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Preclinical in vivo studies form the cornerstone of drug development and translation,
bridging in vitro experiments with first-in-human trials. However, despite the utility of
animal models, translation from the bench to bedside remains difficult, particularly for
biologics and agents with unique mechanisms of action. The limitations of these animal
models may advance agents that are ineffective in the clinic, or worse, screen out
compounds that would be successful drugs. One reason for such failure is that animal
models often allow clinically intolerable doses, which can undermine translation from
otherwise promising efficacy studies. Other times, tolerability makes it challenging to
identify the necessary dose range for clinical testing. With the ability to predict
pharmacokinetic and pharmacodynamic responses, mechanistic simulations can help
advance candidates from in vitro to in vivo and clinical studies. Here, we use basic
insights into drug disposition to analyze the dosing of antibody drug conjugates (ADC)
and checkpoint inhibitor dosing (PD-1 and PD-L1) in the clinic. The results demonstrate
how simulations can identify the most promising clinical compounds rather than the most
effective in vitro and preclinical in vivo agents. Likewise, the importance of quantifying
absolute target expression and antibody internalization is critical to accurately scale
dosing. These predictive models are capable of simulating clinical scenarios and
providing results that can be validated and updated along the entire development
pipeline starting in drug discovery. Combined with experimental approaches,
simulations can guide the selection of compounds at early stages that are predicted
to have the highest efficacy in the clinic.
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INTRODUCTION

The design of next-generation biologics for cancer therapy has dramatically changed the drug
development landscape by enabling greater control over the specificity of one (or more) molecular
interaction(s) within the patient. Meanwhile, this increased complexity has made it more difficult to
identify the requisite properties needed for clinical success, particularly because sophisticated
therapies have multiple points of failure. Traditionally, animal experiments have been utilized
for guidance on themanifold factors that impact in vivo and clinical efficacy. However, despite widely
accepted limitations of animal results in predicting clinical outcomes, these discrepancies have
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become more acute with recent therapies. The result is a majority
of Phase II and Phase III clinical trials ending in failure
(Lowenstein and Castro, 2009).

Using antibody-drug conjugates (ADCs) to illustrate this point,
different types of animal experiments are needed to gauge efficacy
and toxicity. Non-human primates are often used to estimate
toxicity since the targeting antibodies typically don’t cross-react
with mouse antigens and expression levels are different in rodent
species. Ocular toxicity, which can limit dosing from the cytotoxic
small molecule payload on ADCs, may only clearly show up in
rabbit models (Zhao et al., 2018). For efficacy, mouse cells are often
less sensitive to ADC payloads, so human xenograft models are
typically used tomeasure response. To examine contributions from
the immune system, however, humanized or syngeneic mouse
models are needed, which usually require additional engineering of
the animal system. This lack of a single model to incorporate these
factors exists on top of other long-standing challenges: animal
species/strain differences in metabolic pathways, faster clearance in
animals than humans, and immune differences between species
(Bracken, 2009; Van Norman, 2019).

To bridge such gaps between in vitro and in vivo as well as
animal experiments and human trials, computational
approaches, such as predictive mechanistic modelling, are
needed (Denayer et al., 2014). To be clear, animal data is still
essential for the drug development pipeline at the present time
(e.g., to predict safety/toxicity in humans). However,
computational approaches are necessary to integrate this data
in a quantitative manner to make informed decisions. There have
been innumerable published mechanistic models which utilize
the in vitro and/or in vivo results to elucidate mechanisms and to
evaluate and predict efficacy in animal experiments or clinical
trials. For example, some of these models focus on micro-
physiological systems, such as 3-D cell culture (organoids/
spheroids) (Groh et al., 2014; Hubbard et al., 2017; Cartaxo
et al., 2020; Khera et al., 2021). Others include the
macroscopic system, such as utilization of multi-compartment
physiologically-based pharmacokinetic models (Baxter et al.,
1995; Cao and Jusko, 2012; Cao et al., 2013; Groh et al.,
2014). These can be expanded to combine the macroscopic
features (e.g., systemic clearance and tumor uptake) with the
microscopic distribution or simplified to focus on the most
critical features (Cao and Jusko, 2012; Cao et al., 2013).

Sophisticated models can include many detailed mechanisms
to enhance the preclinical to clinical translation of drug efficacy.
For example, models for checkpoint inhibitors take experimental
data including plasma clearance, organ biodistribution, tissue
heterogeneity, and cellular binding to capture drug disposition
(Deng et al., 2016). Li et al., 2021 started from a minimal
physiologically based pharmacokinetic model by Cao et al.,
2013 and applied it to pembrolizumab to predict intra-tumoral
target engagement and optimal dosing (Cao et al., 2013; Li et al.,
2021). For ADCs, drug processing at the cellular level plays a
central role in payload release and distribution. The development
of ADC models involves more complicated local metabolism/
degradation features, including antibody interaction with cell
surface antigens, antigen induced internalization, lysosomal
degradation and release and passive diffusion of payloads

(Shah et al., 2012; Cao et al., 2013; Shah et al., 2014; Cilliers
et al., 2016; Singh et al., 2016). Compartmental models are
sometimes inadequate to capture the heterogeneity in
distribution, and ‘distributed parameter’ models are needed
that capture spatial differences in drug concentration, often
using penetration distance from blood vessels as a central
metric (Eikenberry, 2009; Cilliers et al., 2016; Khera et al.,
2018; Burton et al., 2019). More recently, hybrid agent-based
models capture not only the gradients in ADC delivery, but also
the heterogeneity of vessel distribution and nonuniformity of the
tumor cells (e.g., heterogeneous target expression, drug
sensitivity), providing more reliable prediction to clinical
efficacy (Menezes et al., 2020). These models each have their
strengths and limitations.

Utilization of mechanistic simulations enables insight and
prediction of the processing of drugs in humans, from
compartmental uptake to tissue and cellular drug distribution
and efficacy. Modeling can be employed throughout the drug
development pipeline, starting during the discovery phase and
continuing through preclinical in vitro and in vivo testing into the
clinic. These predictions can play a crucial role in avoiding poorly
designed preclinical experiments and forecasting clinical trial
outcomes. Importantly, these predictions should be
independent from the in vivo experiments themselves,
allowing comparison between in silico and experimental
outcomes. The model can be refined for minor differences
during development. For example, the predicted clinical
dosing, initially based on archived human tissue samples,
could be adjusted if the target expression is upregulated in
response to treatment. In contrast, major discrepancies can
signal a need to invest in further research to determine why a
drug is behaving unexpectedly to avoid issues further down the
pipeline, as shown in Figure 1A.

The FDA recently appealed to sponsors to determine the
optimal dose instead of relying on the maximum tolerated
dose (MTD) before pivotal trials. They pointed out that some
MTDs lay in the over-saturating regime, producing unnecessary
toxicity. Optimal dosage is often achieved when drugs are evenly
distributed throughout the target compartment and saturate all
targeted receptors to achieve maximum cellular response. From
this perspective, drug metabolism at the cellular level, including
binding, receptor internalization, recycling or degradation,
combined with systemic clearance, is the determinant factor
for estimating drug saturation and efficacy with most biologics.

In this work, we analyze the dosing of two classes of agents
important in cancer therapy: antibody drug conjugates and PD-1/
PD-L1 checkpoint inhibitors. These agents represent two cases
lying far apart on the tolerability/receptor engagement scale.
ADCs, with their potent payloads that can result in high
toxicity, are often administered at sub-saturating doses (near
the MTD) that just approach full receptor engagement at their
maximum concentration (Cmax). Changes in the design impact
both the MTD and receptor saturation, and agents with tolerable
doses close to saturation have shown success in the clinic. In
contrast, checkpoint inhibitors are generally well-tolerated
antagonists which can be given at super-saturating doses.
These agents are capable of maintaining full saturation even at
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the trough plasma concentrations (Cmin). However, without an
MTD “limit,” selecting a recommended Phase II dose is difficult
when the relationship between dose and efficacy is unclear (Li
et al., 2021). In both cases, drug design and optimal dosing are key
determinants of clinical success but challenging to identify during
development. Computational tools, including simplified analysis
of tumor target saturation, can provide useful insight. Some of the
simplest and most predictive models can be employed early in
drug development, prior to animal studies, to help guide the drug
design for later stages of development. Specifically, we focus on
local therapeutic degradation, which plays a central role in drug
design and dosing but is often underemphasized relative to other
PK metrics like plasma clearance half-life, binding affinity, and
area under the curve (AUC) also used for small molecules
(Figures 1B,C). Here, we utilize a previously reported
dimensionless number ((Thurber et al., 2007a; Thurber et al.,
2008; Wittrup et al., 2012), the Thiele modulus, to analyze the
level of tumor saturation for both agents.

METHODS

Thiele Modulus Definition
For this simplified approach, we utilize the dimensionless group,
the Thiele Modulus derived for antibody pharmacokinetics

(Thurber et al., 2008; Thurber and Wittrup, 2008; Wittrup
et al., 2012), to describe the relative receptor saturation by
accounting for tumor clearance versus delivery. While the
analysis is valid for different geometries, it is defined here for
a Krogh cylinder representation with the blood vessel surface area
(S) to tumor volume (V): (Thurber and Dane Wittrup, 2012):

S
V

� 2Rcap

R2
Krogh

The Thiele Modulus predicts tissue saturation by comparing
the rate of vascular extravasation with endocytic consumption/
degradation (Thurber et al., 2007b; Thurber et al., 2008). For high
affinity antibodies (which simplifies the generalized expression
for a range in antibody affinity, provided in the Supplementary
Material), the expression for the Thiele Modulus is:

Φ2 � ke R2
Krogh([Ag]/E)
D( [Ab]

1+(1/Bi))

Bi � 2PRcap

Dε

where ke is the rate constant of internalization which also represents
the rate of endocytosis; RKrogh is the radius of the cylinder; [Ag] is
the concentration of available antigen receptors (see note in

FIGURE 1 | Predictive Simulations in Development. Rather than focusing on each step in the pipeline (A), top, robust simulations of drug distribution can be
employed at the earliest stages of development to forecast clinical application. During development, the predictions can be refined to improve the accuracy of the
forecast or identify discrepancies (A, bottom). While predictive models for small molecule drugs typically assume tissue concentrations proportional to the plasma
concentration due to fast distribution (B), the local metabolism/degradation of biologics and slow tissue penetration require alternative approaches for accurate
predictions (C).
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supplemental data when more than 1 cell type expresses the target);
[Ab] is the plasma concentration of antibody; D is the antibody
interstitial diffusivity in tumor tissue; P is the antibody permeability
through capillary; ε is the tumor void fraction, and Rcap is the radius
of capillary (Thurber et al., 2007b). For most antibodies, diffusion is
much faster than extravasation/permeability, resulting in a small Biot
number (Bi) (Thurber and Dane Wittrup, 2012). Therefore, the
expression can be simplified to

Φ2 � ke R2
Krogh[Ag]

2PRcap[Ab] � ke [Ag]
(PS/V)[Ab]

Both the Biot number and Thiele modulus are dimensionless
groups derived from partial differential equation models of drug
distribution; therefore, the units in these expressions must cancel
out. For the Thielemodulus, a faster rate of endocytosis/degradation
prevents the antibodies from reaching distant tissue, resulting in
limited drug penetration and unsaturated antigen receptors
(Φ2 > 1). Under such circumstances, increasing the antibody
dose can improve tumor uptake as well as drug distribution via
increasing [Ab]. On the other hand, where saturation is achievable
(Φ2 < 1), increasing the dose may maintain saturation for longer
times but have limited improvement in tissue penetration.

RESULTS

The simplified yet predictive early-stage approach for the dosing of
biologics using the Thiele modulus was applied to both ADCs and

checkpoint inhibitors. The antibodies/ADCs considered here
distribute as “high affinity” antibodies due to avidity and high
antigen expression [where Kd values of 270 nM are sometimes
needed to increase tissue penetration) (Rudnick et al., 2011).
Likewise, lower affinity can impact internalization (Zwaagstra
et al., 2019), but intrinsic receptor internalization rates are a good
first approximation (Nessler et al., 2020a). Amore generalized version
of the Thiele modulus can describe the low affinity cases
(supplemental data). ADCs are sophisticated pro-drugs that utilize
a tumor targeted antibody conjugated to a potent, typically cytotoxic,
payload via a cleavable or non-cleavable linker. Following intravenous
administration, they circulate in the blood, are taken up in the tumor
(and healthy tissue), extravasate, diffuse to their target, bind and
internalize, and release their small molecule payload. The payload can
then target the original cell or in the case of bystander payloads,
diffuse to nearby cells. In contrast, checkpoint inhibitors block cell
surface proteins which modulate immune responses and can prevent
T-cells from attacking cancer cells. Instead of toxicity limitations
preventing dose escalation, as is often the case for ADCs, checkpoint
inhibitors don’t reach an MTD, making it difficult to determine the
optimal clinical dose. Despite these major differences, the same
delivery principles can be applied to both biologics to provide
insight into therapeutic design and dosing.

Thiele Modulus of Successful ADCs Are
Close to 1
The doses for five FDA-approved solid tumor ADCs,
mirvetuximab soravtansine, and seven checkpoint inhibitors

TABLE 1 | A summary of package insert doses and targets of five FDA approved ADCs and seven checkpoint inhibitors.

Name Target Internalization
half-life (hr)

Target expression
(receptors/cell)

Package insert dose Cmax

(10−6M)
Ctrough (10−6M) PS/V (s−1)

Trodelvy Trop-2 4.06 250,000 Yuan et al. (1995),
Zhang et al. (2016)

10 mg/kg D1 and D8
of 21 days cycle

1.73 ~0 6E-6 Yuan et al.
(1995)
Zhang et al. (2016)Kadcyla Her2 7 Maass et al.

(2016)
1,000,000 Onsum et al.

(2013)
3.6 mg/kg Q3W 0.639 0.0168

Enhertu (IHC3+) Her2 7 1,000,000 Onsum et al.
(2013)

5.4 mg/kg Q3W 1.01 0.0787

Enhertu (IHC2+) Her2 7 100,000 5.4 mg/kg Q3W 1.01 0.0682
Padcev Nectin-4 18 Yuan et al.

(1995)
Zhang et al. (2016)

115,000 1.25 mg/kg D1, D8
and D15 of 28 days
cycle

0.284 0.0682

Mirvetuximab
soravtansine

FR-alpha 32 1,000,000 (Forster et al.
(2007)

6 mg/kg Q3W 1.09 0.0540

Tivdak Tissue
factor (TF)

3.7 Yuan et al.
(1995)
Zhang et al. (2016)

112,000 Yuan et al. (1995)
Zhang et al. (2016)

2 mg/kg Q3W 0.355 0.00933

Nivolumab PD-1 36 Lindauer et al.
(2017)

5,600 240 mg Q2W 0.594 0.39 Bi et al. (2019) 6E-6 ((Yuan et al.,
1995; Zhang et al.,
2016)
6E-6 Yuan et al.
(1995)
Zhang et al. (2016)

Pembrolizumab 200 mg Q3W 0.495 0.156 Jacobs et al.
(2021)

Cemiplimab 350 mg Q3W 0.866 0.382 Kitano et al.
(2021)

Dostarlimab PD-L1
PD-L1

35 ((Heskamp et al.,
2015)
35 (Heskamp et al.
(2015)

134,000
134,000

500 mg Q3W 1.24 0.278 ( (Kasherman
et al. (2020)

Atezolizumab 1200 mg Q3W 2.97 2.01 Mizugaki et al.
(2016)

Avelumab 800 mg Q2W 1.98 0.301 Doi et al.
(2019)
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are summarized in Table 1. Other values needed to calculate the
Thiele modulus are also included in the table. The expression of
PD-1/PD-L1 (tumor cells, tumor-resident T-cells and
macrophages) and nectin-4 were measured to complete the table.

The Thiele modulus was calculated from the values listed in
Table 1 along with the antigen expression and internalization rate
constants reported in Supplemental Table S1. The Thiele
modulus of ADCs are close to one (Figure 2), indicating that
endocytic consumption is not significantly faster or slower than
vascular extravasation. This results in dosing that approaches
saturation (Φ2 � 1) for many of the ADCs.

The Thiele modulus of Padcev and Mirvetuximab
soravtansine is slightly lower than 1, indicating the dose is
sufficient to overcome binding and internalization within the
tumor. The antigen expression of Nectin-4 on T47D cells is lower
than HER2 and Trop2, and an 18 h estimated internalization
half-life (Supplementary Table S1) allows ADC molecules to
quickly occupy the receptor binding sites on cell surface before
they are internalized. The Thiele modulus of Mirvetuximab
soravtansine is below 1 due to the low FR-internalization and
recycling rate (Monteiro et al., 2020; Ponte et al., 2021). Although
there’s an antibody-dependent downmodulation of TF surface
expression, the Thiele modulus of Tivdak is greater than 1,
consistent with heterogeneous distribution of tissue factor
antibodies seen in some animal models (de Goeij et al., 2015;
Koga et al., 2015). Additionally, the internalization and recycling
of Tivdak is not significantly affected by binding with factor VIIa,
with a half-life of 3.7 h measured by Hamik et al., 1999 (Hamik
et al., 1999; Mandal et al., 2006; Breij et al., 2014; de Goeij et al.,
2015). TROP2 is both highly expressed and rapidly internalized,
but the high tolerability and dosing of Trodelvy helps overcome
this large sink (Okajima et al., 2021). Finally, the first solid tumor
ADC, Kadcyla, has a value significantly greater than one, higher

than all other ADCs examined. In contrast, the higher tolerability
of Enhertu allows larger dosing, resulting in a lower Thiele
modulus. For patients with lower HER2 expression (IHC 2+),
the Thiele modulus drops below one, balancing delivery to high
and moderate expressors.

Thiele Modulus of Checkpoint Inhibitors Are
Less Than 0.1 Indicating Super-saturation
The binding affinity and plasma clearance of approved
checkpoint inhibitors vary widely in the clinic (Figures 3A,B).
Models that assume tissue concentration is proportional to the
plasma concentration (e.g., Figure 1B) indicate dosing should be
related to these parameters, but there is not a correlation between
approved immune checkpoint inhibitors and affinity or plasma
clearance. The dosing more closely corresponds to local binding
andmetabolism in the tumor (Figure 3C). The Thiele modulus of
PD-1 and PD-L1 inhibitors at their Cmax and Ctrough is shown in
Figure 3D. A lower Ctrough results in an increased Thiele
modulus; however, the values are still less than 0.1 for almost
all agents, indicating that PD-1 and PD-L1 proteins are saturated
throughout the tumor during treatment at the FDA approved
dose. With low tumor degradation due to slow checkpoint
antigen internalization, the doses of PD-1 targeted antibodies
are super-saturating even at the trough concentrations, i.e.Φ2 ≪ 1
, while leaving a safety margin of 10-fold (Φ2 ≪ 0.1) for these
drugs (e.g., a patient with 10-fold lower tumor vascularization
would still haveΦ2 < 1). Due to a greater expression of PD-L1 and
faster clearance, the doses of Avelumab give a Thiele modulus
above 0.1 at the trough concentration but are still able to saturate
the tumor.

DISCUSSION

By integrating data from across the drug development pipeline,
computational models can help identify therapeutics that will be
successful in the clinic rather than simply focused on the next step
in development (Figure 1A). As more data are gathered, clinical
and preclinical predictions can be refined from values based on
drug structure and target properties alone (discovery phase) to
incorporate in vitro experiments, in vivo results, and clinical trial
data. Accurate predictions build confidence in the compound
while inaccurate predictions indicate a need to better understand
the system before (or while) proceeding. In fact, an inaccurate
prediction can be one of the most valuable contributions of a
simulation since it highlights a misunderstanding of the drug
pharmacokinetics and/or response.

In addition to experimental results, some underlying
fundamental principles can assist in guiding drug design and
dosing. Analogous to principles such as Lipinski’s Rule of Five
(Ro5) for small molecules, the Thiele modulus for biologics can
provide early insight into dosing and potential delivery
limitations. Values greater or less than one don’t indicate a
drug will fail. However, it can motivate additional
investigation into whether receptor engagement and dosing are
optimally suited for clinical success. Orally available small

FIGURE 2 | Thiele Modulus of Approved Solid Tumor ADCs and
Mirvetuximab soravtansine. Values for most recent agents are close to one
indicating a balance between tumor uptake and local metabolism.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8369255

Dong et al. Simulating the Translation of Biologics

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


molecule drug pharmacokinetics are usually dominated by their
oral absorption (related to the Ro5) versus systemic clearance
(usually centrally controlled by liver metabolism). In contrast,
intravenously delivered cancer biologics are often driven by their
plasma concentration (Cmin and Cmax), vascular permeability,
and local degradation (e.g., cellular expression, internalization,
and degradation). The ratio of these values yields the Thiele
modulus for biologics, which determines the saturation level in
the tumor. Because receptor occupancy is not a static number,
Cmin and Cmax can be used to estimate if the drug reaches all cells
at the maximum concentration (important for cytotoxic delivery)
or maintains full receptor occupancy at the minimum (important
for antagonism of immune checkpoints). For example, an ADC
with a Thiele modulus >1 may indicate the potency/DAR is too
high to allow sufficient dosing to achieve tumor penetration and
efficacy at a clinically tolerated dose, pointing to a reduction in
potency/DAR to improve the therapeutic window. Likewise, a
checkpoint inhibitor with a Thiele modulus <1 is unlikely to
benefit significantly from an increase in dose since tumor target
saturation is already achieved.

In fact, many of the clinical failures with ADCs point to
mismatched potencies resulting in limited tissue penetration.
In addition to flagging potential delivery challenges, the Thiele
modulus could help identify compounds or dosing schemes that
may ultimately prove more effective in the clinic based on
delivery considerations, preventing them from being
prematurely cut from the development pipeline. For example,

the high tolerability of Trodelvy allows large dosing, improving
tissue penetration into the tumor with a low Thiele modulus.
However, the hydrolysable linker makes it difficult to determine
an in vitro IC50 due to contributions from the released payload
before internalization - yet it results in an effective drug
(Goldenberg et al., 2015). Similarly, the in vivo data from
Enhertu in a CT26-HER2 xenograft showed negligible efficacy
due to lower sensitivity of mouse cells to the payload, yet the
higher dosing and bystander payload help drive deeper tissue
penetration than Kadcyla (Iwata et al., 2018). For checkpoint
inhibitors, the clinical dosing of pembrolizumab was debated
internally given an early signal in dose response. However, the
simulations indicated receptor saturation at the lower doses,
which ultimately prevailed with additional data (Patnaik et al.,
2015; Elassaiss-Schaap et al., 2017).

For ADCs, the Thiele modulus varies between 0.5 and 10 with
most new ADCs close to 1. The first ADC for solid tumors,
Kadcyla, has the highest value. This provides an example where
the analysis can raise flags but still allow successful development
(similar to some successful small molecules breaking Lipinski’s
Ro5). Other mechanisms, such as HER2 signaling blockade or Fc-
effector function of the trastuzumab antibody, may contribute to
Kadcyla’s success. Enhertu has a lower Thiele modulus due to a
higher antibody dose, but it’s still greater than 1. Interestingly,
Enhertu has also shown efficacy in lower expressing tumors. For
these cases, its Thiele modulus for HER2+ tumors is closer to
optimum. The bystander payload, where Dxd released from

FIGURE 3 |Checkpoint inhibitors vary widely in target affinity (A) and plasma clearance (B) relative to dosing. However, the doses correspondmore closely with the
local tumor degradation/metabolism of the drug (C). Thiele Modulus of 7 different checkpoint inhibitors calculated at both Cmax and Ctrough showing supersaturating
doses (D).
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Enhertu can diffuse deeper into the tumor, may contribute to its
efficacy at higher expression levels (IHC 3+) while saturating
doses in lower expression tumors maintain effectiveness (IHC
2+). For Trodelvy and Padcev, these agents have faster plasma
clearance than the other ADCs. While this may lower the
exposure (e.g. AUC), a combination of high dosing and/or
lower receptor expression enables them to reach most
receptors for efficacy. Notably, most Thiele modulus values are
not significantly less than 1, either, due to dosing limitations from
the toxicity of the payload. In fact, values much less than 1 would
lower the therapeutic index by increasing toxicity from the higher
payload dose without a significant increase in efficacy.

Efficient internalization is critical for ADC success but can also
lead to poor tissue penetration (Nessler et al., 2020b). Therefore,
it’s necessary to balance the net internalization (which includes
recycling) and expression level with tolerability, dosing, and
potency. In fact, a lot can be gleaned from the expression and
internalization rates for approved agents. For example, literature
reports of the internalization rate for Nectin-4 indicate an ~18 h
half-life with 105 receptors/cell, which is one of the lowest rates of
uptake for the 5 solid tumor approved ADCs (M-Rabet et al.,
2017). Correspondingly, Padcev has one of the highest potencies
in terms of combined payload and DAR (DAR 4, MMAE) among
these ADCs. On the other extreme of these approvals, Trodelvy
has both higher expression (between 105 and 106 Trop2/cell) and
much faster internalization (4.06 h half-life) (Cardillo et al.,
2015). It also has the lowest potency payload (SN38) which is
only partially compensated by the higher DAR (DAR 8)—hence
greater tolerability and higher dosing. Finally, Kadcyla and
Enhertu are in-between, with higher expression than Nectin 4
but slower internalization than Trop2 (Austin et al., 2004). Both
utilize moderate payloads and DARs, with Dxd and DM1 having
greater potency than SN38 but less than MMAE. Comparing
these two HER2-targeting constructs, the lower potency of Dxd is
only partially compensated by higher DAR (DAR 8 for Dxd vs
DAR 3.5 for DM1 on Kadcyla), resulting in greater tolerability/
dosing of Enhertu. Overall, the higher expression and faster
internalized targets are paired with lower potency ADCs (a
product of payload potency and DAR), which enables higher
dosing for better tissue penetration. This balance between
intrinsic payload potency/DAR, expression, internalization,
and dose results in most approved ADCs with a Thiele
modulus close to 1.

The situation is very different for checkpoint inhibitors, but
the same fundamental principles apply. The Thiele modulus of
PD-1 and PD-L1 inhibitors at their maximum concentrations are
all below 0.01 and 0.1, respectively. Even at lower trough
concentrations, all except the fastest clearing agents are still
below 0.1, indicating supersaturation of the receptor. In most
early phase development trials, data reported on
pharmacodynamic properties of PD-1 and PD-L1 inhibitors
suggest that a MTD dosing scheme supersaturates receptors.
In fact, the MTD is often not reached with checkpoint
inhibitors in clinical trials (Brahmer et al., 2010; Herbst et al.,
2014; Powles et al., 2014; Sehgal et al., 2020). Studies by Topalian
et al., 2012 and Agrawal et al., 2016 have shown that with a dose of
nivolumab at 0.1–0.3 mg/kg, which is about ten-fold lower than

the approved dose (Table 1), maximal occupancy of PD-1
receptors can be achieved (Topalian et al., 2012; Agrawal
et al., 2016). Data collected by Song et al., 2015 also indicated
that soluble PD-L1 receptors were fully saturated in a majority of
patients treated with durvalumab at 0.3 mg/kg every 2 weeks
(Song et al., 2015). A similar result has been observed by
Antonia et al., 2019 where complete soluble PD-L1
suppression is achieved (Antonia et al., 2019).

Supersaturating doses may be acceptable for agents that are
well-tolerated, but the higher doses of checkpoint inhibitors do
come at a cost. These doses not only increase the expense of
treatment but can exacerbate anti-drug antibody (ADA)
responses, particularly for agents that are designed to increase
immune responses (Hock et al., 2015; Davda et al., 2019; Enrico
et al., 2020). The situation raises some important drug
development questions. Current dosing provides a 10X or
greater ‘safety margin’ (i.e. dosing above tumor saturation)
according to this analysis. The result is consistent with a
relatively flat dose response curve at these levels (e.g.,
atezolizumab (Boswell et al., 2019)). What cost (in terms of
ADA risk and material price for all patients) is acceptable for
additional benefit in a subset of patients (such as those with
poorly vascularized tumors that require a higher dose)?

Ironically, higher dosing can not only increase the risk of ADA
but simultaneously overcome the same problem. For example,
atezolizumab has been reported to induce ADA responses in
39.1% of the safety-evaluable patients, but the large dose appears
to also prevent an impact on efficacy (Davda et al., 2019).
Systemic exposure of atezolizumab is lower in ADA-positive
patients due to enhanced clearance, but there was no
significant impact on efficacy. Therefore, even with a good
understanding of receptor occupancy, outstanding questions
remain. Is it better to utilize lower doses to prevent ADA
responses or higher doses to overcome the problem? Is an
ADA response impairing drug efficacy and/or an indication
that the immune system has been activated? The best answer
will depend on the specific drug, but analysis of dosing and
receptor occupancy with these trade-offs are important to
consider.

Another uncommon feature of checkpoint inhibitors is tumor
versus healthy tissue target saturation. Typically, antibodies
saturate receptors in healthy tissue at lower doses than the
tumor (enabling strategies such as preblocking healthy tissue)
(Boswell et al., 2019). This occurs due to healthy tissue having a
combination of higher and more uniform vascularization, better
convection and lymphatic drainage (versus impaired convection
from elevated interstitial pressure in tumors), and often lower
target expression relative to tumors (Jain et al., 2007; Zhang et al.,
2016). A collection of permeability and S/V values for healthy
tissues has been published by Zhang et al. (Zhang et al., 2016) and
can be used to predict healthy tissue saturation. However,
compartmental/PBPK models are better suited for analyzing
healthy tissue uptake (Mager and Jusko, 2001). Healthy tissue
saturation often coincides with achieving linear plasma
pharmacokinetics, where the dose is high enough to saturate
receptors (reducing targeted mediated drug disposition, TMDD)
such that the clearance rate becomes constant and plasma
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concentrations are proportional to dose (Patnaik et al., 2015).
Linear pharmacokinetic profiles have been observed during
treatment with most checkpoint inhibitors at 1 mg/kg
(0.3 mg/kg for pembrolizumab (Patnaik et al., 2015; Elassaiss-
Schaap et al., 2017); 0.1 mg/kg for nivolumab (Patnaik et al., 2015;
Elassaiss-Schaap et al., 2017); 1 mg/kg for atezolizumab (Stroh
et al., 2017; Sehgal et al., 2020), cemiplimab (Yang et al., 2021),
and avelumab (Heery et al., 2015) and 3 mg/kg for the PD-L1
inhibitor durvalumab (Patnaik et al., 2015; Elassaiss-Schaap et al.,
2017), implying that the approved doses saturate normal tissues.
In contrast, predictions indicate tumor saturation occurs at much
lower doses primarily due to lower target expression (the product
of immune cell count and receptors/cell) in tumors where cancer
cells often outnumber tumor infiltrating lymphocytes.
Interestingly, this enables the possibility for tumor specific
inhibition, where a lower dose saturates lymphocytes in the
tumor without saturating the receptor in tissues with much
denser receptor concentration (e.g., lymph nodes).

Finally, receptor expression is not static. Upon treatment with
anti-PD-1 and anti-PD-L1 therapies, Vilain et al., 2017 showed an
infiltration of PD-1+ T-cells in tumor, as well as upregulation of
tumoral PD-L1 and macrophage PD-L1 of responders (Vilain
et al., 2017). There’s also a large amount of literature addressing
the regulation of PD-L1 expression in cancer cells mediated by
cytokines or transcriptional pathways (Tremblay-LeMay et al.,
2018). A relatively high dose of checkpoint inhibitors can
compensate for upregulation of antigens and prolong the
duration of an effective treatment. This is an example of
where literature values and in vitro estimates of target
expression from the discovery phase can be updated with
preclinical in vivo data or ex vivo clinical data to further refine
the clinical predictions. Quantitative measurements of animal
and clinical expression are essential. With absolute receptor
expression levels (rather than semi-quantitative metrics like
IHC or H-scores), computational models can offer advantages
over animal models by tailoring the results to the clinic. For
example, the level of vascularization has a significant impact on
PS/V and therefore delivery. Computational models can vary the
PS/V values to those seen in the clinic (or even a particular tumor
type or patient) rather than a given animal model. Additionally,
by varying the S/V, this analysis can also be applied to healthy
tissue for the prediction of therapeutic window.

As the biologics used to treat cancer increase in complexity, it
is important to develop computational methods alongside animal
experiments to better predict clinical outcomes. The fact that
animal experiments can give opposite results depending on their

design (e.g., a high or lowDAR is more effective depending on the
dose used) means that the preclinical outcomes are not
necessarily providing fundamental insight into how the drug
will behave in the clinic but rather how the drug behaves in that
specific experiment (Nessler et al., 2021). Computational
predictions, grounded in experimental data, can help translate
how these results will manifest in patients for better decision-
making during development.

In conclusion, the success of biologics in cancer therapy not
only relies on the biology of the target but equally on forecasting
the dosing and drug design for clinical efficacy. Mechanistic
computational models can predict how drugs will translate from
the discovery to in vitro, in vivo, and clinical stages. This
includes simple and robust metrics, such as the Thiele
modulus derived from computational models, that can
provide insight into how currently successful drugs are
behaving and guide the design and dosing of future
therapeutics.
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