
1SCIentIfIC REPOrTs | 7: 7069 | DOI:10.1038/s41598-017-07302-9

www.nature.com/scientificreports

Development of an integrated 
Monte Carlo model for glioblastoma 
multiforme treated with boron 
neutron capture therapy
Leyla Moghaddasi   1,2 & Eva Bezak1,3,4

Glioblastomas (GBM) are notorious for their high fatality rate. Boron Neutron Capture Therapy (BNCT) 
being a biochemically targeted type of radiotherapy is a potent modality for GBM. In the current work, 
a BNCT treatment modelling framework for GBM was developed. Optimal Clinical Target Volume 
(CTV) margins for GBM-BNCT and the BNCT efficacy have been investigated. The model integrated a 
cell-based dosimetry model, an in-house-developed epithermal neutron beam model and previously-
developed Microscopic Extension Probability (MEP) model. The system was defined as a cubic ICRP-
brain phantom divided into 20 μm side voxels. The corresponding 10B concentrations in GBM and normal 
brain cells were applied. The in-silico model was irradiated with the epithermal neutron beam using 2 
and 2.5 cm CTV margins. Results from the cell-based dosimetry and the MEP models were combined 
to calculate GBM cell survival fractions (SF) post BNCT and compared to x-ray radiotherapy (XRT) 
SFs. Compared to XRT, the SF within the beam decreased by five orders of magnitudes and the total 
SF was reduced three times following BNCT. CTV extension by 0.5 cm reduced the SF by additional 
(53.8 ± 0.3)%. In conclusion, BNCT results in a more efficient cell kill. The extension of the CTV margin, 
however, may not increase the treatment outcome significantly.

Glioblastoma Multiforme (GBM) is the most malignant astrocytic glioma (grade 4)1 and is known for its aggres-
sive proliferation and extensive invasion to normal tissue before any symptoms are presented. Biochemical fea-
tures allow the tumour cells to invade extracellular matrix of the normal brain2. GBMs present clinically with 
extensive hypoxia (both transient and acute), high intrinsic radioresistance with genetic heterogeneity and com-
plexity. GBMs are associated with very poor prognosis and currently there is no curative treatment for this malig-
nancy. Despite aggressive treatment regimens, including concomitant and adjuvant temozolomide and x-ray 
therapy, less than 27% of patients are expected to survive more than two years3.

The exact incidence and entire extent of tumour microscopic spread, to be encompassed by CTV, cannot be 
visualised by any current imaging techniques4. As a result, determination of an optimal radiotherapy Clinical 
Target Volume (CTV) is primarily empirical and hence subject to uncertainty. The infiltrative growth pattern of 
GBM and its rapid peripheral expansion cause the CTV delineation of this tumour to be even more problematic. 
In addition, histopathological studies on the extent of GBM cell infiltration into normal tissue, beyond the Gross 
Tumour Volume (GTV), show large discrepancies5. Marginal and distant GBM recurrences reported in litera-
ture6, 7,could be attributed to the Microscopic Extension (ME) uncertainty, while the high rate of local relapse8–10, 
could be explained by intrinsic radioresistance of GBM stem cells and their other aggressive features.

Alternative treatment modalities - Boron Neutron Capture Therapy.  Developments in x-ray 
External Beam Radiation Therapy (EBRT) in terms of increased precision of dose delivery over the last two 
decades have failed to offer markedly improved outcomes for GBM patients. As a result, there is need for other 
treatment modalities to be investigated and optimised for high grade gliomas. Boron Neutron Capture Therapy 
(BNCT) is a biochemically-targeted type of radiotherapy based on nuclear capture reactions which occur 
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when a thermal neutron is captured by a stable 10B atom, resulting in emission of an energetic alpha particle 
(∼1.47 → 1.78 MeV), a recoiling7Li nucleus (∼831.6 keV → 1.01 MeV) and a 478 keV gamma ray, see equation (1) 
for a list of possible reactions. The alpha particles and7Li nuclei deposit their energy along the range of approxi-
mately 4 to 7 μm with a high Linear Energy Transfer (LET) of ∼240 keV/μm11, 12. BNCT is a binary modality in 
which a suitable 10B agent is taken up preferentially by malignant cells following administration of a boron agent.
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Clinical trials of BNCT for malignant gliomas were undertaken at Brookhaven National Laboratory (BNL) 
and Massachusetts Institute of Technology (MIT) between 1959 and 196113. This was followed by a large pause in 
further research due to a failure to show considerable improvement in survival times13. Following the technolog-
ical advances that enabled production of epithermal neutron beams14 and development of more suitable boron 
agents containing 10B, BNCT studies re-emerged in the 1990s15. Subsequently, encouraging results in terms of 
lifespan improvement of GBM patients post BNCT were reported. Yamamoto et al.16 reported a 2-years survival 
rate of 53.3% for a series of 15 GBM patients which was superior to that observed in RTOG trial using EBRT 
(35%)17. Kawabata et al.18 investigated the survival benefit of BNCT by comparing survival times of 21 patients 
treated with BNCT against 27 patients treated with x-ray EBRT. Improved survival times, from 48.2 to 76.2 % 
and 14.8 to 25.0 % for 1-year and 2-years survival, respectively, were observed for patients treated with BNCT. 
Survival benefit of BNCT for recurrent malignant gliomas following surgery and conventional EBRT has also 
been reported in the literature. Median survival time for recurrent GBM patients treated by BNCT was found 8.7 
months (n = 12), 7.5 months (n = 7), and 9.6 months (n = 19) in a Swedish19, Finnish20, and Japanese studies21, 
respectively. The median survival time for recurrent GBM patients was found 5.8 months (n = 225) in phase II 
chemotherapy trials22. However, these results should be viewed with caution as the patient numbers were small 
and the comparisons were not randomized. In addition, not all patients included in the above-mentioned studies 
(high grade gliomas) had GBM histopathology confirmed, thus possibly exaggerating the GBM survival rates.

The BNCT modality has several physical and biological advantages over megavoltage x-rays for the radiother-
apy of GBM with its inherent complexities:

	 1.	 The treatment is delivered by high LET particles. The clustered damage, in form of DNA double strand and 
single strand breaks, produced by high LET radiation beam makes the repair of sublethal and potentially 
lethal damages less efficient. This increases the possibility to overcome GBM s intrinsic radioresistance and 
aggressive features and offers a higher tumour kill/sterilisation compared to x-ray radiotherapy.

	 2.	 As BNCT is a binary modality, it has the potential to selectively deliver localized dose to tumour cells 
(containing substantially higher concentrations of 10B compound) dispersed in normal tissue, while mini-
mizing normal tissue toxicity. This makes BNCT an attractive modality for GBM which grows infiltratively 
rather than forming a solid tumour23.

	 3.	 Charged particulate radiation interacts with biological tissue predominantly through direct interaction 
of incident particles or secondary electrons from ionized atoms with DNA, rather than producing free 
radicals which in return cause DNA damage. As a result, the cell killing process in BNCT is less sensitive to 
oxygen pressure compared to x-ray radiotherapy24, which makes it advantageous for tumours with exten-
sive hypoxia such as GBM25.

Although BNCT theoretically appears very suitable for GBM and other tumours with aggressive features, the 
success of this technique depends on three important factors: a sufficient amount of 10B in tumour cells (at least 
20 μg/g or 109 atoms/cell15), differential uptake of boron in tumour and normal cells and sufficient fluence of 
thermal neutrons delivered to the site of the tumour.

Boron concentration.  The two commonly used boron delivery agents are: sodium mercaptoundecahydro- 
closo-dodecaborate (Na2B12H11SH) or commonly named BSH; and (L)-4-dihydroxy-borylphenylalanine or 
BPA15. Boron concentrations in normal brain and glioma cells using these agents have been investigated in several 
studies. In an animal study, Barth et al.26 reported a 10B concentration of 11.8 ± 3.5 and 94.5 ± 69.1 μg/g in nor-
mal brain and tumour cells respectively, using BPA with induced Blood-Brain Barrier Disruption (BBB-D), and 
4.4 ± 1.8 and 48.6 ± 17.2 μg/g in normal brain and tumour cells respectively, using BSH with BBB-D. As shown in 
Table 1, other studies suggest a smaller ratio of tumour to normal tissue 10B concentrations20, 27–31. Capuani et al.32 
investigated the effect of preloading L-DOPA prior to BPA infusion and concluded that L-DOPA had a potential 
use as BPA accumulation enhancer, increasing tumour 10B concentration from 33.5 ± 7.5 μg/g without preloading 
to 88.3 ± 12.1 μg/g with preloading.

Neutron spectrum for boron neutron capture therapy.  An optimal neutron spectrum for BNCT should contain 
high epithermal (0.25 eV–100 keV) and minimal fast neutron (E > 100 keV) components30. The cross section for 
the 10B(n,α)7Li neutron capture reaction is high in the thermal energy range of neutrons (E < 0.25 eV). However, 
the penetration depth for thermal neutrons is limited. Consequently, epithermal neutrons are more useful for 
clinical purposes as they lose energy while traversing the medium and will undergo boron neutron capture at 
larger depths.
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Monte Carlo particle simulations.  Bio-mathematical and computational modelling is appreciated as a 
useful tool to provide predictions of the probable response of a tumour to radiotherapy for a variety of circum-
stances, including different therapeutic regimens and treatment modalities.

Geant433 is a flexible and powerful Monte Carlo (MC) toolkit capable of simulating complex experimental 
set-ups. This MC toolkit, which is the result of an ongoing worldwide collaboration, has been developed to pre-
cisely track the passage of radiation through matter for a diverse range of particles and interaction processes over 
an extended energy range. The diverse functionality, inclusion of hadronic processes and performance optimiza-
tion features make Geant4 a suitable MC software/tool for BNCT simulation. Nevertheless, the use of Geant4 for 
simulation of a BNCT radiation treatment framework has been limited to our knowledge.

Previously, a comprehensive and flexible GBM x-ray radiation therapy modelling framework was developed 
by our group34. Using Geant4 and MATLAB® (Mathworks, Natick, MA), GBM and its surroundings, containing 
both normal and clonogenic cells, was modelled. The model was used to evaluate current CTV practices applied 
in x-ray EBRT34, in terms of GBM cell survival following a treatment with a 6 MV photon beam for several types 
of microscopic extension distributions. The model was further developed to incorporate GBM heterogeneous 
radiosensitivity and hypoxia35.

The purpose of the current work was to significantly extend the GBM model to incorporate BNCT and to 
investigate the effect of CTV margins as well as BNCT efficacy as compared to x-ray EBRT in terms of GBM cell 
survival.

The following section summarises the structure of the GBM treatment model designed previously.

Review of the microscopic scale GBM treatment model.  The comprehensive GBM treatment mod-
elling framework developed consists of a microscopic extension GBM model, a tumour irradiation model, and a 
Survival Fraction (SF) algorithm34, 35, as shown in Fig. 1.

The cell-based dosimetry module has been developed using Geant4 (version 9.6.p01) particle tracking 
toolkit33 to calculate the absorbed dose in each cell of a spatial brain glioblastoma model. The geometry scale has 
been chosen to cover the entire GBM microscopic extension in all directions. To enable cellular based dosimetry, 
the simulated volume has been divided into 20 × 20 × 20 μm3 cubic voxels (the average size of glioma cells36).

The invasion of tumour cells within the normal brain tissue (i.e. the Microscopic Extension Probability (MEP) 
model), has been modelled in MATLAB® using a probability distribution function. The function assigned each 
cell with a probability of being a tumour cell as a function of distance from the GTV. This probability distribution 
function was obtained from published data reporting on GBM recurrence patterns6, 37–39, see Fig. 2 35. The func-
tion fitted to the combined data, equation (2) forms the basis of the MEP model used in this work:

Author
Dose 
(mg/Kg)

10B 
compound

10B concentration (μg/g)

Blood/NB Tumour cell

Barth26 500 BPA 11.8 ± 3.5 94.5 ± 69.1

Barth26 65 BSH 4.4 ± 1.8 48.6 ± 17.2

Capala27 900 BPA 15–34 3.7 × NB

Joensuu20 290 BPA 12–15 3.5 × NB

Diaz28 250–330 BPA 3.5 × NB

Coderre29 250–330 BPA 12–16 3.5 × NB

Palmer30 250–350 BPA 10–15 3.5 × NB

Table 1.  A summary of 10B concentrations in normal brain (NB)/blood and tumour cells.

Figure 1.  diagrammatic representation of the structure of the model components developed in the previous 
work34.
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where xi represents the radial distance of the voxel ij from the GTV surface. An isotropic circular MEP has been 
modelled as this assumption is made in clinics for delineation of CTV margins. For this pattern, both the tumour 
and its ME have been considered circular with the MEP reducing isotropically in all directions based on the 
function above.

In the final simulation step, the dose matrices calculated in Geant4 are exported into MATLAB® and are com-
bined with the MEP models to obtain cell-based survival fractions. The GBM model can incorporate other bio-
logical characteristics of GBM cells including heterogeneous radiosensitivity and hypoxia35. Individual survival 
probabilities (SP) of all cells are calculated using Linear Quadratic (LQ) theory, and are combined to calculate SFs 
for any specific region (e.g. within the beam, and penumbra).

Results
Geant4 cell-based dosimetry for BNCT treatment.  Figure 3 shows the transverse profile of the calcu-
lated boron dose (the combined 7Li and alpha dose matrices). It is evident that the boron dose reaches maximum 
within the GTV region (1 mm radius) and reduces at larger distances from the GTV as a result of declining boron 
concentration in cells.

The distribution of the total RBE dose matrix in the scoring plane is shown in the Fig. 4a. It shows that there is 
considerable scattered neutron dose beyond the PTV.
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Figure 2.  (a) Clinical studies investigating the extent of microscopic extension in GBM patients. The function 
fitted to combined results (a three-term Gaussian function) was considered as the basis for the MEP models; (b) 
Isotropic circular MEP distribution; courtesy of Moghaddasi et al.35.

Figure 3.  Transverse profile of the calculated cell-based boron dose distribution (combined 7Li and alpha 
dose matrices) in the scoring plane versus distance from the tumour centre. The statistical uncertainty of the 
calculated results (the relative error between several runs) was ∼±12.5%.
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The transverse profile of the total RBE dose in the scoring plane is presented in Fig. 4b. As expected, the trans-
verse profile for BNCT falls rapidly in the PTV region, which is in contrast to x-ray beam transverse profiles, that 
are reasonably flat in the PTV region.

Assessment of survival fractions for 2.0 cm clinical target volume margin.  The results in this sec-
tion are presented in terms of (a) SF within the beam (the PTV), (b) SF within the penumbra region (5.0 mm 
beyond the PTV), (c) total SF (including out of beam (<1%), within the beam and penumbra region) utilizing 
circular MEP model for a GBM consisting of homogeneous population of GBM cells. The results for conventional 
x-ray therapy are also presented using the previously-developed model34 for comparison purposes.

Table 2 summarizes SF values in the regions of interest as well as the total SFs. The SF within the beam has 
reduced by about four orders of magnitude for BNCT modality compared to SF following a conventional x-ray 
therapy. While not at the same magnitude, the SF in penumbra region also showed a marked improvement using 
BNCT as compared to x-ray therapy.

The results indicate a reduction in the total SF by a factor of 3 between BNCT and conventional photon ther-
apy. It is worth noting that for the circular MEP model, the total number of tumour clonogens and the number of 
tumour clonogens in the penumbra region before the treatment were 2,908,500 and 299,420 respectively.

Figure 5 shows the calculated differential SF curves in 0.5 mm steps. The results for treatment of homogene-
ous hypoxic GBM treated with BNCT and conventional x-ray therapy are presented to allow comparison and 
analysis of the SF pattern at any distance. Considering the logarithmic scale on the vertical axis (differential SF), 
a marked decrease in the SF within the beam was observed for BNCT as compared to x-ray modality. The SF 

Figure 4.  Cell-based RBE dose using equation (4) and four Geant4-calculated cellular dose matrices. (a) RBE 
dose distribution in the scoring plane versus distance from the tumour centre. (b) Transverse RBE dose in the 
scoring plane versus distance from tumour centre. The transverse profile for x-ray EBRT34 is also shown as a 
comparison. The statistical uncertainty of the calculated results (the relative error between several runs) was 
∼±10%.
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within the beam for BNCT treatment gradually increased with distance from the tumour centre prior to a rise in 
the penumbra region.

Nevertheless, the SF remained almost the same throughout the beam area for the GBM model treated with 
x-rays. This is attributed to the dose gradient within the beam for BNCT treatment, see Fig. 4b, as a result of 
declining 10B content as a function of distance from the GTV.

Quantification of survival fraction reduction following a CTV margin extension.  Cumulative sur-
vival fractions corresponding to a 2.0 cm CTV margin (5.0 cm PTV) and 2.5 cm CTV margin (6.0 cm PTV) for 
the circular MEP model and for a genetically homogeneous-hypoxic GBM model are shown in Fig. 6 for BNCT 
as compared to XRT. As illustrated, compared to x-ray radiotherapy, BNCT results in significantly lower SFs for 
both 2.0 and 2.5 cm radii beams.

Calculated SFchange data, as a result of the CTV increase by 0.5 cm, are summarized in Table 3. The SF 
was reduced by 53.83 ± 0.31% following BNCT. The reduction in SF as a result of the CTV extension (by 
72.93 ± 0.06%) was more pronounced in case of conventional x-ray therapy.

BNCT 
modality

X-ray conventional 
modality

SF within the beam (%) 0–10−6 (3.22 ± 0.18) × 10−3

SF within the penumbra region (%) 2.74 ± 0.49 6.71 ± 0.88

Total SF (%) 3.92 ± 0.68 12.79 ± 0.97

Table 2.  Survival fractions (SFs) in different regions for homogeneous-hypoxic circular MEP model for BNCT 
and conventional photon modalities.

Figure 5.  Differentiated SF versus distance from tumour centre for two scenarios: homogeneous-hypoxic GBM 
models treated by (1) BNCT; and (2) conventional x-ray therapy. These graphs are obtained applying “circular” 
MEP model and 2.0 cm CTV (2.5 cm beam radius).

Figure 6.  Cumulative SF versus distance from tumour centre for 2.0 and 2.5 cm CTVs applying the circular 
microscopic extension distribution model for a homogeneous-hypoxic GBM treated by BNCT as compared to 
conventional x-ray therapy.
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Discussion
In the previous report an integrated MC quantification tool was developed for evaluation of survival fraction of a 
GBM tumour, depending on its clonogenic microscopic spread (MEP distributions)34, 35, and different CTV mar-
gin extensions (2.0 and 2.5 cm), following an x-ray EBRT. The establishment of a cell-based simulation platform 
allowed for application of different radiation sources/modalities and of different radiobiological and physical 
(e.g. cellular material composition) cell properties. In the current work, the GBM model was utilized to develop a 
BNCT GBM treatment modelling platform for a homogeneous population of GBM cells.

The rationale for BNCT is its ability to deliver a localized high LET absorbed dose to tumour cells (containing 
a sufficient number of 10B atoms), while minimizing the dose to normal tissue cells which contain a fewer number 
of boron atoms. Therefore, an effective and nontoxic BNCT depends on the selective uptake of a boron compound 
by tumour cells or, in other words, on the ratio of tumour to normal tissue boron concentration. It is known, how-
ever, that glioblastoma multiforme tumours present with low uptake due to their necrotic and hypoxic nature40 
as compared to other tumours (e.g. melanoma). In our study, a ratio of 3.5 was considered as this is the most 
commonly assumed value in literature (Table 1). Ongoing research is addressing this issue by investigating how 
the tumour uptake can be enhanced. An encouraging tumour to blood boron concentration ratio of 8.3 ± 0.7 was 
obtained using L-DOPA administration prior treatment32.

The calculated boron dose showed a peak within the GTV region, followed by a sharp gradient reduction, 
reaching ∼30% of its maximum at 2.5 cm from the tumour centre (Fig. 3) and resulting in an bell-shaped dose 
curve within the beam region (which is normally flat for conventional EBRT) as shown on the transverse profile 
of total RBE dose (Fig. 4b). A beam with such a profile allows to escalate the dose within the GTV as the absorbed 
dose reduces at larger distances due to reduced boron concentration which in turn depends on the probability 
that the cell is a tumour cell.

The calculated SF, following BNCT, within the beam region decreased by three orders of magnitude as com-
pared to conventional x-ray EBRT for homogeneous hypoxic GBM (Table 2). The calculated number of sur-
viving cells within the beam (SFwithin the beam × total number of tumour cells before treatment) was ∼0.01 which 
suggest that BNCT should, in principle, be able to provide local tumour control for GBM. Considering that in 
the current work a simplified model of GBM with homogeneous radiation sensitivity and isotropic infiltration 
distribution has been simulated, this finding should be considered with care. Nevertheless, published clinical 
reports, while scarce, are supportive of this result. Miyatake41 presented a case report of the recurrence pattern 
of a gliosarcoma patient after BNCT and it was demonstrated that gliosarcoma responded well to BNCT and the 
recurrence occurred in the periphery of the tumour outside the treatment field. Likewise, evidence of favourable 
local tumour control of high-grade meningiomas using BNCT was demonstrated in a cohort of 20 patients stud-
ied by Kawabata42. Only three out of twenty patients had local treatment failure42. It should be noted though that 
high-grade meningiomas show a slightly higher ratio of tumour to normal brain boron concentration (3.7 ± 0.8)42 
compared with malignant gliomas and as a result the local control for GBM should be slightly inferior to that of 
meningiomas. Matsuda43 analysed the failure pattern of 8 GBM patients treated by BNCT. None of the patients 
recurred within the GTV and 6 out of 8 patients showed failure in the low dose region of CTV (i.e. GTV + 2 cm). 
The low dose regions were a result of low boron concentrations and an insufficient delivery of thermal neutrons. 
An improved local control for GBM should be expected if these two factors can be overcome.

Survival fractions in the penumbra region were also investigated to quantify the contribution of local inva-
sion/microscopic disease, which could be eliminated by selecting a slightly larger CTV margin, to total SF. The 
SF in penumbra for BNCT was lower than that for x-ray EBRT by approximately 2.5 times. This is likely a result 
of the boron dose produced by neutrons which have thermalised through lateral scattering and being captured 
within the penumbra region The total SF was also significantly lower (by ∼3 times) for BNCT as compared to 
photon therapy.

The differentiated curves presented in Fig. 5 allowed analysis of SF at any distance from the GTV. Given the 
logarithmic scale on the vertical axis, it can be observed that SF within the beam is significantly lower following 
BNCT as compared to x-ray therapy. Unlike the x-ray EBRT, the SF for BNCT gradually increases as a function of 
distance from the tumour centre as a result of boron dose reduction. This trend can explain the observed failure 
pattern in the study of Matsuda43 where 6 out of 8 patients recurred within CTV and none had failed within the 
GTV. As widely reflected in the literature9, 37, 44, tumour relapse for x-ray therapy shows a different trend, with 
GBM recurring locally and particularly in the GTV region containing cells with severe hypoxia. It is interesting 
to note that this clinical observation is evident in the current work’s results. The SF for photon therapy showed a 
local peak within the GTV (1.0 mm radius), Fig. 5, despite a 10 Gy boost dose delivered to this region, suggesting 
that the tumour most likely relapse in the GTV or beam region. The SF in penumbra, while lower for BNCT, is 
high for both treatment modalities which increases the risk of preferential recurrence, as also demonstrated in 
published clinical studies42, 41.

It is clearly evident that increasing the beam size will reduce the SF, and of course, simultaneously increase 
normal tissue toxicity. However, a quantification of the reduction of SF when the CTV is extended could be a 

Treatment 
modality

SF- 2.0 cm 
CTV (%)

SF- 2.5 cm 
CTV (%) SFchange(%)

BNCT 3.85 ± 0.68 1.78 ± 0.33 53.83 ± 0.31

Conventional 
x-ray therapy 12.81 ± 0.95 3.47 ± 0.26 72.93 ± 0.06

Table 3.  Changes in SFs as a result of the CTV extension (from 2.0 to 2.5 cm).
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valuable guidance in adjusting dose prescriptions. In order to investigate the impact of the extent of the CTV 
margin, the beam size was increased by 0.5 cm in radius (resulting in 2.5 cm CTV margin), and cumulative SFs 
were calculated and plotted vs distance from the tumour centre. As indicated in Table 3 and shown in Fig. 6, total 
SFs both for 2.0 and 2.5 cm CTV margins were markedly lower using BNCT as compared to conventional x-ray 
therapy. However, the change in the SF as a result of CTV extension by 0.5 cm was not as pronounced for BNCT, 
as compared to CTV in extension in case of x-ray EBRT (Table 3). In other words, while the CTV extension could 
be beneficial for GBM patients treated by x-ray EBRT, it does not seem to be as advantageous for patients treated 
by BNCT, particularly considering the toxicity induced to normal tissue by scattered neutron having a much 
higher detrimental effect than photons.

In conclusion, an integrated radiobiological framework has been developed using the Geant4 Monte Carlo 
toolkit and MATLAB to evaluate current CTV margin extensions in terms of cell kill efficacy for glioblastoma of 
the brain using BNCT. The efficacy of BNCT has also been investigated as compared to x-ray EBRT.

The main outcomes of this study are: (1) according to these simulations, while radiation-induced damage 
caused by x-ray beams may not be sufficient to kill or sterilise GBM cell populations and the tumour is most 
probably to relapse in the treatment volume, BNCT could provide local control for GBM patients; (2) A quantifi-
cation tool has been developed to estimate the reduction in the tumour cell survival fraction due to extension of 
the CTV. Although the SF is sensitive to the CTV margin extension in BNCT, this reduction may not justify the 
radiation injury to healthy brain cells caused by high LET BNCT beam in its current state of technological devel-
opment. The efficacy of BNCT strongly depends on the number of low energy neutrons in a spectrum as well as 
on a high ratio of tumour to normal brain boron concentrations. Should these factors be optimized, BNCT could 
be a potent modality for GBM.

We acknowledge that this study has utilized a simplified model of GBM and its microscopic extension. It is 
a general knowledge that cancer systems, particularly GBM, are complex and dynamic systems where factors 
such as the micro-environmental changes, immune system response, and cellular phenotype conversions affect 
progression through carcinogenesis. Another limitation of this model is the application of modified LQ model to 
translate the physical dose to radiobiological endpoint (e.g. cell kill). Tumour cell kill is a complicated procedure, 
particularly for GBM with its inherent complexities, and is influenced by a large number of microscopic biological 
and chemical mechanisms which are not fully incorporated in the LQ model45. From a mathematical perspective 
and irrespective of radiobiological reasons, the validity of the LQ model (based on Poisson-distributed lesion 
assumption) diminishes at large doses and the cell survival is underestimated by the model46, 47. In other words, 
the model developed in this work may overestimate cell kill efficacy using BNCT.

The GBM model in this work consisted of a population of cells with homogeneous radio-sensitivity and an 
isotropic infiltration distribution (circular MEP). In future, genetic heterogeneity of GBM will be incorporated in 
the BNCT treatment modelling and anisotropic infiltration distributions will be investigated. Another important 
area of future development of the present work is to use more accurate models, utilizing particle track structure 
parameters, to translate physical dose to radiobiological effect.

Methods
The modelling framework described above has been used as the basis for the GBM-BNCT model development. In 
case of BNCT, the cell-based dosimetry module, however, is not independent of the GBM MEP model as the dose 
deposited in individual cells depends on the cellular boron concentration which itself is dependent on whether 
the cell is a tumour or a normal cell. These components are discussed in the following sections.

Cell-based dosimetry for BNCT.  Geometry design.  The architecture of the geometry used for cell-based 
dosimetry is shown in Fig. 7. The simulated geometry was a 9 cm × 9 cm × 2.2 cm brain phantom consisting of 
a spherical GTV (1 mm diameter) and a microscopic extension region (spanning up to 4.1 cm from the GTV) 
and a 0.4 cm Planning Target Volume (PTV). The size of the GTV was intentionally considered small as the main 
aim of this study is to investigate the effect of the CTV margin extension on the SF and the larger size of the GTV 
only increases CPU time. This enclosed a dose scoring volume of 9 cm × 9 cm × 0.9 cm (the volume in checked 
print in Fig. 8). This volume was divided into 20 × 20 × 20 μm3 and each cell within this volume was assigned its 
corresponding 10B concentration in addition to the brain material. While the Geant4 particle tracking was per-
formed in the entire geometry, the dose was scored in a single slice with 9 cm × 9 cm × 20 μm dimensions located 
at 2.0 cm below the phantom surface, perpendicular to the beam direction.

Bio–distribution of boron in brain.  In order to simulate the brain infused by a 10B agent in Geant4, each cell was 
assigned a brain material and a boron concentration (see steps 2 and 3 in Fig. 7). The required fields to specify and 
construct the brain material (name, density, and atomic constituents) in Geant4 were taken from the National 
Institute of Standards and Technology (NIST) Listings, “Compositions of Materials used in STAR Databases” 
webpage: http://physics.nist.gov/cgi-bin/Star/compos.pl?matno = 123 (see Table 4).

Based on the data summarized in Table 1, boron concentrations of 13 and 45.5 μg/g were assumed for normal 
brain and GBM cells (i.e. normal brain boron concentration × 3.5), respectively. Using these concentrations a 
linear function was derived to determine cellular boron concentration as a function of the probability that the cell 
is a tumour clonogen (MEP) (equation (3)). This assumption is justified based on clinical observations indicating 
that there is a linear relation between blood and tumour boron concentrations:27

= . × +B concentration MEP_ 32 5 13 (3)ij ij

where B_concentrationij is the boron concentration in the cell (voxel) ij with the MEPij probability that the 
cell is a tumour cell. The linear function was then converted to a step function with twelve steps. Such derived 

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=123
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bio-distribution of boron (the step #1 in the flowchart 1) was exported from Matlab to Geant4 and stored in an 
array. Using the brain material and the boron concentration array, twelve composite materials corresponding to 
12 boron concentration levels (steps), were simulated using G4Element class. The pointers to each material were 
stored in an array of pointers to enable parametrisation of the geometry.

Voxelisation and material allocation.  Allocation of a specific (heterogeneous) material composition to each 
individual voxel in Geant4, while also performing dose scoring, is a non-trivial task. In this work, in order to 
distribute corresponding boron concentrations to cells, the brain volume of 9 cm × 9 cm × 0.9 cm dimensions 
was divided into 20 μm side voxels, so that each voxel represented a cell. The divisions have been made in three 
layers. Firstly, the brain volume was divided in x and y direction to 3 × 3 × 9 mm3 voxels (using G4Replica). As 
each replicated volume is indistinguishable from each other, another method, called nested parametrisation, was 
implemented for the second-layer division (9 mm to be divided by 3 to give 3 mm voxel size in z direction) as well 
as material parametrisation. The material for each voxel was selected from the array of materials based on replica 
numbers of each voxel in order to relate to the voxel s corresponding material (Using G4NestedParameterization). 
Finally, the central slice was divided into 20 μm side voxels to allow cell-based dosimetry. As the parametrised 
volumes have the limitation in that they cannot contain daughter volumes, this division was implemented using 
the so called Readout (RO) geometry method provided in Geant4. RO geometry is a parallel geometry which acts 

Figure 7.  Schematic diagram showing the architecture of the geometry of Geant4 cell-based dosimetry system 
in the current work.

Symbol Fraction Mass Symbol Fraction Mass

H 0.110667 S 0.001770

C 0.125420 Cl 0.002360

N 0.013280 K 0.003100

O 0.737723 Ca 0.000090

Na 0.001840 Fe 0.000050

Mg 0.000150 Zn 0.000010

P 0.003540

Table 4.  Atomic constituents of brain material taken from National Institute of Standards and Technology 
(NIST) Listings, “Compositions of Materials used in STAR Databases” webpage. source by: http://physics.nist.
gov/cgi-bin/Star/compos.pl?matno=123.

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=123
http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=123
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as a virtual tracking geometry, through which the real geometry is scanned. In RO geometry the scoring plane 
was divided to 20 × 20 × 20 μm3 voxels (the scoring plane is the central plane in dark colour on the right side of 
Fig. 8). In other words, particles were tracked in the real geometry and spatial information of voxels (in terms of 
indices) in which interactions occurred and dose deposited were obtained from parallel geometry.

Given the potentially large amount of memory required for such a geometry, CPU time and RAM optimi-
zation methods were implemented: To parametrise the geometry to implement the heterogeneous material 
composition, the nested parametrisation method was utilized which requires much less memory for geometry 
optimization (compared to the commonly used direct three-dimensional parametrised volume method), result-
ing in faster navigation of systems with large number of voxels. Additionally, the brain volume was defined as 
a “sub-detector region”, using G4Region function, to allow for a more detailed simulation to occur only in this 
region. As a result, the processing speed increased markedly.

Particle tracking and dose scoring.  A BNCT beam model, simulating the epithermal spectrum from the 
LVR-15 reactor at Research Centre Rez48 with its realistic energy distribution was developed. The GBM phantom 
(geometry described above) was irradiated with this epithermal neutron beam model. Two beam sizes were con-
sidered: 2.5 and 3.0 cm radii corresponding to 2.0 and 2.5 cm radii CTV margin extensions, respectively. In the 
current simulation, the treatment was delivered in one fraction with a mean maximum tumour dose of 73.4 RBE 
-Gy, as per clinical protocols reported in literature16, 42, 49, 50. The mean maximum tumour dose in this study was 
considered as the dose averaged over the cells located in the GTV.

Dose conventions.  Epithermal neutron beams designed for BNCT, predominantly produced by fission reactors 
and accelerators, have broad spectra and contain unwanted fast neutron and gamma contaminations. Four major 
dose components should be considered when such spectra interact with biological medium (the terminology has 
been adopted from Harvard-MIT BNCT treatment planning protocol51):

	 1.	 Boron dose from thermal neutron capture through 10B(n,α)7Li reaction (which is the sum of doses depos-
ited by 7Li and alpha particles);

	 2.	 Thermal neutron dose as a result of thermal neutron capture by nitrogen atoms in biological tissue: 
14N(n,p)14C;

	 3.	 Gamma dose from neutron capture by hydrogen atoms and also from gamma contamination in the inci-
dent neutron beam;

	 4.	 Fast neutron dose which is due to elastic and inelastic neutron scattering (e.g. 1H(n, n′)2H) and several 
possible nuclear reactions (e.g. 16O(n, α)13C)30.

Figure 8.  The real tracking geometry is shown on the left. A 9 cm × 9 cm × 2.2 cm box enclosed the brain 
volume (9 cm × 9 cm × 9 mm) which was divided into 3 × 3 × 3 mm3 and the material parametrisation was 
implemented for all voxels within. In the middle, the RO geometry is shown which consisted of the brain 
volume enclosing the scoring plane located in the middle of the volume and divided into 20 × 20 × 20 μm3 
(the size of glioma cells). The RO geometry communicates in sync with tracking geometry to score the dose in 
the cells defined in the scoring plane. On the right, the cross section of the scoring plane is shown. It should be 
noted that this diagram is not to scale to allow illustration of details.
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In the current work, gamma contamination in the incident neutron beam was not taken into account and the 
gamma dose was produced from neutron capture by hydrogen atoms only.

In order to account for the variability of radiobiological effects of different physical dose components of a 
neutron beam spectrum incident on biological tissue, current clinical BNCT convention was adopted from 
IAEA-TECDOC-1223 BNCT treatment planning protocol52: each physical dose component (apart from the 
boron dose) was weighted by its respective Relative Radiobiological Effectiveness (RBE) factor, as listed in 
Table 5 11, [Chapter 24]. The boron dose correction factor used is more complex as it depends on the boron carrier 
used to put boron in cells and is called Compound Biological Effectiveness (CBE).

Therefore, the total RBE-Gy dose, dwij, was calculated as:

= + + +γ γd w d w d w d w d (4)wij ij F Fij T Tij B Bij

where dγij, dFij, dTij, and dBij were gamma dose, fast neutron dose, thermal neutron dose, and boron dose (i.e. sum 
of lithium and alpha doses) in voxel/cell ij, respectively.

For particle tracking, interaction processes and cross-sections determination, Geant4 packaged physics 
list, Quark-Gluon String Precompound Binary Cascade High Precision Neutron (QGSP_BIC_HP) was used. 
The High Precision data-driven neutron model (HP), included in the package, is used to track neutrons from 
20 MeV down to thermal energies. Low energy parametrised neutron models are used when the data cannot be 
found in the HP database for any element. For neutrons with energies below a few eV, thermal neutron scatter-
ing from chemically-bound atoms is considered using thermal elastic scattering matrix S(α,β) tables (i.e. taking 
into account temperature-dependent momentum (α) and energy (β) transfer effects in crystalline structure of 
molecules. These effects occur at low energy neutrons53). In this packaged physics list, the standard EM model 
is adopted to model electromagnetic processes. Particles were assigned appropriate processes and cross sections 
along their trajectories. The tracks of 7Li and alpha particles from the boron capture reaction, gammas resulting 
from the neutron capture reaction, and all other particles and nuclear fragments from fast neutron reactions and 
thermal neutron capture were individually tracked in the simulation. The production threshold/cut off-values 
were set to 4 μm for all particles other than gammas and to 0.01 mm for gamma particles. To ensure the correct 
level of precision, a step limit should be defined. In Geant4 a step contains information of a particle track which 
is updated upon the end of each step. A particle’s track is deleted if the particle disappears as a result of a decay or 
an inelastic scattering process (as is the case for fission and nuclear reactions). Therefore, a maximum step size, 
assumed to be sufficiently small with respect to the size of the sensitive volume, should be defined to calculate the 
energy deposition. In this simulation, the maximum step size was set to 4 μm, corresponding to the minimum 
range of the alphas and 7Li nuclei. These production thresholds were assigned only to the brain volume (Fig. 8). 
Default thresholds (0.7 mm) were used for the rest of geometry.

Several techniques are provided in Geant4 to retrieve information (e.g. absorbed dose) through particle track-
ing. In this simulation a sensitive detector technique was implemented to score the dose from individual particles 
in the scoring plane.

Parallel simulations on 96-CPU 64-bit Linux clusters (South Australia (SA) Tizard supercomputer, the 
University of Adelaide) were performed for a total number of 5.8 × 109 particles, in four simulation runs, each 
running for ∼17 days. Four dose matrices containing doses deposited by 7Li, alpha particles, gamma rays and 
neutrons (called the residual dose) were calculated for each core and the results were combined. The fast and ther-
mal neutron doses were scored in a single matrix. This is possible as the RBE for both groups is the same (Table 5).

Cell survival probability calculation.  The four dose matrices calculated in Geant4 were exported into 
MATLAB. Using equation (4), the total RBE-Gy dose was calculated and was combined with the circular MEP 
model to obtain the cell survival probability for each cell using equation (5).

= α β− +SP MEP e (5)ij ij
d d( )ij ij

2

where MEPij is the probability that the cell ij is a tumour clonogen, and dij is the absorbed dose in the cell ij. SPij 
denotes the survival probability of the cell ij. In the current work, the model consisted of a homogeneous popula-
tion of GBM cells in terms of gene type and therefore uniform radiosensitivity was assumed with α = 0.281 Gy−1 
and β = 0.02 Gy−2. These values are the means of Gaussian distribution of α and β values for several GBM cell 
lines reported in the previous work35.

In order to model tumour oxygenation levels (i.e. hypoxia), the Oxygen Enhancement Ratio (OER) was used 
previously for x-ray radiotherapy simulation. In case of BNCT, OER value of 1 was considered, as is the norm for 
high LET particulate radiation25.

Equations (6) and (7) were then used to calculate the number of surviving cells and SF for regions of interest:

RBE CBE

Photon wγ

Fast 
neutron wF

Thermal 
neutron wT Boron wB

Brain tissue 0.5 3.2 3.2 1.3

Tumour tissue 0.5 3.2 3.2 3.8

Table 5.  Relative biological effectiveness factors and CBE factor (only for boron dose) for four principal dose 
components11.
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∑= ∈SP i j regionsurviving cells in the “region” ( , “ ”)
(6)i j

ij
,

=SF surviving cells in the “region”
total number of tumour cells before treatment (7)region

SFs were evaluated in three regions: 1) within the beam region, i.e. the PTV; 2) within the penumbra region, 
defined in this study as the region extending 5.0 mm beyond the PTV; and 3) the total SFs, including in-beam, 
penumbra, and out of field (<1% dose coverage) regions. SFs were first calculated/predicted for a 2.0 cm CTV 
margin (equation (8)). The calculations were repeated four times using the dose matrices from four simulation 
runs.

The calculated SFs were compared with those calculated for homogeneous-hypoxic GBM tumour model for 
x-ray therapy published previously34.

= ×

= ×

= ×
‐ ‐

(8)

SF

SF

SF

100 surviving cells within the PTV
total number of tumour cells before treatment

100 surviving cells in the penumbra region
total number of tumour cells before treatment

100 surviving cells within the PTV, penumbra region, and out of field
total number of tumour cells before treatment

within the beam

penumbra region

total

To further examine the pattern of SF within the beam and beyond, the differential SF was calculated in 0.5 
mm steps and plotted versus distance from the tumour centre for the 2.0 cm CTV margin. The differential SF was 
defined as the ratio of the number of surviving tumour clonogens in a 0.5 mm wide rim at each distance from the 
tumour centre to the initial (total) number of tumour cells before treatment. A comparison of these results was 
made with differential SFs for x-ray therapy.

To obtain a quantitative measure of SF reduction with increased treatment margins, the CTV margin was 
extended by 0.5 cm to 2.5 cm and the beam size was increased to 3.0 cm (the radii of the GTV and the PTV margin 
remained the same). The change in SFs, as a result of the CTV increase by 0.5 cm, was calculated using equation (9).

= ×
−. .

.
SF SF SF

SF
100

(9)change
cm cm

cm

2 0 2 5

2 0
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