, EGCG tissue and plasmatic concentrations obtained by the oral intake of tea
are lower than the effective concentrations utilized in in vitro experiments (10–100 µmol/L).
To avoid these kinds of problems, better-designed clinical studies have been designed; for
example, EGCG-enriched fractions such as polyphenon E, a well-defined green tea catechin
(GTC) extract, or highly purified EGCG, which have been provided by pharmaceutical
companies [148].

Systemic bioavailability analyses in human volunteers of orally administered cate-
chins have been already performed. Chow et al. examined the tolerability, safety, and
pharmacokinetics of EGCG and polyphenon E, administered at doses ranging from 200 to
800 mg [152,153].

Some recent trials have confirmed EGCG’s chemopreventitive and chemotherapeutic
role, offering more details on its action in the human body. For example, Ahn et al.
described that oral treatment with polyphenon E or purified EGCG (200 mg daily for
3 months) was effective in patients with cervical lesions infected by human papilloma virus
(HPV) [154].

In Japan, green tea extract’s (GTE) effect on metachronous colorectal adenomas was
evaluated. GTE, administered orally (1.5 g/d for 12 months) in addition to a tea-drinking
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lifestyle, has been shown to be useful in reducing the incidence of metachronous adenoma
in people 1-year post-polypectomy.

Another application of catechins is the chemoprevention of prostate cancer (oral
GTCs). Sixty volunteers with high-grade prostate neoplasia received either 600 mg of
GTCs or a placebo, daily, for 1 year. After 1 year of follow-up, only 3% of patients that
had received oral GTCs showed a prostate tumour, while 30% of patients in the placebo
group developed cancer. According to these observations, treatment with GTCs was able
to reduce prostate cancer diagnoses by almost 80% [155].

From several clinical studies it is emerging that EGCG is an active cancer suppressor,
with limited side effects and high safety. In addition, it has shown synergistic effects
with other anticancer drugs like chrysin, curcumin, erlotinib, etoposide, 5-fluorouracil,
tamoxifen and temozolomide [156,157]. However, it can also inhibit some anticancer
treatments (bortezomib and other proteasome inhibitors) [158,159].

4.4. Resveratrol

Resveratrol is a polyphenol, isolated for the first time in 1940. It is an ingredient of
white hellebore roots (Veratrum grandiflorum O.Loes) contained in various food sources
including grapes, mulberries, red wine and peanuts. In 1963, resveratrol was recognised as
the active element in Polygonum cuspidatum roots, a plant used in Japanese and Chinese
traditional medicine.

It can inhibit tumorigenesis at multiple phases, including initiation, as well as during
a cancer’s progression [160]. Several other studies confirmed the strong chemo-preventive
resveratrol efficacy in in vivo carcinogenesis models. In mice and rats, the oral or lo-
cal application of resveratrol reduced DMBA-initiated and 12-otetradecanoylphorbol-
13-acetate-promoted skin cancers, repressed DMBA-induced mammary carcinogenesis,
inhibited 1,2-dimethylhydrazine-induced carcinogenesis of the colon epithelium and N-
nitrosomethylbenzylamine-induced esophageal tumors [161].

Moreover, extensive study has suggested that resveratrol might be an important
candidate for cancer therapy because it could act by interfering with many signalling
pathways playing pivotal roles for cell growth, cell death, inflammatory process, angiogenic
mechanisms and metastasis formation.

Besides, resveratrol was also described to show exhibit synergistic effects with other
classic anti-cancer drugs, such as doxorubicin, cisplatin and vinorelbine.

The first clinical trial of resveratrol in colon cancer patients was performed with the
aim to assess low dose effects of a plant-derived resveratrol formulation and resveratrol-
containing freeze-dried grape powder (GP). Treatment was administrated to 8 patients
received for 14 days until the day prior to surgery for colon cancer resection.

The two compounds showed significant ability to inhibiting Wnt pathway targets on
normal colon mucosa, whereas GP treatment augmented some Wnt target genes expression
in colon cancer. Therefore, resveratrol may show more clinical utility as colon cancer
prevention agent rather than for established colon cancer treatment [162,163].

A randomised, double-blind, phase I, clinical trial, showed the SRT501 (micronized
resveratrol) effects in colorectal cancer and hepatic metastases patients. In malignant
hepatic tissue following SRT501 treatment, a marker of apoptosis, i.e., cleaved caspase-3,
was significantly increased by 39% compared to tissue from placebo-treated patients [164].

Moreover, a recent study suggested that resveratrol could attenuate the paclitaxel’s
anticancer efficacy in some breast cancer cell lines and in vivo experiments [165], but it has
also shown synergistic effects with other anticancer drugs like cisplatin, doxorubicin and
vinorelbine [166,167].

4.5. Capsaicin

Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is a homovanillic acid derivative
and represents the major spicy component in red and chili peppers.
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Capsaicin has been studied in the past for medical applications such as in anti-oxidant,
anti-inflammatory and analgesic compounds [24].

Recently, some researchers have explored the benefits of capsaicin as an anti-cancer
agent, with a detailed analysis of the molecular mechanisms induced by its exposure.
In fact, capsaicin is able to influence the expression of some genes, in different types of
tumor models, that are directly involved in cell growth, apoptosis, metastatization and
angiogenesis processes [168].

The interest in capsaicin is also due to its possible combinational use with other
chemotherapeutics drugs or dietary molecules, highlighting its synergistic antitumor activities.

Capsaicin combined with resveratrol was able to induce apoptotic pathways by nitric
oxide (NO) elevation in a p53-dependent way [25].

Capsaicin has shown an interesting synergistic behavior in association with genistein,
acting in breast tumor cell lines through AMPK and cyclooxygenase 2 regulation [169].

Moreover, capsaicin and brassinin, an indole obtained from cruciferous vegetables,
possess synergistic antitumor abilities in regulating matrix metalloproteinases, thereby
reducing migration and the invasion of prostate carcinoma cell lines [170].

5. Natural Compounds as Epigenetic Modulators

An increasing number of scientific reports highlight the implication of genetic and
epigenetic alterations that can lead to the alteration of transcription factors, oncogenes’ over-
expression, tumor suppressor genes’ inactivation, producing a deregulation of signaling
pathways, and, finally, tumor occurrence [170,171].

The term “epigenetics” has been utilized to include the heritable changes in DNA and
protein alterations that lead to a disturbed expression of genes involved in cell growth and
cell cycle progression, cell death, metabolism, etc. [172].

Epigenetic alterations are hypothetically reversible; so, they are interesting for the
development of new anti-tumor strategies [173].

Drugs able to target epigenetic mechanisms could represent the frontier of a new
chemotherapeutic approach, and natural compounds have demonstrated their great
potential [174].

It has been demonstrated that a vegetables- and fruits-rich diet can significantly reduce
the risk of tumor growth. This is mainly due to the presence of some phytochemicals that
are able to modulate oncogenes’ expression and tumor suppressor genes [175].

In fact, some natural compounds have been described as being able to influence some
of the epigenetic processes involved in carcinogenesis, such as the modification of histone
proteins (acetylation and methylation), DNA methylation and microRNA expression [176].

The natural compounds most studied in epigenetic processes in tumorigenesis are
EGCG, curcumin and resveratrol. In particular, EGCG could epigenetically reactivate
p21/waf1, Bax and PUMA in prostate cancer cell lines, promoting the block of cell cycle and
cell death induced by degradation at the proteasome of histone deacetylases (HDACs) [177].
EGCG is also able to repress the androgen receptor (AR) hormone response by the reduction
of AR acetylation. This phenomenon determines a reduction of prostate cancer cells’
growth, promoting apoptosis [178]. Moreover, EGCG has been also described as a potential
epigenetic modifier of HDACs, restoring epigenetically silenced genes in cervical and
skin tumors. EGCG could also reactivate the WIF (Wnt inhibitory factor-1) expression by
demethylation of the gene promoter, inducing cell growth arrest and influencing the Wnt
pathway in A549 and H460 lung tumor cell lines [179].

Moreover, EGCG reactivates the expression of WIF-1 (Wnt inhibitory factor-1) through
promoter demethylation and inhibits cell growth by downregulating the Wnt canonical
pathway in H460 and A549 lung cancer cell lines [171].

EGCG sensitizes ERα-negative cancer cells to respond to 17β-estradiol, and the antag-
onist tamoxifen. EGCG associated with trichostatin A (TSA, a HDAC inhibitor) reactivates
the ERα expression in MDA-MB213 cells (a triple-negative breast cell line) by influencing
histone methylation and acetylation, thus remodeling chromatin assembly [180].
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Curcumin has been evaluated as an excellent non-toxic hypo-methylating molecule
for breast cancer therapeutic approaches [181]. For example, curcumin influences astrocyte
differentiation, promoting neural differentiation-inducing histone (H3 and H4) hypo-
acetylation [175].

Resveratrol induces, in p53-wild type and p53-mutant prostate tumor cells, the down-
regulation of metastasis-associated protein 1 (MTA1), promoting the destabilization of its
nucleosome, remodeling deacetylation co-repressor complex. This complex is able to medi-
ate the histone and non-histone post-translational modifications inducing transcriptional
repression [176].

Taking these data together, natural compounds express a real potential effect for cancer
therapies due to their reverting effects on epigenetic modifications in the oncogenes and
tumor-suppressor genes involved in cancer’s development and growth.

6. Conclusions

In the current century, cancer appears to be the most challenging pathology to treat;
therefore, new, well-tolerated and effective therapeutic approaches are necessary.

The primary problem in cancer therapy is drug resistance; a huge number of cellu-
lar mechanisms are involved in this resistance [172] and no molecule is excluded from
acquiring a resistant phenotype. In this regard, the risk of resistance could be minimized
by combined therapies; if tumour cells gain resistance against one of the drugs, other
components of the mixture can still have an impact on them.

Even though natural compounds and their extracts, sometimes, can exhibit resistance
phenomena, pure natural compounds can be utilized in combination with another agent to
reduce the development of resistance, but natural extracts are, themselves, a blend, acting
as a synergic therapy, and contributing to the reduction of drug-resistant phenotypes [173].

Natural extracts may share some disadvantages with classical cancer drugs. Resistance
is not the only problem, in fact, poor bioavailability is a common problem due to their very
different structures. This results in poor absorption, high metabolism rates and a rapid
excretion process. In all these cases, low plasma concentrations are reached. On the other
hand, some natural compounds are absorbed rapidly and completely, entering the plasma
in their native form, thus reaching significant plasma concentrations.

Therefore, the poor bioavailability of some natural extracts really hinders these natural
product’s potential to be developed into a clinically approved drug. In fact, this poor
bioavailability requires a long-term dosing strategy. Another problem is due to the wide
patient population required, representing significant drug exposure variability for natural
extracts. So, bioavailability represents an important concern for the possible use of natural
compounds as drug candidates.

Therefore, a new strategy is these of drug delivery systems to precisely target given
body parts. This option might solve these critical issues [174]. Nanotechnology could
play a noteworthy role for advanced drug preparations, controlling both drug release and
delivery. The green chemistry-design approach of for the loading of nanoparticles with
drugs can also be very useful in minimizing the hazardous constituents of the biosynthetic
process. Thus, these green drug-delivery nanoparticles could reduce the side-effects of
medications [175]. However, drug’s precise release at determined sites, assessments of their
effects at the cellular and tissue levels, and the required predictive mathematical modelling
have not yet been developed [176].

Moreover, another interesting application of natural compounds is that the onset
of resistance is made more difficult by the use of natural extract, thanks to their poly-
pharmacological properties and, as has happened with common drugs, bioavailability
problems can be solved with novel approaches, such as encapsulation [177], nanoparti-
cles [178], liposomes [179] or emulsions [180]. These approaches ameliorate the bioavail-
ability of hydrophilic compounds with poor absorption or low stability and increase the
solubility of highly hydrophobic compounds and extracts [172,181].



Int. J. Mol. Sci. 2021, 22, 10380 15 of 22

The issues of reproducibility and the complexity of natural mixtures are the most
important drawbacks thereof. Furthermore, positive in vitro data are not directly correlated
to positive in vivo data due to poor solubility and, consequently, lesser accumulation at
the target site, leading to a significant increase in systemic toxicity.

In conclusion, it will be crucial to understand the signaling pathways involved, as
well as bioavailability and true cytotoxicity of these natural products, in answering the
growing demand for the evaluation of natural products in clinical trials.
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