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Periapical lesions are infectious diseases that occur in the apical region of teeth. They

result in the destruction of alveolar bone and are usually accompanied by swelling, pain,

and possible systemic impacts. A complex interaction between pathogens and the host

immune system determines the development, progression, and outcome of periapical

lesions. The lesions, if not treated promptly, may cause resorption of bone tissue,

destruction of the periodontal ligament, and loss of the affected teeth, all of which can

severely worsen the quality of life of patients, often at considerable economic cost to

both patients and medical organizations. Macrophages are a group of heterogeneous

cells that have many roles in the development of infections, destruction and

reconstruction of bone tissues, and microbe–host interactions. However, the

differential and comprehensive polarization of macrophages complicates the

understanding of the regulatory mechanism of periapical lesion progression. This

report provides a comprehensive review of recent advances in our knowledge of the

potential role of macrophages in determining the turnover of human periapical lesions.

For example,macrophagedifferentiationmight indicatewhether the lesions are stableor

progressing while the extent of bacteria invasion could regulate the differentiation and

function of macrophages involved in the periapical lesion. In addition, alternative

strategies for the treatment of apical periodontitis are discussed.

KEYWORDS

macrophage, periapical lesion, innate immunity, macrophage polarization,
oral bacteria
Introduction

Human periapical lesions (PLs) are common infectious diseases that are

predominantly induced by endodontic microbial infections, especially by Gram-

negative microbes, and affect the tooth and surrounding alveolar bone (1–3). PLs are

an osteolytic disease that occurs in the apical region of the root (1). The prevalence of PLs
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in the adult population is around 6.3% worldwide; PLs reduce

the lifespan and quality of life of those affected (4, 5). The

treatment success rate for PLs, including those operated on by

endodontic experts or specialists, is only just over 50% after 2

years’ follow-up (4, 5). Thus, despite “optimal treatment”,

hundreds of thousands of teeth continue to be affected by PLs,

causing symptomatic infection (5, 6). Therefore, it is essential to

elucidate the mechanism of development of PLs, and to identify

more effective and longer-lasting treatments (2).

Innate immunity is the first line of defence against microbial

invaders and plays important roles in the development of the

human immune system (7–9). Macrophages are one of the most

important innate immune cells and are responsible for the

recognition and clearance of exogenous pathogens in microbe-

mediated infectious diseases (10–12). Macrophages play a

significant role in the response to environmental challenge and

in tissue remodeling after injury (9). Autocrine, endocrine, or

paracrine cytokines or chemokines from different types of cells

modulate the status of macrophages and influence the function

and outcomes of macrophages during the progress of infectious

diseases (13). In addition, cell–cell interaction through ligand–

receptor binding also regulates the metabolic processes of

macrophages (14, 15). Consequently, macrophages play

diverse roles in regulating the inflammatory response and the

reparative process in many diseases (12, 16–18). However, the

precise role of macrophages in the development of PLs in

humans, and the impact of macrophage dysfunction on the

progress of human PLs, remain vague.

This report aims to review the clinical implications of

macrophage distribution in PLs from preclinical research and

laboratory studies. In addition, we discuss current experimental

progress for the treatment of PLs, which might bring us new

ideas in the search for new strategies in the treatment of PLs.
The clinical implications of
macrophage distribution in
periapical legions

Macrophages are one of the most important functional

components of the innate immune system (17). They play

essential roles in maintaining physiological homeostasis and

regulating the turnover of the immune responses in

pathological conditions (19, 20). The spatial distribution and

the polarization of macrophages might reflect the status of

diseases (21, 22). We speculated that the spatial and temporal

expression profile of macrophages might indicate the

progression of PLs. When periapical tissues are challenged by

bacterial invasion, the resident macrophages may respond to

foreign material, such as bacteria and the toxins released from

bacteria, and regulate the physiological and pathological process

(23, 24). In the development of PLs, lipopolysaccharide (LPS)
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released from bacteria might bind to toll-like receptor 4 (TLR4)

to initiate signal transduction and activate immune responses

(25). It is believed that macrophages are a group of

multifunctional and heterogeneous cells that can be divided

into two subsets: M1-like macrophages and M2-like

macrophages (26). M1-like macrophages, also known as

classically activated macrophages or proinflammatory

macrophages, are responsible for mediating and regulating the

process of inflammatory responses, with the participation of T

helper 1 (Th1) cells and their related cytokines. By contrast, M2-

like macrophages usually exhibit anti-inflammatory roles and

control the progress of efferocytosis (26–28).

In recent years, multiple groups of researchers have

elucidated the distribution phenotype and preliminary

function of macrophages in the development of PLs and the

roles of macrophages in the different stages of PLs (29–33). Most

of the observations of macrophages in PLs were from preclinical

studies. Azeredo et al. (34) found that cluster of differentiation

68 (CD68)-positive cells were extensively expressed in radicular

cysts (RCs) and periapical granulomas (PGs). However, the

number of infiltrating macrophages did not appear to differ

between the two types of PL (34). These results could suggest

that all macrophages found in RCs and PGs have similar

expression characteristics.

Several studies that further explored the relationship

between macrophage polarization and the aggressive/recovery

phase of apical periodontitis (AP) have shown that the

expression of M1-like or M2-like macrophages might be

correlated with the pathology of PLs (31, 32). The results of

quantitative immunohistochemical (IHC) studies have shown

that levels of cluster of differentiation 11c (CD11c)-positive (M1-

like) macrophages are higher in RCs, whereas levels of mannose

receptor C type 1(MRC1)-positive (M2-like) macrophages are

higher in PGs (31). The higher levels of infiltration of M1-like

macrophages in RCs indicate that an aggressive state of RCs

could be observed, more proinflammatory cytokines might be

secreted to the lesion area, and the activated osteoclasts in the

apical region of the affected teeth (33). In addition, a similar

expression profile of macrophages was observed in RCs of both

primary and permanent teeth (35). These studies suggest that

macrophages may exhibit different expression phenotypes at

different stages of PL progression. This, in turn, suggests that the

expression levels of macrophages could become a detection

marker for the classification of PLs, which might help in

cl inica l diagnosis and treatment decis ion-making.

Furthermore, several studies have mentioned a relationships

between the subtypes of macrophages and the clinical

symptoms of PLs. Veloso et al. (36) evaluated macrophage

expression of cluster of differentiation 14 (CD14), 64 (CD64),

80 (CD80), 163 (CD163), and 206 (CD206) in symptomatic

apical periodontitis (SAP) and asymptomatic apical

periodontitis (AAP) using flow cytometry. The expression

profile of the secreted cytokines was determined using
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quantitative polymerase chain reaction (qPCR). The ratio of M1-

like to M2-like macrophages was higher in the SAP group than

in the AAP group, and macrophages from patients with SAP

showed a significant reduction in CD163 expression. The

expression of interleukin 6 (IL-6) and 23 (IL-23) was markedly

higher in SAP patients than in AAP patients, which indicates

that these cytokines might be related to the clinical presentation

of PLs (36). In addition, Bracks et al. (37) found that the

infiltration of CD68-positive cells was accompanied by

increased expression of IL-6. Džopalić et al. (38) carried out

multicolor flow cytometry and further explored the potential

relationship between IL-6 expression and the clinical features of

PLs. They demonstrated that symptomatic PLs were associated

with higher levels of expression of IL-6-positive M2-like

macrophages than asymptomatic PLs (38). Elucidation of the

relationship between clinical symptoms and the molecular level

of specific markers would help us to understand the underlying

mechanisms of the presence of pain, and develop specific

methods or techniques to detect and resolve the clinical

symptoms of PLs.

Although numerous preclinical data have demonstrated that

a large number of infiltrating M1-like macrophages might

indicate a destructive state of PLs, there is no exact description

of how M1-like or M2-like macrophages are distributed in PLs,

wh ich needs fu r the r b io log i ca l and b iochemica l

experimentation. In addition, owing to limitations with sample

collection during the microsurgery of endodontics and the

techniques used in previously mentioned studies, we could not

observe the accurate distribution of macrophages and their

relationships with the root, inflamed area, and surrounding

bones. Therefore, further research should include more

comprehensive and valid experiments and provide more solid

data to elucidate the precise distribution of different subtypes of

macrophages and their relationships with bone resorption area,

repaired or regenerative tissues, and other types of immune cells.

For example, spatial transcriptomics, single-cell sequencing, and

multiple immunochemistry techniques might be applied to

investigate the microenvironment of PLs, which might help us

to findmore specific targets of PLs. These efforts might help us to

understand the failure of endodontic treatment and the

determining factor in the prognosis or outcomes of PLs.
The impact of bacteria on
macrophage polarization

The presence of bacteria and other pathogens is one of the

core reasons for the persistence of symptoms and other

manifestations of PLs. The emergence of next-generation

sequencing for micro-organism detection helped us to

understand the distribution of microbial communities of APs.

Hou et al. (39) found that the abundance of Porphyromonas
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gingivalis, Phocaeicola abscessus, Campylobacter showae, and

Tannerella forsythia was higher among patients with obvious

symptoms than in those without, suggesting that the number

and species of microbe might affect the outcome of PLs. Sun et

al. (40) found that the dominant bacteria isolated from

extraradicular and intraradicular samples from persistent APs

were quite different, which suggests that different bacteria play

different roles in the pathogenesis of persistent PLs. Considering

the fundamental roles of bacteria in the progression of PLs, in

this section we summarize the functions of oral bacteria, such as

Enterococcus faecalis and P. gingivalis, in the polarization of

macrophages (41, 42).

E. faecalis, a Gram-positive bacterium, has been found in

many bacterial studies to be closely related to the failure of the

treatment of human APs and has a higher detection rate in

secondary PLs than that in primary PLs (43, 44). Interestingly,

several in vitro studies have found that E. faecalis plays

potentially regulatory roles in the differentiation and

polarization of macrophages (42, 45, 46). Park et al. (46)

found that E. faecalis affected the osteoclastogenesis of

macrophages in vitro. In addition, E. faecalis activated the

immune responses, promoted proinflammatory cytokine

production, and maintained the phagocytic capacity of

macrophages. Furthermore, the co-culture of E. faecalis with a

human monocyte cell line suggests M2 polarization of infected

macrophages, with an increase in the production of reaction

oxygen species (ROS) (42). Ran et al. (45) found that the

presence of E. faecalis promoted the expression of caspase-1

and nod-like receptor family pyrin domain-containing protein 3

(NLRP3), which are key regulators of pyroptosis. E. faecalis

could activate the pyroptosis of macrophages and induce the

production and secretion of interleukin 1 beta (IL-1b) (45).

These results suggest a link between E. faecalis and APs and

endodontic failure.

P. gingivalis has also been recognized as an important oral

pathogenic bacterium that plays crucial roles in the development

of periodontitis and PLs, as well as several systematic diseases

(47). P. gingivalis is thought to have a wider and more

complicated effect on the host immune system than E. faecalis.

P. gingivalis, its LPS, and its outer membrane vesicles (OMVs)

might exert different immune-regulatory roles on macrophage

activation (48, 49). P. gingivalis LPS has been reported to weakly

activate the polarization of M1- or M2-like macrophages, and to

induce the production of inflammatory cytokines and

chemotactic cytokines, which might have a great impact on

the development and outcome of PLs (50).

Despite multiple studies having preliminarily discussed the

potential relationships between the presence or the invasion of

different bacteria and macrophage polarization and functions,

there is limited evidence demonstrating a connection between

the occurrence of bacteria and their pathogenic toxins, the

differentiated state of macrophages, and the destruction of
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alveolar bone and surrounding tissues. Therefore, future studies

should focus on elucidating the precise role of macrophages in

the development of human PLs, in particular the impact of

secreted cytokines on the immune microenvironment and bone

metabolism, and the strategies for the treatment of PLs.
Strategies for the treatment of
periapical lesions

Although root canal therapy (endodontic treatment) is

considered to be the most effective treatment for PLs, and has

a relatively high success rate, treatment fails in many cases,

resulting in refractory inflammation and repeated infections

of the affected teeth, accompanied by swelling, pain, and

general infection (5). It is essential that we urgently

investigate the reasons for persistent infection in alveolar

bone tissues and explore new, effective strategies for the

treatment of PLs, which should be specific and effective,

with few side effects.

From a genetics perspective, several research groups have

identified in in vitro and/or in vivo experiments molecules that

play significant roles in the development of PLs and which

might become therapeutic targets for the treatment of PLs in

humans. Hypoxia-inducible factor 1 alpha subunit (HIF-1a) is
a key molecule in the mediation of oxygen metabolism and

homeostasis, and plays important roles in inflammatory

reactions and bone reconstruction. Hirai et al. (51)

demonstrated that the application of exogenous HIF-1a
could protect the progression of APs by inhibiting the

secretion of proinflammatory cytokines, attenuating the M1

polarizat ion of macrophages , and down-regulat ing

osteoclastogenic differentiation. In another study, the

regulatory role of serum amyloid A (SAA) in the

development of PLs was investigated using conditional

knockout (KO) mice. In this experimentally induced model

of PLs, the number of infiltrating myeloid cells in the periapical

region of affected teeth was lower in SAA KO mice than in

wild-type (WT) mice. In addition, SAA might regulate the

function of macrophages in PLs via toll-like receptor 2 (TLR2)

and TLR4, suggesting that SAA might become a regulatory

target for the treatment of PLs (52). Similarly, Wang et al. (53)

showed that adeno-associated virus (AAV)-mediated

therapeutic methods can effectively reduce tissue destruction,

attenuate the inflammatory reaction, and slow the process of

alveolar bone loss. The application of Atp6v1c1 (an AAV

specific for C1 silencing) could reduce bone destruction by

nearly 70%, decreasing the infiltration of inflammatory cells

into the periapical region, and maintain the integrity of

periodontal ligament (53). Despite the fact that more data

and experiments are needed to ensure the efficiency and safety

of this strategy, this study showed that AAV-mediated
Frontiers in Immunology 04
methods might become an effective strategy for the assistance

of endodontic treatment.

As well as uncovering the underlying mechanism of PLs by

molecular methods, some research groups have also tried to

elucidate the potential roles of immunoregulatory agents or

antioxidants in the treatment of PLs, such as melatonin,

azithromycin, or metformin (54–56). Saritekin et al. (54)

showed that intraperitoneal injection of melatonin could

attenuate the progression of PLs, leading to a reduction in

inflammatory reactions and a decrease in periapical defects.

This indicates that melatonin protects against the development

of PLs. The application of azithromycin has also been shown to

have a significant beneficial effect on APs, resulting in increased

infiltration of neutrophils and M2-like macrophages. These data

suggest that azithromycin might become a therapeutic option in

the adjunctive treatment of PLs (55). In addition, not only could

the general application of drugs help the resolution of PLs, but

intracanal administration of some agents could contribute to the

recovery of existing periapical lesions. Intracanal metformin

could contribute to the healing of APs by suppressing

monocyte recruitment and inhibiting inducible nitric oxide

synthase (iNOS), which is a representative marker for M1-like

macrophages (56). Although these encouraging data raised some

potential strategies for the treatment of refractory PLs, more

research should focus on elucidating the underlying mechanism

of APs and revealing the precise function of the drug or

exogenous agents on the healing of PLs. Only in this way can

we improve the success rate of endodontic treatment.
Conclusion

With more studies reporting that polarized macrophages are

closely correlated with the progressive state of PLs, it is urgent

for us to elucidate the precise mechanism of the regulatory roles

of macrophages in the development of PLs. As research on the

role of macrophages in the pathogenesis of PLs gradually

progresses, we must pay more attention to the current

limitations and drawbacks in the previously published studies.

The predominant subtypes of macrophages at different stages of

PLs, the regulatory cytokine networks that macrophages

participate in, and the potential therapeutic targets on

macrophage regulations need to be settled. In this way, we

could understand the pathological mechanisms of PLs better,

and we can find more effective strategies to improve the success

rate of the treatment of PLs.
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