
https://doi.org/10.1177/17562848241272001 
https://doi.org/10.1177/17562848241272001

Ther Adv Gastroenterol

2024, Vol. 17: 1–22

DOI: 10.1177/ 
17562848241272001

© The Author(s), 2024. 
Article reuse guidelines:  
sagepub.com/journals-
permissions

journals.sagepub.com/home/tag 1

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License  
(https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the Sage and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

TherapeuTic advances in 
Gastroenterology

Artificial intelligence and machine learning 
technologies in ulcerative colitis
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Sidhartha R. Sinha* and John Gubatan*

Abstract: Interest in artificial intelligence (AI) applications for ulcerative colitis (UC) has 
grown tremendously in recent years. In the past 5 years, there have been over 80 studies 
focused on machine learning (ML) tools to address a wide range of clinical problems in UC, 
including diagnosis, prognosis, identification of new UC biomarkers, monitoring of disease 
activity, and prediction of complications. AI classifiers such as random forest, support 
vector machines, neural networks, and logistic regression models have been used to model 
UC clinical outcomes using molecular (transcriptomic) and clinical (electronic health 
record and laboratory) datasets with relatively high performance (accuracy, sensitivity, and 
specificity). Application of ML algorithms such as computer vision, guided image filtering, and 
convolutional neural networks have also been utilized to analyze large and high-dimensional 
imaging datasets such as endoscopic, histologic, and radiological images for UC diagnosis and 
prediction of complications (post-surgical complications, colorectal cancer). Incorporation 
of these ML tools to guide and optimize UC clinical practice is promising but will require 
large, high-quality validation studies that overcome the risk of bias as well as consider cost-
effectiveness compared to standard of care.

Plain language summary 

Artificial intelligence in ulcerative colitis

Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon. The clinical care 
of patients with UC and research efforts to better understand the disease has inevitably 
produced a significant quantity of diverse and complex datasets ranging from electronic 
health records, laboratory values, images (endoscopy, radiology, histology) to gene 
expression. The size and complexity of datasets derived from UC poses a significant 
challenge to accurately and effectively predict clinically meaningful endpoints in order to 
ultimately improve UC outcomes. Artificial intelligence through the application of machine 
learning tools has the potential to improve the analysis of large, complex, high-dimensional 
datasets and reveal novel, deeper insights compared to traditional analytical tools. Here, 
we provide an updated and comprehensive summary of AI applications in UC.
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Review

Introduction
Ulcerative colitis (UC) is a chronic inflam matory 
disorder of the gut without a medical cure that 
affects nearly 1 million Americans.1 Inflamma-
tory bowel disease (IBD) is characterized by 

intestinal dysbiosis and immune dysregulation. 
Environmental factors, particularly diet, are 
thought to play a key role in disease pathogene-
sis, particularly via impact on the gut 
microbiome.2,3
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Current therapeutics control IBD via broad 
immunosuppression but do not address the 
underlying intestinal dysbiosis. Further, despite 
our best therapies, most patients do not achieve 
long-term remission highlighting the need for 
improved disease monitoring and personalized 
therapeutic interventions.4 There is a growing 
interest in utilizing deep, multi-omics phenotyp-
ing in IBD including whole exome sequencing, 
transcriptomics, proteomics, and metagenomics 
of the microbiota. Additionally, there is a rapid 
expansion in the growth of clinical images from 
endoscopy and pathology samples. The resultant 
rapid expansion of data has led to interest in the 
application of artificial intelligence (AI) to IBD.

AI is a multidisciplinary field that seeks to apply 
computer software to mimic human intelligence. 
Machine learning (ML) is a subset of AI that uses 
statistical methods to recognize patterns from 
datasets and can be done through supervised and 
unsupervised methods. Supervised learning relies 
on labeled input to give accurate classification or 
prediction of the outcome of interest. Examples 
of supervised learning include regression, 
K-nearest neighbor, and random forest (RF). 
Unsupervised learning, in contrast, does not 
require labeled input and is used to reduce dimen-
sionality and allow for clustering.5,6 Deep learn-
ing (DL) utilizes artificial neural networks 
(ANN), which mimic brain logic structures, to 
perform complex learning tasks by utilizing layers 
of representation and subsequent transformation 
to highlight aspects of the input which improves 
task performance. Examples of DL include vir-
tual assistants and image recognition.6

Over the last decade, there has been increased 
application of AI in IBD.7 In particular, computer 
vision in endoscopy in UC has been a key area of 
growth.8–11 The purpose of this review is to pro-
vide an updated and comprehensive evaluation of 
recent advances in AI in UC, with a particular 
focus on the prediction and diagnosis of new UC, 
prediction of response to therapy, disease moni-
toring, and identification of disease complica-
tions. We also review challenges to the translation 
of these novel technologies into the clinic and dis-
cuss future directions.

Literature search strategy
We performed a literature review using PubMed 
(MEDLINE) from inception until July 30, 2023, 

of all studies applying AI in UC. Our search strat-
egy consisted of the following combinations: 
(((((((ulcerative colitis [Title]))) AND (artificial 
intelligence [Title])) OR (computer-assisted 
[Title])) OR (computer-aided [Title])) OR 
(machine learning [Title])) OR (deep learning 
[Title]). We included studies that used AI in the 
(1) prediction and diagnosis of UC, (2) predic-
tion of response to therapy in UC, (3) monitoring 
disease activity in patients with UC, and (4) pre-
diction of complications of UC. We excluded 
reviews, studies with non-human subjects (ani-
mal models), or studies that did not provide 
objective measures of the efficacy of AI applica-
tions (e.g. area under the curve (AUC), sensitiv-
ity, specificity, etc.).

Results
Our search strategy yielded 97 studies that applied 
AI to UC, of which 61 studies met our inclusion 
criteria. In total, 54 (88.5%) of studies were pub-
lished in the last 5 years. Eighteen studies focused 
on the prediction and diagnosis of new UC, 11 
studies predicted response to therapy, 15 evalu-
ated disease monitoring, and 14 focused on pre-
diction of UC complications. The AI methods 
utilized include: linear regression (LR), lasso 
regression, gradient boosted machine (GBM), 
principal component analysis (PCA), RF, linear 
discriminant analysis (LDA), support vector 
machines (SVM), segment anything model 
(SAM), ANN.

Prediction and diagnosis of new UC
Identification of biologic pathways in UC

What is already known? While previous 
research has identified some common genetic, 
environmental, and microbial risk factors for UC, 
the associations are neither strong enough nor 
consistent enough to be clinically useful.12–16 The 
use of AI has enormous potential for assessing 
risk and identifying biologic pathways enriched in 
UC compared to the general population.

What do current studies show? Table 1 sum-
marizes studies that applied AI to the diagnosis of 
new UC. Four studies utilized omics data, includ-
ing genetic/genomic (n = 3) and transcriptomic 
(n = 1) data sets. While this is a growing area of 
research interest, only a few studies have specifi-
cally focused on prediction of UC from a healthy 
population.
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Table 1. Prediction and diagnosis of new UC.

Author Study design Brief description Main findings

Tang et al., 
202317

Cross-
sectional

Used a combination of 3 machine learning algorithms 
(LASSO, SVM-RFE, RF) trained on microarrays from colon 
biopsy samples of 298 UC and 55 healthy control patients 
(validated using samples from 87 active UC and 21 Healthy 
control (HC) patients) identified differentially expressed 
cuproptosis-related genes and generated a prediction model 
of UC.

Seven signature genes to build a 
nomogram for predicting the risk of UC. 
Demonstrated outstanding prediction 
performance based on calibration and ROC 
curves (AUC 0.982).

Zhang et al., 
202218

Cross-
sectional

Identified 2 useful genes for UC diagnosis (OLFM4 and 
C4BPB) using 6 ML methods (SVM, LASSO, RF, GBM, PCA, 
and neural network) which were trained using 6 microarrays 
from 201 UC and 106 healthy patients and validated using 4 
microarrays (from 186 UC and 33 healthy subjects).

OLFM4 had good performance with average 
AUC of 0.865. Both OLFM4 and C4BPB 
significantly correlated to macrophages 
(M1 and M2), mast cells (activated and 
resting), monocytes, and natural killer 
(NK) cells activated

Li et al., 
202019

Cross-
sectional

Used a random forest algorithm (trained on a set of mucosal 
transcriptomic profiles from rectal biopsies of 206 UC 
and 20 healthy patients and validated with an independent 
set from 53 UC and 21 healthy rectal biopsies) to identify 
1 downregulated and 29 upregulated DEG’s with highest 
contribution to UC occurrence. ANN calculated DEG weights 
to UC.

Prediction results agreed with that of 
an independent data set (AUC = 0.951, 
area under the precision recall curve 
[AUPRC]  = 0.975).

Han et al., 
202120

Cross-
sectional

Applied SVM combined with RFE to construct a disease 
classifier from 41 genes for the disease diagnosis of UC 
patients. Trained on a dataset of 108 patients (97 UC, 11 HC), 
and validated using data from 70 samples (46 UC, 24 HC).

The SVM classifier combined with RFE 
applied to 41 genes had the highest 
accuracy of 0.965. In the validation 
datasets, AUC was 0.832

Kraszewski 
et al., 202121

Prospective 
cohort

Used RF to create an IBD prediction model based on routinely 
performed blood, urine, and fecal tests and compare it to 
diagnosis based on CRP alone. Input data (702 medical 
records of 372 IBD patients: 319 records from 180 UC 
patients and 383 records from 192 CD [Crohn’s disease] 
patients) was divided into training and test sets with a 7:3 
ratio and compared against a control group of 315 records 
from 271 patients with noninflammatory and non-malignant 
bowel diseases.

A majority of robust classifiers from the 
RF ensemble obtained a mean average 
precision of 97% for CD and 91% for UC. In 
comparison, diagnosis based on only CRP 
demonstrated average precision of only 
81% for CD and 61% for UC.

Jiang et al., 
20228

Cross-
sectional

Assessed diagnostic ability of low-dose computed 
tomography enterography (CTE) based on an improved 
GIF algorithm from 60 patients suspected to have IBD and 
compared it to 60 patients who underwent routine computed 
tomography (CT) examination. Comprehensive diagnosis was 
used as the standard to assess the diagnostic effect.

For UC, low-dose CTE based on improved 
GIF had a diagnostic accuracy of 98.33%. 
Compared to routine CT examination, low-
dose CTE from improved GIF had superior 
classification performance

Dhaliwal 
et al., 202122

Cross-
sectional

Used clustering with similarity network fusion (SNF) on the 
top RF features to discriminate between UC and colonic-
CD independent of a supervised model. And RF classifier 
was trained on a dataset of baseline clinical, endoscopic, 
radiologic, and histologic data from 74 pediatric colonic IBD 
patients (56 UC, 18 colonic-CD) and validated via leave-one-
out approach. A new classifier was constructed from the top 
features and then tested on 15 previously unused patients.

The classifier accurately distinguished UC 
from colonic-CD in 97% of patients in the 
training set and 100% of the patients in an 
independent set.

Lu et al., 
202223

Cross-
sectional

Created a logistic regression model based on 5 genes with 
potentially significant correlation with UC. Applied the logistic 
regression model to microarray data from colonic epithelial 
mucosa biopsy samples from 106 UC patients and 21 healthy 
patients (randomly assigned into training and test data 
sets) to identify specific diagnostic signatures to create a 
diagnostic model for UC.

The logistic regression model had an 
average AUC of 0.8497 in the training set, 
and AUC of 0.7208 in another independent 
verification set.

(Continued)
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Author Study design Brief description Main findings

Khorasani 
et al., 202024

Cross-
sectional

A feature selection algorithm combined with an SVM 
classifier was used to create a model to distinguish 
between healthy control and UC patients using 32 genes in 
colon samples from 5 combined datasets. The training set 
consisted of 52 samples, and the test dataset had 25 samples.

The model perfectly detected all active 
cases and had an average precision of 0.62 
in the inactive cases.

Wang et al., 
202325

Cross-
sectional

LASSO regression and SVM-RFE identified 5 genes as 
promising biomarkers from 2 gene expression data sets 
consisting of a combined 193 UC and 42 healthy control 
samples.

All 5 genes identified as essential 
diagnostic genes for UC demonstrated 
strong discrimination between UC 
and healthy specimens (average AUC 
0.9562). Of these 5 genes, 2 genes 
(DUOX2, DMBT1) had significantly higher 
expression levels in UC samples vs 
healthy control, and 3 genes (CYP2B7P, 
PITX2, DEFB1) had significantly lower 
levels of expression in UC samples.

Duttagupta 
et al., 201226

Cross-
sectional

SAM identified 31 differentially expressed platelet-derived 
miRNAs from whole genome maps of circulating miRNAs 
from peripheral blood mononuclear cells (PBMC), micro-
vesicles, and platelets constructed from blood samples of 
20 UC and 20 healthy control patients. Used SVM (trained 
on a cohort of randomly selected 18 case-control subjects, 
tested on 2 subjects from each enrollment category) to 
evaluate biomarker performance using non-probabilistic 
binary linear classification.

SVM classifier measurements revealed 
a predictive score of 92.8% accuracy, 
96.2% specificity, and 89.5% sensitivity in 
distinguishing ulcerative colitis patients 
from normal individuals.

Chen et al., 
202327

Cross-
sectional

Used RF and LASSO regression trained on a dataset from 30 
UC and 13 healthy samples and (tested on a dataset from 25 
UC and 22 healthy samples). LASSO regression identified 7 
genes as potential diagnostic markers of UC.

The LASSO regression model had an AUC 
of >0.9 in the training set, and most of the 
genes identified as potential UC-related 
diagnostic markers had an AUC of 0.65 in a 
validation set.

Sutton et al., 
202210

Cross-
sectional

Deep learning CNNs applied via a weakly supervised 
approach to distinguish UC from other intestinal 
disorders and grade endoscopic severity. The diagnostic 
classification model was trained using 2642 pathological 
endoscopy images and the diagnostic model for endoscopic 
grading of UC was trained using 851 UC images with Mayo 
grades 0–3. 20% of both training sets were set aside for 
test datasets.

DenseNet121 architecture had superior 
accuracy (87.50%) and AUC (0.90). Grad-
CAM improved visual interpretation of the 
model. In all model architectures, CNN 
discrimination between UC and non-UC 
pathologies had area under the receiver 
operating characteristic (AUROC) > 0.99.

Chierici 
et al., 202211

Cross-
sectional

Applied a prototype DL framework based on ResNet 
architectures merged by ensemble learning to 14,226 three-
channel RGB endoscopic images of 11,404 IBD (4388 UC, 
5949 CD, and 1067 other IBD) and 2822 healthy patients to 
identify disease patterns and distinguish endoscopic images 
of UC and CD from non-IBD samples. 20% of the images were 
reserved for validation. Of the remaining sample size, 90% 
were used as training dataset and 10% for testing.

In the test dataset, DL model 
demonstrated strong predictive ability 
at distinguishing IBD from healthy 
samples (Matthews correlation 
coefficient [MCC] = 0.940) and specifically 
distinguishing UC vs healthy patients 
(MCC = 0.931). It had lower but relatively 
good predictive ability at distinguishing 
UC vs CD (MCC = 0.688).

Gottlieb 
et al., 20219

Prospective 
cohort

Used a deep learning algorithm (RNN) trained on 795 
full-length endoscopy videos from 249 patients, cleaned 
and abnormality features extracted via CNN, to predict 
UC severity based on endoscopic Mayo score and UCEIS 
scores. The full video feature data set was randomly split at 
the patient level into a training set (80%) and hold-out test 
set (20%).

The RNN had excellent agreement with 
human readers with a QWK of 0.844 (95% 
CI, 0.787–0.901) for Mayo score and 0.855 
(95% CI, 0.80–0.91) for UCEIS.

Table 1. (Continued)

(Continued)
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Author Study design Brief description Main findings

Mossotto 
et al., 201728

Cross-
sectional

Constructed 3 models (endoscopic data only, histological data 
only, and combined endoscopic/histological data) by applying 
supervised and unsupervised ML techniques using data 
collected at initial diagnosis from 287 pediatric IBD patients 
(178 CD, 80 UC, 29 IBD). Supervised linear SVM was used to 
classify CD vs UC samples based on clinical data from 210 
patients (143 CD, 67 UC), divided into subsets for discovery 
(72 CD, 34 UC), training and testing (71 CD, 33 UC), and final 
reclassification (29 IBD)

All models had fair classification 
performance for UC with the greatest 
accuracy from the combined model (82.7%, 
AUC 0.87). However, in the validation 
cohort classification performance for CD 
remained high but only 65% of UC cases 
were correctly labeled

ANN, artificial neural network; AUC, area under the curve; CI, confidence interval; CNN, convolutional neural networks; CRP, C-reactive protein; 
DEGs, differentially expressed genes; DL, deep learning; GBM, gradient boosted machine; GIF, guided image filtering; IBD, inflammatory bowel 
disease; LASSO, least absolute shrinkage and selection operator; MCC, Matthews correlation coefficient; PCA, principal component analysis; QWK, 
quadratic weighted kappa; RGB, red, green, blue; RF, random forest; RNN, recurrent neural network; SAM, segment anything model; SVM-RFE, 
support vector machines recursive feature elimination; UC, ulcerative colitis; UCEIS, UC endoscopic index of severity.

Table 1. (Continued)

In a cross-sectional study of colon biopsy samples 
from 298 active UC and 76 healthy control 
patients by Tang et al., a combination of three 
ML algorithms—including least absolute shrink-
age and selection operator (LASSO), SVM recur-
sive feature elimination (SVM-RFE), and 
RF—identified seven differentially expressed cell 
death-related genes (average AUC 0.859) to 
build a prediction model of UC diagnosis. The 
resulting nomogram had good predictive perfor-
mance with an AUC of 0.982 in the validation 
set.17 In a separate cross-sectional study of 387 
UC and 139 healthy patients by Zhang et al., 2 
useful genes (OLFM4 and C4BPB) were identi-
fied using a combination of 6 ML methods 
including SVM, LASSO, RF, GBM, PCA, and 
ANN. OLFM4 and C4BPB were found to be of 
diagnostic values as determined by an average 
AUC of 0.865 based on their performance in 
training, test, and independent validation sets. 
Notably, both genes were significantly correlated 
with M1 macrophages, M2 macrophages, acti-
vated mast cells, resting mast cells, monocytes, 
and activated natural killer cells (p < 0.05).18 
Another cross-sectional analysis of 259 UC and 
41 healthy patients by Li et al. utilized RF to 
identify differentially expressed genes (DEGs) 
with highest contribution to UC occurrence from 
sets of mucosal transcriptomic profiles from rec-
tal biopsies and used an artificial neural net to cal-
culate DEG weights to UC. The algorithms 
demonstrated excellent prediction performance 

of AUC 0.9506, which also agreed with that of an 
independent data set.19 In a separate cross-sec-
tional study of 178 patients (143 UC, 35 healthy 
control), Han et al. constructed a disease classi-
fier from 41 genes using SVM-RFE for diagnosis 
of UC. The model demonstrated high accuracy of 
96.5% and performed excellently in training and 
validation sets with an AUC of 0.999 and average 
AUC of 0.832, respectively.20

What could AI add in the future? The preva-
lence of UC is increasing, and despite this, our 
understanding of the pathophysiology of UC is 
still limited. Bench scientists have increasingly 
applied a systems biology approach to study dis-
ease pathogenesis, and there has been a resultant 
explosion in the volume of scientific data. While 
the current studies have applied traditional ML 
methods to these datasets, there is an opportunity 
to apply DL methods to these data to generate 
novel insights.

AI in diagnosis of UC. Traditionally, evaluation 
and diagnosis of UC involve comparing clinical 
symptoms to relevant laboratory data, radio-
graphic imaging, and endoscopic reports via 
index colonoscopy.29 In recent years, many stud-
ies have begun exploring the potential of AI meth-
odologies to enhance prediction and accuracy of 
UC diagnosis, improve treatment outcomes 
through early diagnosis, and discovery of novel 
pathways associated with UC pathogenesis.

https://journals.sagepub.com/home/tag


Volume 17

6 journals.sagepub.com/home/tag

TherapeuTic advances in 
Gastroenterology

Of the 14 total studies, 3 used AI to assist in the 
analysis of diagnostic labs and radiographic 
data, 6 involved the use of AI to aid in the dis-
covery of novel biomarkers for diagnosis, and 5 
studies utilized AI or computer vision in index 
colonoscopy.

AI analysis of laboratory, pathology, and radio-
graphic data

What is already known? Current clinical prac-
tice for diagnosis of UC relies on a combination of 
laboratory testing and radiographic data in com-
bination with endoscopic and histological evalu-
ation. Laboratory testing includes assessment of 
serum inflammatory markers such as leukocyte 
count and differential, platelet count, and C-reac-
tive protein (CRP) as well as stool tests such as 
fecal calprotectin or lactoferrin levels which are 
stronger indications of activation of immune path-
ways in the gut.30 Radiographic techniques using 
magnetic resonance imaging, computed tomog-
raphy, and abdominal ultrasound can be used to 
rule out small bowel involvement and distinguish 
UC from other gastrointestinal pathologies.31 
Despite the best application of current technol-
ogy, approximately 5%–10% of patients with IBD 
are initially diagnosed with indeterminate colitis.

What do current studies show? The overarch-
ing goal of research in this area is to use AI tech-
niques to create an objective model for evaluation 
of clinical labs and radiographic data to improve 
accuracy and precision of UC diagnosis. Of the 
studies that employed AI for the analysis of labs 
and radiographic data, data modalities included 
electronic health records (n = 2 studies) and imag-
ing datasets (n = 1 study).

In a prospective cohort study of 702 medical 
records belonging to 372 IBD patients (180 UC, 
192 CD) conducted by Kraszewski et al., an RF 
algorithm was used to create an UC diagnostic 
prediction model based on routine blood, urine, 
and fecal tests compared to diagnosis based on 
CRP alone. While the RF ensemble achieved a 
mean average precision of 91% for UC, the com-
parison to CRP alone does not represent typical 
clinical practice; no comparison was made to phy-
sician diagnosis.21 In a separate cross-sectional 
study of 74 pediatric colonic IBD (56 UC and 18 
colonic-CD) patients, Dhaliwal et al. used an RF 
classifier that accurately distinguished UC from 
colonic-CD in 97% of patients in the training set, 

and 100% of the patients in the validation set of 
patients when given a combination of baseline clin-
ical, endoscopic, radiologic, and histologic data.22

Jiang et al. demonstrated diagnostic ability of a 
guided image filtering (GIF) algorithm in a cross-
sectional study of 60 patients with suspected IBD 
and 60 non-IBD patients undergoing radiologic 
examination via CT scan. The improved GIF 
algorithm accurately diagnosed 98.3% of UC 
cases. Despite the smaller sample size, the perfor-
mance characteristics are promising and show the 
capability of AI to enhance diagnostic accuracy 
when applied to CT images.8

What could AI add in the future? The three 
studies on the application of AI to the diagnosis 
of UC have significant limitations. One study did 
not compare their model to physician diagnosis; 
all studies focused on differentiating patients who 
clearly had either UC or CD from each other, 
which is not a problem a practicing gastroenter-
ologist typically faces. Rather, given the expand-
ing repertoire of IBD medications, some of which 
are specific to UC, applying AI to accurately clas-
sify UC or CD among patients initially diagnosed 
with indeterminate colitis would be more clini-
cally relevant.

AI-assisted discovery of novel biomarkers for 
diagnosis

What is already known? Leading biomarkers 
for UC include serum CRP and fecal calprotec-
tin.32,33 While both of these biomarkers indicate 
inflammatory states at a systemic and gastro-
intestinal level, respectively, elevated levels of 
these markers are not sufficient to diagnose UC 
without additional more invasive testing through 
endoscopic and histological evaluation.33 There is 
ongoing and increasing interest in the identifica-
tion of novel biomarkers that are specific and sen-
sitive enough to have strong clinical relevance to 
UC diagnosis. The lack of specific diagnostic sig-
natures for UC has been noted as a potential bar-
rier to early detection.34 Of the six studies which 
focused on using AI to assist in the discovery of 
novel biomarkers for UC diagnosis, data modali-
ties included genetic/genomics (n = 2 studies), 
transcriptomics (n = 3 studies), and proteomics 
(n = 1 study).

What do current studies show? In a cross- 
sectional study of blood samples from 20 UC 

https://journals.sagepub.com/home/tag
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and 20 healthy patients, Duttagupta et al. applied 
a SAM to identify 31 differentially expressed  
platelet-derived miRNAs from whole genome 
maps of circulating miRNAs from PBMC, 
micro-vesicles, and platelets. They then used 
SVM to evaluate biomarker performance using 
non-probabilistic binary linear classification, 
which revealed predictive scores with 92.8% 
accuracy and specificity and sensitivity of 96.2% 
and 89.5%, respectively. Candidate biomarkers 
independently validated by qPCR assays run on 
pooled patient and control samples and demon-
strated 88% success.25

Lu et al. created a logistic regression model based 
on five genes (REG3A, REG1A, DEFA6, REG1B, 
and DEFA5) determined to be strongly associ-
ated with UC occurrence based on analysis of a 
microarray of colonic biopsies from 106 UC and 
21 healthy patients. The logistic model demon-
strated strong performance at predicting UC 
with average AUC of 0.850, and AUC of 0.721 
when evaluated in an independent set of 137 
unseen samples.23 Khorasani et al. took a similar 
approach, using a SVM classifier to distinguish 
between healthy controls and patients with UC 
by gene expression, but the model had poor pre-
cision for identifying inactive UC.24 In a separate 
cross-sectional study involving microarray 
expression data of 193 UC and 42 healthy con-
trol patients, Wang et al. identified 64 upregu-
lated and 38 downregulated genes then used 
LASSO regression and SVM-RFE to identify 5 
diagnostic genes with strong ability to distinguish 
UC cases from normal samples. They found UC 
samples had significantly higher expression levels 
of DUOX2 and DMBT1 (AUC 0.985 and 0.896, 
respectively) and lower expression of CYP2B7P, 
PITX2, and DEFB1 (AUC 0.966, 0.968, and 
0.966, respectively) compared to samples from 
healthy patients. These genes were also found to 
be associated with infiltration of regulatory T 
cells, CD8 T cells, activated and resting memory 
CD4 T cells, activated natural killer cells, neu-
trophils, activated and resting mast cells, acti-
vated and resting dendritic cells, and M0, M1, 
and M2 macrophages.25 Using RF to identify 54 
feature genes from expression profiles of 55 UC 
and 35 healthy patients, Chen et al. constructed 
a LASSO regression model to screen for diagnos-
tic markers of UC. The model performed well in 
the training set but when validated in an external 

data set, model performance was not found to be 
clinically useful (AUC = 0.650).27

What could AI add in the future? Current stud-
ies have sought to identify novel biomarkers for 
the diagnosis of UC. Patients with UC typically 
do not experience significant diagnostic delay, 
and there is no meaningful clinical action a gas-
troenterologist could take even if a high-risk 
patient was identified prior to developing overt 
symptoms. Therefore, the current approach has 
limited clinical utility and is more likely to have 
an impact by aiding our understanding of disease 
pathogenesis.

Computer vision in index colonoscopy
What is already known? Endoscopic and his-

tological evaluation via index colonoscopy is the 
gold standard for confirming UC diagnosis, and 
it is frequently analyzed in collaboration with 
clinical symptoms, laboratory, and radiologi-
cal findings.35 However, endoscopic scoring is 
inherently subjective despite attempts to create 
consistent scoring systems, leading to observed 
high rates of inter- and intra-observer variabil-
ity and general lack of widespread use among 
endoscopists.10,35 AI techniques such as ML and 
computer vision are promising in the creation of 
an objective approach to analyzing endoscopic 
and histological data for early and accurate diag-
nosis of UC at index colonoscopy.10 The studies 
included in this section have different applica-
tions. Some studies focused on automated scor-
ing of disease severity and others focused on 
distinguishing UC and CD.

For included studies exploring computer vision 
and ML for evaluation of endoscopic data, data 
modalities included imaging and endoscopic 
datasets (n = 4 studies), combined endoscopic 
and histological datasets (n = 1 study), electronic 
health data (n = 1 study), metagenomics (n = 1 
study), and metabolomics (n = 1 study).

What do current studies show? Using a CNN 
to clean and extract abnormality features, Got-
tlieb et al. trained a recurrent neural network 
to predict UC severity in a prospective cohort 
study using 795 full-length endoscopy videos 
(19.5 million image frames) from 249 patients 
enrolled in a phase II trial of mirikizumab. 
The model’s predictions agreed strongly with 
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endoscopic scoring by centralized human read-
ers demonstrated by quadratic weighted kappa 
score of 0.844 (95% confidence interval (CI): 
0.787–0.901) for endoscopic Mayo score and 
0.855 (95% CI: 0.80–0.91) for the UC endo-
scopic index of severity (UCEIS). Notably, the 
performance metrics met or exceeded those 
previously published for endoscopic Mayo 
score and the UCEIS scores.9

In one cross-sectional study, Sutton et al. used 
DL CNNs to discriminate between UC and non-
UC pathologies with high accuracy when com-
pared against review by consensus labeled data 
from a single gastroenterologist and three medi-
cal trainees. The initial diagnostic classification 
model based on 2643 pathological endoscopy 
images was only able to make predictions of 
majority class with 72.02% accuracy, compared 
to the final diagnostic model for grading endo-
scopic severity of UC, which had prediction 
accuracy of 87.50%. The final model was based 
on 851 images from diagnostic colonoscopies 
with endoscopic Mayo scores of 0–3 and had 
stronger overall performance with AUC of 0.90.10 
In a separate cross-sectional study, Chierici et al. 
applied a prototype DL framework based on 
ResNet architectures merged by ensemble learn-
ing to 14,226 three-channel RGB (red, green, 
blue) endoscopic images of 11,404 IBD (4388 
UC, 5949 CD, and 1067 other IBD) and 2822 
healthy patients to identify disease patterns and 
distinguish endoscopic images of UC (Matthews 
Correlation Coefficient = 0.931) from healthy 
patients.11

In a cross-sectional study of endoscopic and his-
tological data from 287 pediatric patients (178 
CD, 80 UC, 29 IBD unclassified) at time of 
diagnosis, Mossotto et al. identified four new 
subgroups of disease based on colonic disease 
using unsupervised PCA and multidimensional 
scaling. They then applied supervised linear 
SVM with RFE fivefold cross-validation to con-
struct a model to discriminate UC from CD with 
82.7% accuracy (AUC 0.87) based on a combi-
nation of histological and endoscopic data when 

compared against physicians. While the model 
performed well overall, this still falls below the 
requirement needed for clinical application. 
Notably, this combined model outperformed 
models that relied on either endoscopic or histo-
logical data alone in terms of accuracy (71% and 
76.9%, respectively) and AUC (0.78 and 0.82, 
respectively). However, even the optimized 
model was able to identify Crohn’s disease more 
precisely versus UC.28

What could AI add in the future? The is con-
siderable inter- and intra-observer variabil-
ity in endoscopic scoring in UC, and rates of 
agreement with agreement for the endoscopic 
Mayo score and UCEIS reported to be as low 
as 0.58. Computer vision offers a promising 
avenue for recording disease severity, allow-
ing for standardized scoring between different 
providers and institutions. It may also serve as 
an alternative to centralized reading for IBD 
clinical trials, potentially allowing for signifi-
cant cost savings.

Predicting response to medical therapy
What is already known? Rational selection of 
therapy in UC is an area of great promise and 
interest. Investigators have applied ML tech-
niques to omics and clinical data in order to 
develop models that can accurately predict 
response to therapy a priori with varying degrees 
of success. Prediction of response to medical ther-
apy in UC has focused on prediction of response 
to anti-tumor necrosis factor (TNF) therapy 
(n = 7), though some studies exist for thiopurines 
(n = 1) and anti-integrin therapy (n = 3). Overall, 
these efforts have been limited by small datasets 
and study quality is variable. A key limitation of 
all the studies discussed is that they do not defini-
tively show that the models predict response to a 
specific drug; for example, a model predicting 
response to anti-integrin may not in fact identify 
features that specifically are associated with 
response to anti-integrin therapy, and rather as 
associated with response to any form of IBD ther-
apy. The studies are summarized in Table 2.
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Table 2. Predicting response to medical therapy.

Reference Study design Brief description Main findings

Waljee et al., 
201736

Retrospective Using a cohort of 1080 patients with IBD on thiopurines, 
an RF model was developed to predict remission. 
The model was compared to current gold standard, 
6-thioguanine nucleotide levels

AUROC of the RF model was 0.79 vs 0.49 for 6-TGN. 
Patients with predicted remission had fewer steroid 
prescriptions, hospitalizations, and surgeries

Mishra et al., 
202237

Prospective In an IBD cohort of 14 patients (10 with UC) on infliximab, 
samples were collected at up to 7 time points from 
baseline to 14 weeks after induction. RNA sequencing and 
DNA methylation data were analyzed to predict clinical 
remission by pMayo using an RF model

Downregulation of nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) and 
TNF pathways at week 2 were associated with 
remission but no baseline factors were. RF model 
using week 0 and 2 to predict had 85% accuracy.

Feng et al., 
202138

Prospective Gene expression data at baseline in patients with UC who 
were treated with infliximab (IFX) were used to predict 
14-week endoscopic remission. An RF model was applied 
to select differentially expressed genes, and an ANN was 
used to assign weights.

28 downregulated genes and 2 upregulated genes 
were identified. In the validation cohort, AUROC was 
0.81

Popa et al., 
202047

Retrospective In 50 patients with UC treated with anti-TNF therapy, 
authors aimed to predict 52-week endoscopic remission. 
Using ANOVA 4 variables were selected, and after 
application of SMOTE, a neural net was applied.

In the internal validation cohort, neural net had an 
AUC of 0.92 for prediction of 52-week endoscopic 
remission

Obraztsov 
et al., 201839

Prospective 49 patients with UC-prescribed IFX were followed 
prospectively. Most patients were male and had 
pancolitis. Using baseline measurements of 17 serum 
cytokines, the authors predicted clinical remission at 
12 weeks using LDA.

Baseline levels of TNF-α, IL-12, IL-8, IL-2, IL-5, 
IL1-β, and IFN-γ predict 12-week clinical remission. 
Confusion matrix shows a sensitivity of 84.2% and 
specificity of 93.3%

Chen et al., 
202140

Retrospective Three GEO datasets were mined for discovery. 44 patients 
with UC-prescribed IFX 5 mg/kg were included in the 
study. Endoscopic remission between weeks 6 and 8 was 
predicted by pre-IFX gene expression. An independent 
cohort was used for validation

The ANN showed that CDX2, CHP2, HSD11B2, 
RANK, NOX4, and VDR levels predicted endoscopic 
remission. AUROC declines from 0.850 and 
degrades to 0.759 in the validation cohort

Miyoshi et al., 
202141

Retrospective The discovery cohort consisted of 34 patients with UC-
prescribed vedolizumab (VDZ), and the validation cohort 
had 35. Using baseline clinical features steroid-free, the 
authors predicted 22-week remission by Lichtiger index. 
An RF model was used for feature selection, and missing 
values were imputed. LR was applied

RF selected pMayo score, mean corpuscular 
hemoglobin (MCH), body mass index (BMI), blood 
urea nitrogen (BUN), concomitant azathioprine 
(AZA) (+/−), lymphocyte count, height, CRP, total 
cholesterol, and neutrophil count. There was 100% 
accuracy in cohort 1 suggesting overfitting, and 
68.6% in cohort 2. However, the negative predictive 
value (NPV) of 92.3% suggested it may be able to 
rule out non-response.

Chen et al., 
202140

Prospective Data from VARSITY (n = 160) and VISIBLE 1 (n = 383) were 
mined. 429 patients on VDZ were included. 52-week 
steroid-free clinical remission was the outcome of 
interest. Baseline clinical features were used in elastic 
net regression and RF with and without SMOTE.

Pop: Varsity (160) + Visible 1 (383), 543 
patients → 429 without missing baseline information
Definition of Outcome:
The model showed that baseline steroid use, serum 
albumin, endoscopic Mayo score, prior anti-TNF 
use, immunomodulator (IM) use, and complete 
Mayo score had predictive value. Complete Mayo 
and endoscopic Mayo are not independent variables. 
AUC was only 0.614 in the training dataset, and 0.811 
in the test, raising concerns about possible data leak

Waljee et al., 
201842

Prospective Data from a phase III clinical trial for vedolizumab was 
mined. Using baseline and week 6 data from 491 patients 
on VDZ, the authors predicted 52-week corticosteroid-
free endoscopic remission using an RF model. Delta 
calprotectin and VDZ levels at week 6 were calculated

Using baseline data, AUROC was 0.62 baseline. With 
incorporation of week 6 data, AUROC modestly rose 
to 0.73.

ANN, artificial neural networks; AUC, area under the curve; CRP, C-reactive protein; GEO, gene expression omnibus; IBD, inflammatory bowel 
disease; LDA, linear discriminant analysis; LR, linear regression; partial Mayo, pMayo; RF, random forest; SVM, support vector machines; TGN, 
thioguaninenucleotides; UC, ulcerative colitis.
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What do current studies show?
Thiopurines. Thiopurines  are  antimetabo-

lite drugs that function as immunomodulators. 
6-Mercaptopurine and its prodrug azathioprine, 
are enzymatically metabolized to 6-thioguanine-
nucleotides (6-TGN) which reduces gut inflam-
mation. Thiopurines have a narrow therapeutic 
window, and traditionally therapeutic drug moni-
toring (TDM) has been utilized.43 However, two 
small, albeit underpowered, randomized con-
trolled trials failed to show a clinical difference 
between TDM-guided and weight-based dosing 
regimens.44,45 Up to half of patients on thiopu-
rines discontinue treatment within 2 years of ini-
tiation due to either adverse event or failure of 
therapy.43 To address these shortcomings a ML 
algorithm that could predict clinical remission 
was developed. A RF model was trained using 
approximately 1000 patients, and the authors 
showed that the model was superior to 6-TGN 
in predicting remission (AUROC 0.79 vs 0.49); 
patients with algorithm-predicted remission had 
lower rates of steroid prescription, hospitalization, 
and surgery.36

Anti-tumor necrosis alpha therapy. Most 
studies that applied ML techniques to UC have 
focused on omics data (n = 5), rather than clinical 
data. These studies are promising and provide key 
insights into the underlying mechanisms of dis-
ease but are far from being clinically applicable. 
Only two studies utilized clinical data that is read-
ily available to the practicing clinician. The stud-
ies are summarized in Table 2.

In a study by Mishra et al., the authors aimed to 
predict clinical remission by partial Mayo scores 
at week 14 using whole blood samples to obtain 
RNA sequencing and DNA methylation data. 
Data was obtained from a discovery cohort of 14 
patients; all but 1 patient was prescribed inflixi-
mab. They applied an RF model using data 
obtained at baseline and 2 weeks after induction. 
Downregulation of NF-κB and TLF signaling at 
week 2 predicted response to therapy (accuracy 
85%), but no baseline findings accurately pre-
dicted response.37 Feng et al. used colonic 
mucosal gene expression, from gene expression 
omnibus (GEO) datasets, at baseline to predict 
endoscopic remission at week 14. They utilized 
RF for feature selection and then applied an ANN 
to assign weights to the DEGs. They tested in a 
separate cohort with an AUC of 0.81. The data-
sets were small and may have contributed to large 

uncertainty in the test set.38 Obraztsov et al. eval-
uated 49 patients with UC treated with IFX; most 
patients were male and had pancolitis. They used 
a pre-specified 17 cytokine panel to predict clini-
cal remission at 12 weeks by using baseline data. 
Applying LDA, they showed that TNF-α, IL-12, 
IL-8, IL-2, IL-5, IL1-β, and IFN-γ levels pre-
dicted remission. The confusion matrix showed a 
sensitivity of 84.2% and a specificity of 93.3%.39 
Finally, Chen et al. mined three GEO datasets for 
discovery, utilizing only patients receiving 5 mg/
kg of infliximab. Baseline mucosal gene expres-
sion prior to IFX infusion was used to predict 
8-week endoscopic remission. Given the small 
datasets, synthetic bootstrapping was used and 
then an ANN was applied. A model incorporating 
CDX2, CHP2, HSD11B2, RANK, NOX4, and 
VDR levels was shown to have an AUC of 0.850, 
but AUC declined to 0.759 in an independent 
cohort.40

Two studies aimed to predict response to anti-
TNF therapy with clinical variables. Xiojun et al. 
used a heterogeneous group of 420 patients with 
UC on a variety of therapies including aminosal-
icylates, thiopurines, and biologics. They used 
demographics, laboratory measurements, and 
medicines to predict endoscopic remission, but 
the time points for the input data were not clearly 
defined. They used inferential analysis for feature 
selection, and then applied multiple models 
including LR, RF, and SVM to the data; to 
address under-sampling of patients in remission 
and those with mild disease SMOTE was uti-
lized. The final model had an AUC of 0.80.46 A 
second study using clinical data by Popa et al. 
used baseline data from a cohort of 50 patients 
with UC to predict endoscopic remission at 
52 weeks. Feature selection was done with 
ANOVA and the final model incorporated four 
variables: neutrophil count, platelet distribution 
width, CRP, and alpha-1-globulins. SMOTE 
and cross-validation were performed to reduce 
overfitting and imbalance data with a small data-
set as much as possible. The model had an AUC 
of 0.92 in a validation dataset of five patients 
from the same center.47

Overall, there are multiple promising models for 
assessing response to anti-TNF therapy, but 
overall any clinical application is currently limited 
either by use of data that is not widely available or 
derivation from small samples that have unclear 
external validity.
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Anti-integrin therapy. Studies predicting res-
ponse to anti-integrin therapy are less numerous 
than those predicting response to anti-TNF ther-
apy. A study by Miyoshi et al. utilized baseline 
demographic, IBD, laboratory, and prescription 
data to predict 22-week remission by Lichtiger 
index. Data was trained on 34 patients at a single 
hospital and tested on 35 patients at a different 
institution. Missing data was imputed, carrying a 
risk of bias given the small sample size and retro-
spective data. RF was used for feature selection, 
and ultimately eight features were included in 
the LR model (MCH, BMI, BUN, Concomitant 
AZA use, lymphocyte count, height, CRP, total 
cholesterol, and neutrophil count). The model 
only had 68.6% accuracy in the validation cohort 
suggesting overfitting but had an NPV of 92.3%. 
It may be valuable to rule out non-response.41 
Chen et al. combined data from VARSITY and 
VISIBLE 1, resulting in a dataset of 429 patients. 
Fifty-two-week steroid-free remission by Mayo 
score was the outcome of interest, and baseline 
clinical features were used as the predictors. Elas-
tic net regression was compared with RF, with 
and without SMOTE on a 75:25 split dataset. 
Baseline steroid use, albumin, endoscopic Mayo 
score, prior anti-TNF use, IM use, and com-
plete Mayo score were included; notably com-
plete Mayo is not an independent predictor from 
endoscopic Mayo. AUC was 0.614 in the training 
set, and 0.811 in the test set raising the possibility 

of data leak given the unexpected increase in per-
formance.48 Finally, Waljee et al. used baseline 
and week 6 clinical data from a phase III clinical 
trial to predict 52-week corticosteroid-free endo-
scopic remission. An RF model was used with a 
70:30 split of data. AUC using only baseline data 
was 0.62, and AUC with addition of week 6 data 
was 0.73.42 Overall, no model had adequate pre-
dictive characteristics to inform clinical decision 
making at this time.

What could AI add in the future? Rational selec-
tion of IBD therapy is both an area of research 
interest and significant clinical need. Current 
models suffer from significant limitations as 
noted above. AI, likely in conjunction with fun-
damental advances in basic science, has the 
potential to bring the era of precision medicine to 
patients with IBD by providing true class-specific 
predictions on the likelihood of response to 
medications.

Monitoring disease activity in patients with estab-
lished UC. Endoscopy, histologic assessment, and 
laboratory testing play important roles in the sur-
veillance of UC. There have been numerous AI 
and ML applications aimed toward evaluating 
endoscopic lesions, predicting histological indices 
to grade severity of UC activity, and identifying 
biomarkers of active disease. These studies are 
summarized in Table 3.

Table 3. Monitoring disease activity in patients with established ulcerative colitis.

Author Study design Brief description Main findings

Ozawa et al., 
201949

Retrospective CNN-based CAD trained using 26,304 colonoscopy 
images from 841 UC patients, then tested on 
predicting MES in independent set of 3981 images 
from 114 patients

Accurately differentiated between Mayo 0 (AUC 0.86) 
and Mayo 0–1 (AUC 0.98) states compared with more 
inflamed disease states

Stidham 
et al., 201950

Retrospective CNN was trained and tested on 16,514 images from 
3082 patients with UC to categorize patients into 
an endoscopic remission group (Mayo 0 or 1) vs a 
moderate-to-severe disease group (Mayo 2 or 3)

Distinguished endoscopic remission state from 
moderate-to-severe disease state with high accuracy 
(AUC 0.966)

Yao et al., 
202151

Retrospective CNN model was trained using 51 high-resolution 
UC endoscopic videos and tested on 264 endoscopic 
videos from multicenter clinical trials to predict 
whole-video MES

Automated MES scoring predicted MES correctly in 
78% of high-resolution endoscopic videos; in external 
clinical trial videos, automated and central reviewer 
scoring agreement occurred in 57.1% of videos, which 
improved to 69.5% when accounting for inter-reviewer 
disagreement

Gottlieb et al., 
20219

Retrospective Using 795 full-length endoscopic videos from 
a transnational multicenter phase II trial of 
mirikizumab, a recurrent neural network (NN) model 
was trained to predict MES and UCEIS in individual 
full-length videos

Quadratic weighted kappa metric to assess agreement 
between automated and central reviewer scoring was 
0.844 for MES and 0.855 for UCEIS

(Continued)
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Author Study design Brief description Main findings

Gutierrez 
Becker et al., 
202152

Retrospective Developed deep learning-based system using 1672 
endoscopic videos from a multicenter clinical trial to 
predict binary ratings of the MES

The automated system was able to grade endoscopic 
videos with accuracy and robustness (MES ⩾1, AUC 
0.84; MES ⩾2, AUC 0.85; MES ⩾3, AUC 0.85)

Fan et al., 
202353

Retrospective Trained CNN using 5875 endoscopic images and 20 
full-length videos from 332 patients with UC who 
underwent colonoscopy between 2017 and 2021, 
which was then used for full-length video scoring and 
to generate a visualization of full-length intestinal 
inflammatory activity

CNN model achieved 86.54% accuracy in the 
MES-related task, had a kappa coefficient of 0.813 
compared with endoscopist scoring, and was able 
to display the distribution of intestinal inflammation 
using a 2-dimensional visualization

Maeda et al., 
202254

Prospective 145 UC patients in clinical remission underwent 
AI-assisted colonoscopy that classified patients into 
active vs healing groups to assess the role of AI in 
stratifying patients by risk for clinical relapse of UC

Clinical UC relapse rate was found to be significantly 
higher in the AI-active group vs the AI-healing group 
(28.4% vs 4.9%, p < 0.001)

Takenaka 
et al., 202055

Prospective Constructed a deep neural network using 40,578 
colonoscopy images and 6885 biopsy results from 2012 
UC patients who underwent colonoscopy from 2014 to 
2018 at a single center in Japan. The algorithm was 
evaluated in an independent cohort of 875 patients 
with UC who underwent colonoscopy in 2018–2019, 
predicting endoscopic and histologic remission in 4187 
endoscopic images and 4104 biopsy specimens.

In the validation cohort, the ML algorithm was able to 
predict endoscopic remission with 90.1% accuracy and 
a kappa coefficient of 0.798 and was able to predict 
histologic remission with 92.9% accuracy and a kappa 
coefficient of 0.859.

Takenaka 
et al., 202055

Prospective The algorithm developed in Takenaka et al., 2020 
(above) was applied to a prospective cohort of 
875 patients to predict mucosal healing based on 
endoscopic and histologic remission. Mucosal healing 
was then correlated with clinical endpoints of worse 
prognosis, including hospitalization, colectomy, 
steroid use, and clinical relapse.

Mucosal healing as predicted by the ML algorithm 
was associated with significantly lower risk of 
hospitalization, colectomy, steroid use, and clinical 
relapse (p < 0.001). Compared to expert review, the ML 
algorithm had a high sensitivity (92.0%) and specificity 
(91.3%) for evaluating mucosal healing.

Maeda et al., 
201956

Retrospective Developed a CAD system to predict histologic 
inflammation using endocytoscopy using a training 
data set from 187 UC patients who underwent 
endocytoscopy with corresponding biopsies. 
Diagnostic ability of the CAD to predict histologic 
inflammation was then tested in a validation dataset of 
100 patients.

Performance of the CAD system yielded diagnostic 
sensitivity of 74%, specificity of 97%, and accuracy of 
91%.

Bossuyt et al., 
202057

Prospective Constructed computer algorithm based on RD to 
predict measures of endoscopic and histologic 
inflammation. Compared results to blinded central 
readers.

In the construction cohort, RD correlated with rhi 
(r = 0.74, p < 0.0001), Mayo endoscopic sub-scores 
(r = 0.76, p < 0.0001), and endoscopic index of severity 
scores (r = 0.74, p < 0.0001). The RD sensitivity to 
change had a standardized effect size of 1.16. In 
the validation set, RD correlated with rhi (r = 0.65, 
p = 0.00002). Validation cohort included

Iacucci et al., 
202358

Retrospective Using 1090 WLE and VCE endoscopic videos from 283 
patients, a CNN was trained to distinguish endoscopic 
remission vs activity, predict histologic remission vs 
activity, and predict risk of flare. CNN performance 
was compared to expert scoring.

In WLE videos, the CNN detected endoscopic remission 
with 72% sensitivity, 87% specificity, and AUC of 0.85. 
In VCE videos, the CNN detected endoscopic remission 
with 79% sensitivity, 95% specificity, and AUC of 0.94. 
Histologic remission was predicted with 80%–85% 
accuracy in WLE and VCE videos.

Vande et al., 
202259

Retrospective Developed a deep learning algorithm to identify 
eosinophils in colonic biopsies, which was then 
applied to sigmoid colon biopsies from a cohort of 
88 UC patients with histologically active disease. 
Analyzed associations between eosinophil density, 
histologic activity, and clinical features.

The eosinophil deep learning algorithm demonstrated 
a high degree of agreement with manual eosinophil 
counts determined by expert pathologists (correlation 
coefficients 0.805–0.917). Eosinophil density was 
not significantly correlated with histologic activity 
as measured by Robarts Histopathology Index but 
was associated with disease extent (as measured by 
Montreal classification) and corticosteroid use.

(Continued)

Table 3. (Continued)
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Author Study design Brief description Main findings

Gui et al., 
202260

Prospective Using a dataset of 614 biopsies from 307 patients with 
UC, developed the PHRI. Constructed a CAD using 
CNN algorithm to detect neutrophils, calculate PHRI, 
and identify active from quiescent disease.

CAD system incorporating PHRI was able to 
differentiate active from quiescent UC with 78% 
sensitivity, 91.7% specificity, and 86% accuracy.

Peyrin-
Biroulet et al., 
202261

Retrospective A novel AI system was developed using image 
processing and ML algorithms to characterize 
histological images and measure Nancy index. Results 
were compared with manual annotation and Nancy 
index scoring by 3 independent histopathologists.

The AI system scoring was found to be highly 
correlated with histopathologists with an average ICC 
of 87.20. The average ICC among the histopathologists 
was 89.33.

Morilla et al., 
201962

Retrospective Performed microarray analysis of mRNA expression 
profiles on 47 patients with ASUC before and within 
3 days of treatment with steroids, cyclosporine, or 
infliximab. Deep neural network-based classifier 
was used to propose biomarkers for discriminating 
responders from non-responders for each treatment, 
and classification was tested on an independent 
cohort of 29 patients.

The deep neural network-based classifier identified 
9 miRNA and 5 clinical factors, and the classification 
algorithm was able to discriminate responders from 
non-responders accurately (steroid-treated cohort, 
93% accuracy, AUC 0.91; cyclosporine-treated cohort, 
80% accuracy, AUC 0.79; infliximab treated cohort, 
84% accuracy, AUC 0.82)

He et al., 
202263

Retrospective 
with prospective 
animal model

Performed feature selection of differentially 
expressed mRNAs on 2 microarray data sets (19 
normal samples, 31 UC samples) as well as immune 
infiltrate and gene set enrichment analysis. Further 
validated candidate biomarker mRNA expression 
levels in UC cell cultures and mouse models.

Identified 8 candidate mRNA biomarkers, 3 of 
which were then validated in a separate dataset and 
correlated with immune infiltrate analysis and gene 
set variation analysis; these biomarkers’ expression 
levels in UC were then validated in cell culture models 
via qrtPCR as well as in UC mouse models colon 
tissue expression levels

Biasci et al., 
201964

Prospective Patients with active IBD underwent transcriptomic 
analyses on CD8 T cells and/or whole blood prior 
to treatment. ML was used to identify differentially 
expressed genes to stratify patients into higher and 
lower risk groups. The classifier was tested in an 
independent patient cohort and correlated with clinical 
phenotypes, such as earlier need for treatment 
escalation and number of escalations over time.

Developed a blood-based, 17-gene quantitative PCR 
(qPCR) classifier that stratified IBD patients into 
low-risk group and high-risk group who experienced 
significantly more aggressive disease (earlier need for 
treatment escalation, UC patients HR = 3.12; multiple 
escalations within 18 months, UC patients sensitivity 
100% and NPV 100%)

Lai et al., 
202165

Retrospective Analyzed UC datasets from GEO database (2 gene 
expression datasets, 1 microRNA dataset), performed 
differential expression analysis, and applied weighted 
co-expression network analysis of UC-related genes 
to characterize 4 UC subtypes, which were correlated 
with clinical features, such as Mayo scores, and 
baseline calprotectin levels.

Through differential gene expression analysis and 
network analysis, proposed 4 subtypes and 6 genes as 
biomarkers for UC classification

Li et al., 
202366

Retrospective In a cohort of 65 UC patients, used ML techniques 
to identify Vitamin D, albumin, prealbumin, and 
fibrinogen levels as blood-based biomarkers to 
predict moderate-to-severe endoscopic activity of UC.

Constructed a dynamic nomogram prediction model 
using blood levels of Vitamin D, albumin, prealbumin, 
and fibrinogen to predict moderate-to-severe 
endoscopic activity of UC with a concordance index of 
0.860 using UCEIS scoring and a concordance index of 
0.891 with MES scoring.

Gazouli et al., 
201967

Retrospective In a cohort of 573 Greek IBD patients (209 UC) and 
445 controls, whole genome association analysis 
was performed to detect disease-associated single 
nucleotide polymorphisms (SNPs), which were then 
used for pathway analysis to identify proteins with high 
significance and potential biomarkers of disease.

Analyses revealed several novel and well-known 
pathways associated with IBD, and IBD sub-
phenotypes were found to have distinct genetic and 
functional profiles that may be used for classification 
of disease

Bakir-Gungor 
et al., 202268

Retrospective Developed a classification model to aid IBD 
diagnosis and discover IBD-associated biomarkers 
using metagenomics data from microbiome DNA 
sequencing data of 148 IBD patients and 234 control 
samples.

Tested multiple different types of classifiers and 
found that a random forest classifier using 10 
selected taxonomic biomarkers resulted in the best 
performance measures for classification of IBD 
(validation cohort accuracy 86%, AUC 0.9)

(Continued)

Table 3. (Continued)
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AI applications in endoscopic monitoring
What is already known? Endoscopy is a cor-

nerstone of assessing UC disease activity, and 
several endoscopic scores have been developed 
to define disease activity. The most commonly 
used and extensively validated endoscopic scores 
include the Mayo endoscopic score (MES), the 
UCEIS, and the UC colonoscopic index of sever-
ity.72 However, these endoscopic scores are lim-
ited by their qualitative nature, subjectivity, and 
corresponding interobserver variability. Further, 
these scores typically report the maximum sever-
ity observed and fail to capture the heterogene-
ity of disease and total disease burden. Thus, AI 
applications in UC endoscopy have focused on 
identifying signs of inflammation on endoscopy as 
well as standardizing the interpretability of endo-
scopic findings in UC disease surveillance.

What do current studies show? An initial study 
by Ozawa et al. constructed a computer-assisted 
diagnosis (CAD) system using a CNN that accu-
rately identified endoscopic disease remission 
from still images.49 A subsequent study by Stid-
ham et al.50 employed a CNN constructed as a 
DL model to differentiate endoscopic remission 
(MES 0 or 1) from moderate-to-severe disease 
(MES 2 or 3) from still images (AUC 0.966). 
Both studies are significantly limited due to their 
applications to still images, which does not repre-
sent typical clinical practice in which decisions are 
made based off of the entire colonoscopy. How-
ever, neural networks have since been applied 
to analysis of full-length endoscopic video data 
and have been demonstrated to reliably predict 

endoscopic disease severity with reasonably high 
rates of agreement with expert reviewers.9,51–53 In 
one prospective study, AI-assisted colonoscopy 
was able to stratify patients with UC in clinical 
remission into higher and lower risk groups for 
clinical relapse of UC, evidencing the prognostic 
potential of AI-assisted endoscopy to predict clin-
ical outcomes and accordingly influence disease 
management.54 A recent publication by Stidham 
et al. showed that computer vision could be used 
to calculate a cumulative disease score (CDS) by 
assigning MES to all frames of adequate quality 
for a given colonoscopy that were mapped to an 
estimated location; CDS was defined as the sum 
of MES-squared values. The authors showed that 
CDS was more sensitive than MES for detecting 
change; CDS required 50% fewer participants to 
demonstrate a difference in the endoscopic out-
come, a finding with clear cost implications for 
clinical trials.69

What could AI add in the future? Computer 
vision may augment the capabilities of general 
gastroenterologists, allowing them to perform at 
a similar level as IBD specialists. Future studies 
will be needed to evaluate if AI assessment will 
obviate the need for virtual or dye-based chro-
moendoscopy. Use of tools such as the CDS may 
be able to increase power and decrease cost for 
clinical trials in IBD.

AI applications in histology assessment
What is already known? In addition to assess-

ing endoscopic outcomes in UC, AI has also been 
applied to histological evaluation. Histological 

Author Study design Brief description Main findings

Stidham 
et al., 202369

Retrospective Developed an MES classifier layered with a motion-
detection algorithm to calculate CDS among patients 
in the UNIFI clinical trial

The authors show that CDS is correlated with the MES, 
but required 50% less patients than MES to detect 
a statistically significant difference in endoscopic 
outcome

Najdawi et al., 
202370

Retrospective Developed a CNN to quantitatively measure histologic 
features in stained whole image slides. Current 
methods are only semi-quantitative

There was high correlation with Nancy histologic index 
as determined by a pathologist (r = 0.89), and it was 
highly accurate in predicting remission (97%)

Iacucci et al., 
202371

Retrospective A CNN was compared again to multiple histologic 
scoring indices. The model was also used to predict 
endoscopic activity at 12 months.

The CNN was able to distinguish between disease 
activity and remission with accuracies between 80% 
and 90%.

AI, artificial intelligence; ASUC, acute severe ulcerative colitis; AUC, area under the curve; CAD, computer-assisted diagnosis; CDS, cumulative 
disease score; CNN, convolutional neural networks; GEO, gene expression omnibus; IBD, inflammatory bowel disease; ICC, intraclass correlation 
coefficient; MES, Mayo endoscopic score; ML, machine learning; PHRI, PICaSSO Histologic Remission Index; RD, red density; UC, ulcerative colitis; 
UCEIS, UC endoscopic index of severity; VCE, virtual chromoendoscopy; WLE, white-light endoscopy.

Table 3. (Continued)
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signs of inflammation, even in the absence of 
endoscopic inflammation, have been associated 
with adverse clinical outcomes in UC, making 
histologic remission an important adjunct goal of 
UC treatment.73–75 To this end, there have been 
widespread efforts to apply AI and ML techniques 
to predict histologic activity in patients with UC.

What do current studies show? In an initial 
study, Takenaka et al.55 constructed a deep neu-
ral network using colonoscopy images and biopsy 
results from a cohort of patients with UC, which 
was then able to predict endoscopic remission 
with 90.1% accuracy as well as histologic remis-
sion with 92.9% accuracy in the validation cohort. 
In a follow-up study using a prospective cohort 
of 875 patients, mucosal healing predicted by the 
deep neural network algorithm based on endo-
scopic and histologic remission was shown to be 
correlated with significantly lower risk of hospi-
talization, colectomy, steroid use, and clinical 
relapse.76 In another study, Maeda et al.56 devel-
oped a CAD system to predict histologic inflam-
mation using endocytoscopy with a sensitivity of 
74%, specificity of 97%, and accuracy of 91% 
when compared to pathologist interpretation of 
corresponding biopsies. Najdawi et al. developed 
a CNN which was compared against the Nancy 
index. The CNN showed strong correlation with 
pathologist-determined Nancy index (r = 0.89) 
and was highly accurate at determining histologic 
remission (accuracy 97%). Notably, the CNN 
was only designed to assess disease activity and 
was unable to identify other clinically important 
features including signs of infection or dyspla-
sia.70 Iacucci et al. also developed a CNN which 
was compared against Nancy index, PICaSSO 
Histologic Remission Index, and Robarts. The 
CNN when compared against these three indi-
ces had sensitivities ranging from 89% to 94% 
and specificities ranging from 76% to 85%. This 
algorithm was also unable to identify other clini-
cally important features including infection and 
dysplasia.71

Other studies have incorporated additional 
endoscopy features, such as red density lighting 
and virtual chromoendoscopy into ML algo-
rithms to predict measures of endoscopic and 
histologic inflammation.57,58 Models to assess 
histologic inflammation have also been devel-
oped from direct analysis of biopsies themselves, 
using image processing techniques to detect 
eosinophils, neutrophils, and other histologic 

features.59–61 These models have consistently 
demonstrated a high degree of agreement with 
scoring by independent experts.

What could AI add in the future? There are a 
variety of scoring systems for pathology in IBD, 
but these scoring methods are not standard-
ized across institutions and there are issues with 
interobserver variability which may be addressed 
with AI. Further, with continued improvement, 
these tools may expand access to specialist care 
by enabling general pathologists to evaluate IBD 
specimens at a similar level to GI pathologists at 
referral centers.

AI applications in novel biomarker discovery
What is already known? ML techniques have 

also been applied toward multi-omics data sets 
including genetic, transcriptional, and microbi-
ome data to identify novel biomarkers of UC dis-
ease activity. Most of these datasets have a very 
high number of predictors (omics output) derived 
from a small cohort of patients; this problem, 
called “big-p, little-n,” causes significant issues for 
prediction, and require specialized data prepara-
tion and proper algorithms to properly handle in 
the input.

What do the current studies show? In a study 
by Morilla et al.,62 microarray data was utilized to 
build a deep neural network-based classifier con-
sisting of nine miRNAs and five clinical factors 
that accurately discriminated patients with acute 
severe UC as responders versus non-responders 
to steroids (accuracy 93%, AUC = 0.91), inflixi-
mab (accuracy 84%, AUC = 0.82), and cyclo-
sporine (accuracy 80%, AUC = 0.79). In another 
study by He et al.,63 ML algorithms were used to 
identify differentially expressed mRNAs to serve 
as diagnostic biomarkers for UC, which were then 
further validated in cell lines and mouse models 
of colitis. Whole blood transcriptomic data has 
been used to develop a qPCR-based classifier that 
stratified patients into high and low-risk groups 
associated with earlier need for treatment escala-
tion (hazard ratio 3.12) and more escalations over 
time in UC patients.64 Notably, endoscopic sever-
ity at baseline did not predict need for treatment 
escalation in this cohort, highlighting the ability 
of ML algorithms to impact treatment decisions 
in ways that would be undetectable by conven-
tional methods of disease surveillance. Transcrip-
tomic data has also been leveraged to characterize 
different subtypes of UC patients, which were 
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associated with various relevant clinical features 
including Mayo scores, calprotectin levels, and 
histological severity scores.65 Other studies have 
used ML techniques to investigate blood-based, 
genome-wide association studies, and microbiome 
biomarkers related to UC diagnosis, phenotypes, 
and disease severity.66–68 Overall, the application 
of ML techniques to biomarker discovery in UC 
has revealed promising biomarkers related to 
diagnosis, disease subtyping, and prognostication. 
Further testing is required to determine the clini-
cal translatability of these biomarkers.

What could AI add in the future? Even though 
calprotectin is a reliable biomarker, between 5% 
and 10% of patients have discordant results when 
compared with colonoscopy. Application of AI 

for the identification of biomarkers for more reli-
able non-invasive clinical monitoring would be 
extremely clinically valuable. Further, while any 
individual biomarker is unlikely to rival the diag-
nostic accuracy of colonoscopy, an AI tool that 
can combine multiple biomarkers may be able to 
provide similar accuracy.

Predicting complications of UC. The literature 
regarding applications of AI to complications of 
UC is limited. There were four broad areas that 
the literature focused on: predicting the need for 
colectomy (n = 2), predicting postoperative com-
plications (n = 2), predicting colorectal cancer 
(CRC) (n = 2), and prediction of COVID-19 out-
comes (n = 1). These studies are summarized in 
Table 4.

Table 4. Predicting complications of ulcerative colitis.

Author Study design Brief description Main findings

Noguchi 
et al., 202277

Retrospective 46 H&E stained slides and corresponding p53 stained 
slides were prepared from samples of 12 patients 
with colitis-associated neoplasia who underwent total 
colectomy. All glands were annotated and grouped into 
3 classes: p53 positive, p53 negative, and p53 null. Ten 
patients were used for training a CNN, 1 patient for 
validation, and 1 patient for final testing.

The trained CNN was able to predict p53 
immunohistochemical staining with accuracy of 
0.86–0.91 with the limitations of single-person 
validation and testing cohort.

Yu et al., 
202278

Retrospective 129 patients treated with IVCS for acute severe ulcerative 
colitis; 102 (79.1%) responded, and 27 failed (20.9%). 
Classification models, including logistic regression, 
decision tree, random forest, and extreme-gradient 
boosting models were used to analyze prediction rates of 
IVCS resistance.

The LR model had the best classification 
performance of 0.873, falling to 0.703 in the 
validation cohort

Takayama 
et al., 201579

Retrospective Used artificial neural network (ANN) as a prediction 
model for the need for surgery post-cytapheresis (CAP) 
therapy. The sample population consisted of 90 UC 
patients who had undergone CAP therapy.

ANN showed high predictive accuracy, with a 
sensitivity of 0.96 and a specificity of 0.97. However, 
the nature of prior operations used as a predictor 
in the model is unclear (prior colorectal surgery vs 
any surgery) and may strongly impact the validity of 
the model.

Sofo et al., 
202080

Retrospective Clinical data from 32 UC patients who had undergone 
total abdominal colectomy were used for the ML 
algorithm.

The algorithm predicted minor infectious 
complications with high strike rate (84.3%) but was 
unable to predict any serious complications

Mizuno 
et al., 202281

Retrospective In 43 patients with UC who underwent IPAA, the ability 
of pre-ileostomy closure mPDAI and a CNN to predict 
pouchitis was compared

CNN produced 20% greater pouchitis prediction 
rate than mPDAI (62% vs 84%)

Roy et al., 
202182

Prospective Data from SECURE-IBD with 20,000 IBD patients was 
inputted into various supervised machine learning 
algorithms to generate clinical COVID-19 outcomes 
(outpatient management, hospitalized and recovered, and 
hospitalized and deceased)

A variety of supervised machine learnings 
were evaluated, and all had poor classification 
performance

ANN, artificial neural networks; CAP, colectomy after cytapheresis; CNN, convolutional neural networks; H&E, hematoxylin and eosin; IPAA, ileal 
pouch–anal anastomosis; IVCS, IV corticosteroid; LR, linear regression; ML, machine learning; mPDAI, modified pouchitis disease activity index;  
UC, ulcerative colitis.
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Predicting the need for colectomy
What is already known? Colectomy is used to 

treat medically refractory acute severe UC. We 
know that approximately 10%–15% of patients 
with UC will undergo colectomy during their 
lifetime. While traditional epidemiologic methods 
have found risk factors associated with colectomy, 
these models are unable to predict risk for a given 
patient.

What do current studies show? Two studies 
aimed to construct and validate models that could 
predict post-treatment complications that require 
follow-up treatment. In one study by Yu et al., tra-
ditional LR models and ML models were com-
pared as predictive models for IV corticosteroid 
(IVCS) resistance in patients with acute severe 
ulcerative colitis (ASUC). UCEIS and CRP level 
at day 3 of IVCS therapy were independent pre-
dictors of IVCS response. No ML method was 
able to outperform traditional LR (AUC of 0.703 
in the validation cohort). The study was limited 
by small sample size from a single patient popula-
tion and the relatively poor classification perfor-
mance of the algorithms.78 In a second study by 
Takayama et al., an ANN was utilized to predict 
the need for colectomy after cytapheresis (CAP) 
therapy based on 13 input factors using a training 
data set (n = 54) and validation data set (n = 36). 
The prediction model identified four key factors: 
history of prior admissions, prior operations, use 
of immunomodulators, and response to CAP 
therapy. The model had a sensitivity of 0.96 and 
specificity of 0.97. The nature of prior opera-
tions used as a predictor in the model are unclear 
(prior colorectal surgery vs any surgery) and may 
strongly impact the validity of the model.79

What could AI add in the future? Predicting 
which patients with ASUC will require colec-
tomy is an area of clinical need. Patients who fail 
IVCSs are often given rescue therapy, typically 
infliximab or cyclosporine. By identifying patients 
who are not likely to respond to medical therapy, 
algorithms may help clinicians avoid unnecessary 
immunosuppression prior to surgery. A significant 
barrier to AI for this application is the relative rar-
ity of ASUC, and the lack of large databases for 
training models for this end use.

Prediction of postoperative complications
What is already known? Patients with acute 

severe UC or treatment-refractory UC often 
undergo surgery. These patients have a high risk 

of post-surgical complications, and there is a 
clear clinical benefit of being able to predict sur-
gical outcomes. In particular, pouchitis is a vex-
ing complication that can lead to persistence of 
symptoms and impaired quality of life after colec-
tomy. Two studies applied AI methodology to this 
clinical problem.

What do the current studies show? In one 
study by Mizuno et al., the researchers aimed to 
determine whether a CNN could accurately pre-
dict pouchitis development after ileal pouch–anal 
anastomosis (IPAA) in UC patients. Modified 
pouchitis disease activity index (mPDAI) before 
ileostomy closure was compared with a CNN 
model based on the endoscopic imaging of a ret-
rospective cohort of 43 patients with 5-fold cross-
validation. The predictive rates for pouchitis of 
mPDAI prior to ileostomy closure and the CNN 
model were estimated by ROC. mPDAI had an 
accuracy of 62% and the CNN had an accuracy 
of 84%. Limitations include a small number of 
images and variation in image scoring due to use 
of different endoscopists, which could be over-
come in the future with a multicenter design and 
standardization of imaging methods. Neverthe-
less, the findings suggest that CNN models may 
predict pouchitis, and allow for early interven-
tion.81 In a second study, Sofo et al. looked at a 
cohort of high-risk UC patients who had under-
gone a total colectomy and aimed to predict vari-
ous types of postoperative complications using 
data available before surgery. This simulated a 
prospective study and was able to predict minor 
infectious complications accurately, but major 
infection and non-infectious complications were 
not predicted as accurately, greatly limiting the 
clinical utility of this study.80

What could AI add in the future? Pouchitis is a 
common complication after IPAA. While many 
patients respond to a single course of antibiotics, 
a subset develops chronic pouchitis, a devastat-
ing complication that affects quality of life after 
a theoretically curative colectomy. Being able to 
predict complications like pouchitis may help sur-
gical planning.

Colorectal cancer surveillance
What is already known? Although patients with 

long-standing UC have a higher risk of develop-
ing CRC and there is significant literature regard-
ing CAD in general, there is limited data on the 
application of AI to CRC risk in UC patients.83
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What do the current studies show? One study 
by Uttam et al. aimed to aid early detection by 
applying three-dimensional nanoscale nuclear 
architecture mapping to detect advanced dys-
plasia or neoplasia in normal-appearing rectal 
biopsies of patients with both UC and Crohn’s 
disease prior to detection by conventional history. 
They applied SVM as a binary classifier and the 
final model had an AUROC of 0.870.84 Noguchi 
et al.77 used a CNN to predict p53 immunohis-
tochemical staining from hematoxylin and eosin 
stained slides without dedicated p53 stains. The 
trained CNN was able to predict p53 immunohis-
tochemical staining with accuracy of 86%–91%. 
Although the results are promising, the study did 
not validate the CNN in an external dataset, and 
the sample size was small with only 12 patients, 
with strong risk of overfitting.

What could AI add in the future? Further studies 
should incorporate external validation and larger 
sample sizes in order to develop strong predictive 
models for colitis-associated dysplasia, and bio-
markers aside from p53 should be investigated.77 
Surveillance in patients with dense pseudopoly-
posis is technically challenging and represents an 
area in which computer vision may prove to be 
useful.

COVID-19 outcomes. UC is often treated with 
immunosuppressants, which may lead to higher 
risk of infection. The outcome of COVID-19 in 
UC patients is of significant interest and there 
have been numerous studies which have applied 
traditional epidemiologic methods. However, 
there is a paucity of studies which have applied AI 
methods to this patient population. A single study 
by Roy et al.82 addresses this issue by using the 
SECURE-IBD database. They applied a variety 
of and supervised learning methods, but the best 
performing model only had an accuracy of only 
70%.

Conclusion
AI shows great promise in UC, and there has 
been burgeoning interest in the field. ML and DL 
techniques have been applied to a wide range of 
meaningful clinical problems in UC, including 
the identification of new UC, personalized ther-
apy, monitoring of disease activity, and prediction 
of complications. Despite the considerable prom-
ise of AI in UC, there are also key limitations; 
many studies have small sample sizes and biases 

that risk overfitting. There have been limited vali-
dation of studies in truly independent external 
datasets. On the whole, rarely have the developed 
models had adequate performance characteristics 
to justify potential clinical deployment. Given the 
current status of the field of AI in UC, future 
research should include: (1) robust, large scale 
external validation of models to overcome the 
many limitations and bias that come with using 
small internal training datasets, (2) studies that 
predict clinically meaningful outcomes that are in 
line with current standard of care, such as endo-
scopic remission rather than clinical remission, 
(3) studies that evaluate the cost-effectiveness of 
model-guided therapy compared to the current 
standard of care, (4) head-to-head studies of 
models which predict the same outcomes to guide 
clinical implementation, and (5) randomized 
controlled trials of AI models to determine if they 
meaningfully impact clinical outcomes.
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