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Abstract

Our limited understanding of the climate controls on tropical forest seasonality is one of the

biggest sources of uncertainty in modeling climate change impacts on terrestrial ecosys-

tems. Combining leaf production, litterfall and climate observations from satellite and ground

data in the Amazon forest, we show that seasonal variation in leaf production is largely trig-

gered by climate signals, specifically, insolation increase (70.4% of the total area) and pre-

cipitation increase (29.6%). Increase of insolation drives leaf growth in the absence of water

limitation. For these non-water-limited forests, the simultaneous leaf flush occurs in a suffi-

cient proportion of the trees to be observed from space. While tropical cycles are generally

defined in terms of dry or wet season, we show that for a large part of Amazonia the increase

in insolation triggers the visible progress of leaf growth, just like during spring in temperate

forests. The dependence of leaf growth initiation on climate seasonality may result in a

higher sensitivity of these ecosystems to changes in climate than previously thought.

Introduction

The Amazonian forests account for 14% of the global net primary production (NPP) and are a

major component (66%) of the inter-annual variation in global NPP [1]. While large seasonal

swings in leaf area have been reported at least in parts of the Amazon basin [2–4], the environ-

mental controls that trigger the synchronous development of new leaves are not well under-

stood [5–7]. As a result, current earth system models inadequately represent the dynamics of

leaf development, despite its major role for photosynthesis of tropical vegetation [8]. In equato-

rial forests, leaf flushing correlates with increased light availability and photosynthetically active

radiation during the dry season [4, 9], and is theoretically driven by a change in daily insolation

[10]. However, water availability constrains leaf phenology in southern Amazonia and most of

the Congo basin, impeding the maintenance of the evergreen state during the dry season [11].
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The climate thresholds controlling the phenological responses of vegetation remain unclear

[12], as well as the sensitivities of these responses to future climate changes [13].

The Enhanced Vegetation Index (EVI), from the Moderate Resolution Imaging Spectrora-

diometer (MODIS), improves the sensitivity of the vegetation signal in high biomass regions

and it strongly correlates with chlorophyll content and photosynthetic activity [5, 14]. An

unexpected result from this index was the Amazon forest “greening” in the dry season [5]. The

evidence provided by the MODIS sensor raised a debate not on the fact of the dry-season

greening of the forest, but on deciphering if this greening is more intense during drought

years or not [6, 15]. Later, it has been suggested that the observed greening during the dry sea-

son in the Amazon could be attributed to artefact of sun-sensor geometry [16, 17]. However, a

new version of EVI supports the dry season greening in the Amazon [4, 18]. This EVI is cor-

rected for the sun-sensor artefact from the multi-angle implementation of atmospheric correc-

tion algorithm (MAIAC) [19]. Furthermore, a recent analysis of seasonal canopy leaf area

index (LAI) changes estimated from independent lidar-based satellite observations over the

Amazon forest fully supports the existence of the greening [20].

While the biophysical interpretation of EVI increase remains to be fully assessed [21], recent

accumulation of evidences in the Amazon converge to a positive correlation of EVI increase

and leaf flushing. This have been observed with different types of field data such as percentage

of trees with new leaves [18, 22, 23], green crown fraction measured above the canopy with

camera [8], indirect estimation of leaf flush with litterfall [24, 25], leaf spectral reflectance mea-

surements [26] and remote-sensed changes of lidar-derived canopy leaf area index (LAI) [20].

The observations of leaf-flushing during the dry season challenge our vision of droughts in

tropical forests. The droughts may have negative impact on the forest structure and dynamics

[27], such as increase in mortality [28, 29] or reduction of tree radial growth [25]. Further-

more, tropical trees show at some extent adaptation to drought with leaf water potential at

wilting point ranging from -1.4 to -3.2 MPa [30]. But, in case of water stress, a common behav-

ior of the trees is to shed the leaves, as observed in dry tropical forest [31]. This indicates that

leaf-flushing in the heart of the dry season necessarily implies a sufficient supply of water.

Above *2000 mm of annual precipitation, global tropical forests maintain evergreen state and

present the increase of the photosynthetic capacity—the greening—during the driest season

[11]. These forests, whose canopies’ processes are observed using remote sensing, are not lim-

ited by water; they satisfy their water demands during the dry season using the supply of redis-

tributed subsurface water of the wet season [11]. Despite the leaf phenology of Amazonian

forests appears driven by sun-related variables and shows greening during dry seasons, an

analysis of the potential drivers in a continuous spatial framework is still missing [4, 5, 9, 20].

To investigate the Amazon seasonality, we model the period of increase in leaf production,

proxied by the main period of increasing remotely sensed Enhanced Vegetation Index (EVI)

[14, 32], with the seasonal increase of the potential climate drivers, i.e. precipitation and insola-

tion (proxied by maximal temperature, S1 Fig). We assume that EVI “greening” relates to sea-

sonal flush of new leaves based on recent evidences obtained in Amazonia [8, 20, 22, 23, 26].

EVI values were computed from the multi-angle implementation of atmospheric correction

algorithm (MAIAC) [19]. We used EVI normalized to a nadir view angle and 45˚sun zenith

angle to avoid artifacts from changing sun-sensor geometry over time.

Materials and methods

Satellite greenness from MODIS enhanced vegetation index (MAIAC EVI)

We used enhanced vegetation index (EVI) imagery obtained by the Moderate Resolution

Imaging Spectroradiometer (MODIS) sensor, on board the Terra and Aqua satellites (EOS

The spring of the Amazon forest
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AM, NASA) [33]. Data were processed with multiangle implementation of atmospheric cor-

rection algorithm (MAIAC) [19]. Data were obtained for 12 MODIS tiles (h10v08 to h13v10,

spanning 10˚N to 20˚S in latitude and 80˚W to 40˚W in longitude) from NASA’s Level 1 and

Atmosphere Archive and Distribution System (LAADS Web: ftp://ladsweb.nascom.nasa.gov/

MAIAC). MAIAC observations are based on MODIS Collection 6 Level 1B (calibrated and

geometrically corrected) observations, which removed major sensor calibration degradation

effects present in earlier collections. We used observations from the Terra and Aqua satellites

collected between 2000 and 2012 at 1-km spatial resolution. EVI data were corrected for bidi-

rectional reflectance effects by normalizing all observations to a fixed sun sensor geometry

(solar zenith angle of 45˚ and nadir view angle) [19]. Advanced cloud detection and aerosol-

surface retrieval in MAIAC improves the accuracy of satellite-based surface reflectances over

tropical vegetation 3 to 10 fold compared with the standard MODIS products [34].

Climate measurements

Precipitation measurements were obtained from the Tropical Rainfall Measuring Mission

(TRMM) 3B43V7 product, which provides monthly precipitation estimates at 0.25˚ spatial res-

olution, for the tropical and subtropical regions. We analyzed data from 2000 to 2013. Maxi-

mal temperature (tmx, ˚C) was obtained from monthly climate global dataset (CRU-TS3.21)

available at 0.5˚ spatial resolution, from 1901–2012, produced by the Climate Research Unit

(CRU) at the University of East Anglia [35]. Additionally, we used monthly incoming solar

radiation at the surface (rad, W.m−2) covering the period 2000–2012 at 0.5˚ spatial resolution,

estimated by the Clouds and the Earth’s Radiant Energy System (CERES) instruments onboard

the NASA Terra and Aqua satellite [36]. In preliminary analysis, we compared maximal tem-

perature from CRU and incoming radiation at the surface from CERES data. Maximal temper-

ature from CRU was highly correlated with incoming radiation at the surface from CERES

(Pearson’s r = 0.76, p-value < 0.0001, S1 Fig). Here, we used maximal temperature rather than

incoming radiation because it has previously been shown to be a good predictor of EVI season-

ality in tropical forests [25].

Vegetation land mask and altitude datasets

EVI pixels covering areas with tree cover below 80% were excluded from the analysis. Forest

masking was done using the Global forest cover loss 2000–2014 data set based on Landsat data

at 30 m spatial resolution [37]. We used the vegetation map for Brazil [38] to analyze if the sea-

sonal patterns of EVI were related to vegetation type. Additionally, to test the effect of the alti-

tude on the quality of our EVI model, we used altitude from the Shuttle Radar Topography

Mission (USGS/NASA SRTM data), resampled to 250 m spatial resolution for the entire globe

(CGIAR-CSI, version 4.1) and filled to provide seamless continuous topography surfaces [39].

Field measurements of litterfall productivity

Seasonal litterfall productivity measurements from two previously published studies were used

to estimate leaf-fall productivity [25, 40] (Table 1). It has been previously demonstrated that the

seasonal pattern of total litterfall (leaves, fruits, flowers and twigs) in this dataset is not different

from seasonal pattern of leaf-fall alone (Pearson test, t = 42.7597, df = 218, p-value< 0.001)

[25]. Furthermore, no relation between seasonal litterfall and soil types has been observed in

this dataset [40]. Here, we used only data with monthly measurements from old-growth forests,

as some sites have plots of both secondary and old-growth forests and flooded forests were

excluded. Only the sites where the model of EVI increase had a R2 above 0.8 were selected.

The spring of the Amazon forest
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While these measurements are from the largest litterfall database ever produced for South

America, some of the measurements have been made before the MODIS era.

Data preparation

The spatial resolution of all data sets, including climate variables, tree cover, land mask and

altitude, were resampled to 1 km, to match the resolution of MAIAC EVI. Inter-annual

monthly mean values of EVI were filtered using the Fourier Transform (FT) to keep only the

annual and bis-annual frequencies that compose the EVI signal (S1 Appendix). Maximal tem-

perature and precipitation inter-annual monthly mean values were computed by pixel. For the

analysis, we computed normalized EVI MAIAC (FT filtered), maximal temperature and pre-

cipitation by subtracting the mean and dividing by the standard deviation.

Models

Individual pixel EVI model. For a pixel i, i = 1, . . ., n, normalized EVI (EVIn) was mod-

eled using normalized precipitation (pre) and normalized maximal temperature (tmx) as:

EVIni;t ¼ ai
0
þ ai

1
� prei;t þ ai

2
� tmxi;t� lag þ εi;t ð1Þ

where ai
1
� 0, ai

2
� 0, εi;t � N ð0; s2=oi;tÞ and t = 1, . . ., n is a given month. Here, we assume

that EVI increase is a proxy for the production of new leaves [8, 23, 26]. To focus our evalua-

tion on the effects of leaf flushing rather than leaf aging, we limited the subsequent analysis to

the increasing part of EVI, rather than the decreasing one, which is generally related to leaf

aging (changes in morphological and biochemical leaf traits) and parasites [26, 32]. To account

for this, the coefficients of the model ai
1

and ai
2

were set to have non-negative values. To give

more importance to the fitting of the main increasing EVI period, we add an arbitrary weight,

i.e. ωi,t = 10 during a month t of the “main increase” and ωi,t = 1 otherwise. The “main

increase” was define as the longer period between a pit and a peak in the EVI time series

Table 1. Description of the study sites for litterfall measurements, adapted from [25]. For each site, reference of the articles, country, full site name and

geographical coordinates (longitude and latitude in decimal degrees) are reported. The next columns reports the type of measurements, only leaf fall (YES) or

total litterfall (NO), the number of traps, the trap size, the total area sampled, the mean litterfall productivity in Mg.ha−1.year−1 and the duration.

reference country site Latitude Longitude type trap nb trap size tot size Mean ± SE duration

[25, 40] Brazil BDFFP Reserve -2.500 -60.000 NO 18 1 18 6.59±0.675 1999/2002

[25, 41] Brazil Caracarai 1.476 -61.019 YES 75 0.25 18.75 5.36±0.19 2012/2013

[25, 40] Brazil Caxiuana -1.785 -51.466 YES 25 0.25 6.25 6.17±0.738 2005/2006

[25, 40] Brazil Cuieiras Reserve Manaus -2.567 -60.117 NO 15 0.5 7.5 8.03±0.564 1979/1982

[25, 40] Brazil Ducke -2.952 -59.944 YES 10 0.25 2.5 3.97±0.197 1976/1977

[25, 40] Brazil Jari Para -1.000 -52.000 YES 100 0.25 25 7.63±0.896 2004/2005

[25, 40] Brazil Manaus -3.133 -59.867 NO 20 0.25 5 7.24±0.607 1997/1999

[25, 42, 43] Brazil Marajoara -7.833 -50.267 NO 50 1 50 3.53±0.416 1998/2001

[25, 40] Brazil Rio Juruena -10.417 -58.767 YES 16 1 16 5.21±1.514 2003/2004

[25, 40] Brazil Sinop -11.412 -55.325 YES 20 1 20 5.27±1.116 2002/2003

[25, 44, 45] Brazil Tapajos km83 -3.017 -54.971 YES 30 1 30 5.54±0.533 2000/2003

[25, 40] Colombia Amacayacu -3.717 -70.300 YES 25 0.5 12.5 6±0.31 2004/2006

[25, 40] French Guiana Nouragues 4.084 -52.680 YES 40 0.5 20 5.88±0.64 2001/2008

[24, 25, 46, 47] French Guiana Paracou 5.279 -52.924 YES 40 0.45 18 4.77±0.311 2003/2011

[25, 40] French Guiana Piste de Saint Elie 5.333 -53.033 YES 60 1 60 5.04±0.608 1978/1981

[25, 40, 48] Peru Tambopata -12.835 -69.285 YES 25 0.25 6.25 7.16±0.607 2005/2006

https://doi.org/10.1371/journal.pone.0180932.t001
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(S1 Appendix). Finally, we minimized the weighted sum of squares of the model. This enables

us to use all months to fit the model, including the EVI decreasing months, which resulted in a

better model fit.

residualsi;t ¼ EVIni;t � ÊVIni;t ð2Þ

SSei ¼
X12

t¼1

ðoi;t � residual2

i;tÞ ð3Þ

SSti ¼
X12

t¼1

ðoi;t � ðEVIni;t � ð
X12

t¼1

wi;t � EVIni;t=12ÞÞ
2
Þ ð4Þ

R2
i ¼ 1 � ðSSei=SStiÞ ð5Þ

For each pixel i, the coefficient of determination R2
i was computed with the weights

ωt = 1: 12,i, that is, the residual sum of squares (SSei, Eq 3) and the total sum of squares

(SSti, Eq 4) were weighted. EVIn is the observed normalized EVI and̂ EVIn its prediction from

the linear model.

The determination of the time lag between the increase of maximal temperature and EVI

increase was made in two steps. First, we estimated the best EVI model for the whole area with

a lag of 0, 1, 2 and 3 months. Second, we estimated the best model of EVI increase with the

increase of maximal temperature at lag 0, 1, 2 and 3 months by pixels, by using only the pixels

where precipitation and maximal temperature are correlated below 0.2 during the increase of

EVI at all the lags. This selection discards artificial correlations between the climate variables.

Then, we compared the results by pixels of the best model selected at the first step for the

whole area (one month) and the lags obtained at the second step using the Bayesian informa-

tion criterion [49]. Finally, we kept the best model for each pixel.

Monthly leaf fall estimation (from monthly litterfall productivity measurements) were nor-

malized and smoothed using a spline with 4 degrees of freedom and compared to the normal-

ized EVI (EVIn).

Finally, the quality of the fit of the EVI model was analyzed by comparing it against the

mean annual precipitation, the mean annual maximal temperature and standard deviation, the

mean percentage of valid observations per month in MAIAC data, the periodicity of the EVI

signal, the altitude and the tree cover.

All analyses were performed using R [50]

Results

EVI greening across the Amazon forest can be explained by seasonal increase in insolation and

precipitation (Fig 1 and S8 Fig). Seasonal changes in EVI were mainly related to insolation

(70.4% of the total area) in the north-western, central and eastern part of Amazonia. EVI

greening is associated to precipitation seasonality (29.6% of the area) in continuous areas

above 5˚N (North part) and below 5˚S (South-West, South and South East part). 75.0% of the

pixels where the greening is associated to insolation follows the increase in solar radiation with

a mean lag of one month (S7 Fig). No time lag was observed in regions where greening is asso-

ciated to an increase in precipitation. The modeled EVI with precipitation and maximal tem-

perature is consistent with MAIAC EVI (S8 Fig). Inconsistent regions (R2<0.5, 6.2% of the

The spring of the Amazon forest
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forested area) have either uncommon forest structures, such as bamboo dominated forests, or

constant cloud cover inducing high noise in the EVI signal (S3 Appendix, S10 Fig)

The seasonal association of MAIAC EVI and litterfall (measured across 16 sites within the

Amazon basin, Table 1), changes depending on the climate variable associated with EVI

(Fig 2). In the sites where EVI is associated to precipitation, EVI has an negative linear relation

with litterfall (site 1-5, Fig 2). In these sites, the browning of the vegetation occurs when leaf

shedding is maximum. For most of the sites where EVI is associated to radiation a singular

temporal pattern is observed. The highest production of litterfall occurs, not when EVI is max-

imum, but when EVI increase (site 6-16, Fig 2). All these sites present a peak of litterfall even if

some of them produce litterfall in all the months of the year.

Fig 1. Spatial pattern of climate controls on leaf growing season initiation in South American tropical forests. Locations of the sites

with monthly litterfall productivity measurements are indicated by blue numbers.

https://doi.org/10.1371/journal.pone.0180932.g001
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Discussion

Despite the high diversity and different species composition of these forests, we show that EVI

greening across the Amazon forest may be explained by climate seasonality (Fig 1). The

Fig 2. Seasonal leaf production (EVI increase) and associated litterfall productivity in 16 tropical forest sites.

https://doi.org/10.1371/journal.pone.0180932.g002
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predicted EVI from precipitation and insolation is highly consistent with the observed

MAIAC EVI (S8 Fig), supporting the model’s biological assumptions: EVI increase is likely a

proxy of leaf production triggered by climate drivers. Isolated patches where the results are not

consistent (R2<0.5, 6.2% of the forested area) represent areas highly challenging for remote

sensing; that is, uncommon forest structures, such as bamboo dominated forests, constant

cloud cover resulting in high noise in EVI (S3 Appendix and S10 Fig); and may be micro-cli-

mate or local soil water retention characteristics. Comparing our modeled EVI to MAIAC EVI

reveals limitations of the remotely sensed EVI that cannot be discovered with classic remote

sensing analysis (such as classifications) which does not consider the biophysical nature of the

signal. Additionally, it gives a biological interpretation of EVI derived from optical measure-

ments of reflected electromagnetic radiation.

It was previously shown that the difference of mean wet and dry season EVI (ΔEVI(wet−dry))

is associated to water availability for the canopy processes in tropical forests, globally [11]. The

authors found that ΔEVI(wet−dry) is positive in forests with precipitation < 2000 mm.yr−1, while

negative in region with no water limitations. Our results agree with this study. In water-limited

regions, where precipitation is the main control of EVI seasonality, the lowest EVI is observed

during the driest period. Additionally, here we show that for forests without water limitations

(highest EVI during the dry periods), seasonal radiation increase is likely the climate control of

EVI greening, as already observed for several sites in tropical forests [4, 5, 25, 51]. These results

refute the general intuition found in the literature regarding the negative effect of dry seasons

or seasonal droughts on tropical forest dynamics [27]; for example, seasonal or temporary

droughts are known to increase the mortality of trees [28, 29] and to reduce tree growth [25].

However, we show that the dry season consequences on the canopy functioning is not always

stress. This is confirmed by dry season observations of leaf flushing [8, 20, 22, 23, 31, 52, 53];

and photosynthesis increase from flux towers [9, 54] and satellite remote sensing [4, 5, 11, 18,

51]. This indicates that during the dry season, these forests might not be limited by water.

From ours and previous results based on EVI [11], we further referred to water-limited and

light-limited for the forest where EVI seasonality is associated to water or radiation,

respectively.

In light-limited forests, EVI peaked during the period of increasing insolation, likely as a

result of increased new leaf production [3, 5–7, 11, 22, 23, 51]. While not all the species have

annual leaves production cycle, field observations of proportion of trees with news leaves in

light-limited forest support this result [8, 18, 22]. Here, the greening follows the increase in

solar radiation with a mean time lag of one month (75.0% of the light limited pixels, S7 Fig);

which is consistent with dry season field and satellites observations of leaf flushing, which

occurred several weeks after increase in insolation in tropical forests [9, 23, 51, 55, 56]. The

bud break preceding synchronous greening of tropical forests are caused by an environmental

signal perceived weeks before leaf emergence and this has been ignored by previous remote

sensing studies [10, 57]. The time lag observed here may have three explanations. First, it

could be caused by the sensitivity of trees to seasonal changes in climate. A gradual increase in

insolation might be a climate signal more subtle to perceive than the rapid transition from dry

to wet season, and could explain why leaf flush is not synchronized with the increase of insola-

tion. Second, in the absence of a strong signal during the dry season, the observed time lag

may also be related to the production of bud and subsequent bud break if the buds have not

been produced on the trees during the rainy season and need time to develop following the

increase of insolation. Third, the time lag could reflect yet-unknown endogenous driver of leaf

production. For instance, we know that individuals of the same species can present differences

in the timing of leaf flush [53] and that leaf renewal and/or net leaf abscission also occur during

the entire year unrelated to climate variations [3, 4, 10, 25, 51]. The 1km spatial resolution of

The spring of the Amazon forest
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EVI MAIAC integrates the changes in the canopy of all the trees in this area. While it exists a

variability between species and individuals, remarkably, the change of the canopy properties

visible from space seems to indicate that in light-limited forests an important proportion of

the trees flush their leaves during the dry season. The time lag may thus be pragmatically

viewed as the mean response time between insolation increase and the flushing of new leaves.

In water-limited regions, greening is associated with an increase in precipitation. This is

consistent with observations in dry tropical forests, where the timing of synchronous bud

break of leafless trees varied from year to year with the first rains of the wet season, as irriga-

tion caused bud break within a few days [58]. This also suggests that the leaf buds are already

set up but stay dormant during the dry season. The relationship between seasonal changes in

MAIAC EVI and litterfall (Fig 2) confirms two major assumptions about leaf fall seasonality in

tropical forests. First, abscission due to the seasonal production of new leaves in response to

increased light availability when water is not limited, and second, leaf shedding due to high

evaporative demand in water limited environments [3, 8, 25, 40, 51, 59, 60].

In water-limited forests where the seasonal leaf fall responds to high evaporative demand

[25], the leaf fall peaks when minimum EVI values are observed. The linear relation between

EVI and leaf fall suggests that the EVI seasonality of these regions is mainly explained by the

net loss or gain of leaves (Fig 2). In light-limited forests, minimum EVI was mostly not syn-

chronized with maximum litterfall (Fig 2). This supports previous results showing that EVI

browning is more likely related to leaf aging and parasites in these regions [26, 32, 61]. While

in light-limited forests, leaf fall seasonality could be mainly explained by the coordination in

time of leaf growth with senescence [8, 20, 23], in water-limited forests, leaf fall is not synchro-

nous with leaf production (Fig 2). Leaf demography models [8] should account for this differ-

ence in order to be representative of the whole Amazon. More studies of leaf renewal based on

field and remote remote sensing data [8, 20, 23] are needed to confirm the direct link between

increase EVI and new leaves production.

Conclusion

Subtropical and tropical seasons are generally defined in terms of dry or wet season, but here

we show that this definition is not correct in the Amazonian forest regions without water con-

straints. In 70.4% of the Amazon forest, the increase in insolation triggers the visible progress of

leaf growth and this process occurs in a sufficient proportion of the trees to be observed from

satellites, just like during spring in temperate forests [62]. Direct and strong climate environ-

mental signals trigger leaf growing season, which supports the hypothesis of a leaf production

optimized for carbon gain under seasonal resource availability [56, 58, 60]. In absence of water

limitation, the leaf production follows the solar insolation, while in water-limited regions, trees

quickly produce leaves with the first rains to benefit from high insolation at the end of the dry

season. This high dependency of seasonal leaf renewal on climate, previously largely underesti-

mated [63], may indicate a high sensitivity of these ecosystems to climate change.

Supporting information

S1 Fig. Correlation between monthly maximal temperature from climate research unit

[35] and monthly incoming solar radiation at the surface from CERES [36]. The data have

been extracted from a grid of 0.5˚ spatial resolution over the studied area spanning from 40˚W

to 80˚W in longitude and from 20˚S to 10˚N in latitude. The two variables have been normal-

ized, using their monthly mean and standard deviation. The red dashed line is the identity line

y = x and the Pearson’s correlation coefficient is given.
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S2 Fig. Seasonality of EVI, precipitation and maximal temperature described by the num-

ber of seasonal cycles during a year (12 indicates one peak every 12 months and 6 two

peaks a year).

(EPS)

S3 Fig. Coefficient of determination of the model of EVI increase, from a linear model

with only precipitation and maximal temperature (with a lag of 1 month for the whole

area). The seasonal pattern of increasing EVI is predicted with an R2 above 0.6 for 85.1% of

the region of interest. Regions shown are 1–Acre, 2–Roraima and 3–Venezuela. Detailed

results are given in supplementary text for these regions.
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S4 Fig. Normalized monthly time series of EVI, precipitation, and maximal temperature

for 10000 pixels in the regions Acre (region 1), Roraima (region 2) and Venezuela (region

3).
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S5 Fig. Coefficient of determination (R2) of the model with only precipitation and maxi-

mal temperature (with a lag of 1 month for the whole area) and distribution of bamboo

dominated forests in Acre extracted from the Brazilian vegetation map of 2005 [38].

(EPS)

S6 Fig. Relation between elevations, MAIAC data characteristics and model fitting quality

in the Roraima region. Elevation map of the Roraima region (region 2). Mean percentage of

valid EVI MAIAC observations per months to estimate EVI and isoclines of altitude (b). Sig-

nificative lag with maximal temperature (c). Quality of the fit (R2) of the model of EVI increase

with precipitation and maximal temperature with a lag of 1 month and isoclines of altitude

(d). Quality of the fit (R2) after accounting for the best time lag with maximal temperature and

isoclines of altitude (e).

(EPS)

S7 Fig. Estimated time lags in months and by pixels between the increase of EVI and the

increase of maximal temperature.

(EPS)

S8 Fig. Quality of fit of the EVI model accounting for the time lags by pixels between the

increase of EVI and the increase of maximal temperature, from a linear model with only

precipitation and maximal temperature (time lag between 0 and 3 months). The seasonal

pattern of increasing EVI is predicted with a R2 above 0.7 for 84.75% of the region of interest.

(EPS)

S9 Fig. RMSE of the EVI model accounting for the time lags between the increase of EVI

and the increase of maximal temperature (estimated by pixels), from a linear model with

only precipitation and maximal temperature (with a time lag between 0 and 3 months).

(EPS)

S10 Fig. Association of annual climate variable statistics with climate controls. Quantile of

mean annual precipitation (a), standard deviation of mean annual maximal temperature (b)

and percentage of mean number of valid 8 day observations that were used to calculate the

mean monthly values (c) in the five classes of climate associations with EVI. Only pre indicates

pixels only associated with precipitation, only tmx indicates pixels only associated with maxi-

mal temperature, pre > tmx indicates that the part of EVI variance explained by precipitation

is higher than the part of EVI variance explained by maximum temperature and pre < tmx
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indicates that the part of EVI variance explained by maximum temperature is higher than the

part of EVI variance explained by precipitation. No effect indicates pixels where EVI had no

associations with precipitation and maximal temperature.

(EPS)

S11 Fig. Association of the the model fit (R2) with annual climate characteristics and num-

ber of EVI observations. Associations are presented for all the 1 km2 forested pixels in the

studied area spanning from 40˚W to 80˚W in longitude and from 20˚S to 10˚N in latitude

with annual precipitation (a), annual maximal temperature (b), percentage of mean number of

valid 8 day observations that were used to calculate the mean monthly values (c), periods in

the EVI signal (d), Altitude (e) and tree cover (f).

(EPS)
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27. Bonal D, Burban B, Stahl C, Wagner F, Hérault B. The response of tropical rainforests to drought—

lessons from recent research and future prospects. Annals of Forest Science. 2016; 73:27–44. https://

doi.org/10.1007/s13595-015-0522-5 PMID: 27069374

28. Phillips OL, Aragao LEOC, Lewis SL, Fisher JB, Lloyd J, Lopez-Gonzalez G, et al. Drought Sensitivity

of the Amazon Rainforest. SCIENCE. 2009; 323(5919):1344–1347. https://doi.org/10.1126/science.

1164033 PMID: 19265020

29. Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G. Mortality of large trees and lianas following

experimental drought in an amazon forest. Ecology. 2007; 88(9):2259–2269. https://doi.org/10.1890/

06-1046.1 PMID: 17918404
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