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Abstract
Dengue is an emerging threat to billions of people worldwide. In the last 20
years, the incidence has increased four-fold and this trend appears to be
continuing. Caused by one of four viral serotypes, dengue can present as a
wide range of clinical phenotypes with the severe end of the spectrum being
defined by a syndrome of capillary leak, coagulopathy, and organ impairment.
The pathogenesis of severe disease is thought to be in part immune mediated,
but the exact mechanisms remain to be defined. The current treatment of
dengue relies on supportive measures with no licensed therapeutics available
to date. There have been recent advances in our understanding of a number of
areas of dengue research, of which the following will be discussed in this
review: the drivers behind the global dengue pandemic, viral structure and
epitope binding, risk factors for severe disease and its pathogenesis, as well as
the findings of recent clinical trials including therapeutics and vaccines. We
conclude with current and future dengue control measures and key areas for
future research.
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Introduction
Dengue has emerged in the last two decades as the most abundant 
vector-borne viral infection globally. The dengue virus belongs to 
the Flavivirus family and has four serotypes (DENV1-4), which are 
clinically indistinguishable. Latest estimates suggest 390 million 
infections of dengue occur each year, of which 100 million result in 
symptomatic disease1. Dengue may present as a spectrum of clini-
cal syndromes from dengue fever, a non-specific febrile illness, 
through to severe dengue (Box 1) (replacing the original classi-
fication of dengue fever/dengue hemorrhagic fever [DHF]2). The 
2009 World Health Organization (WHO) dengue guidelines have 
outlined a number of warning signs (Box 2) to assist triaging the 
often vast numbers of patients that can present to clinics in endemic 
areas; however, the ability to predict which patients will progress to 
severe disease remains challenging.

Box 1. Criteria for severe dengue

•	 Severe	plasma	leakage	leading	to	

1)	 Shock	and/or

2)	 Fluid	accumulation	with	respiratory	distress

•	 Severe	bleeding	

•	 Severe	organ	involvement	

Liver:	alanine	transaminase	or	aspartate	aminotransferase	
>=1000

Central	nervous	system:	impaired	consciousness

Heart	and	other	organs

Box 2. Criteria for dengue warning signs, taken from the 
2009 WHO classification

-	 Abdominal	pain	or	tenderness

-	 Persistent	vomiting

-	 Clinical	fluid	accumulation

-	 Mucosal	bleed

-	 Lethargy/restlessness

-	 Liver	enlargement	>2	cm

-	 Laboratory	increase	in	hematocrit	concurrent	with	rapid	
decrease	in	platelet	count

One of the defining features of severe disease is increased capil-
lary permeability causing plasma leakage, which can lead to intra-
vascular volume depletion and, if left untreated, shock and death. 
The underlying mechanisms for progressing to severe disease 
have not been fully elucidated, but due to the strong association 
of severe dengue and secondary infection with a different sero-
type, an immune-mediated pathogenesis has been postulated. Both 
T-cell-mediated immunopathogenesis3 and antibody-dependent 
enhancement (ADE) have been implicated4. Because of the potential 
for more severe outcome in sequential infections, developing a safe 
and balanced vaccine for all four serotypes has been challenging5.

This review will focus on recent advances in understanding the 
drivers of the dengue pandemic, viral structure and epitope binding, 

clinical severity and potential risk factors, plus recent studies inves-
tigating the pathogenesis and therapeutic options, concluding with 
strategies for disease control and future directions.

Global expansion and disease burden
Over the past 30 years, there has been a huge expansion in the 
transmission of dengue, and currently it is endemic in more than 
100 countries2. Over 70% of the global burden lies in South and 
South-East Asia, but more recently case numbers have exploded 
in other parts of Asia, Latin America, and the Caribbean. Although 
harder to quantify, the African continent has also witnessed a sig-
nificant increase in cases, with outbreaks reported from a number 
of East and West African countries6,7. It has also become apparent 
in recent years that developed countries are at risk, with small out-
breaks being reported more from Southern Europe, the USA, and 
northern Australia. In 2012, Europe experienced its first dengue 
epidemic since the 1920s when over 2000 cases and 120 hospital 
admissions were reported from the Portuguese island of Madeira8. 
The origin of this outbreak was most likely from a viremic traveler 
from Venezuela, taking into account the volume of travel to Madeira 
from dengue endemic countries, seasonality in these countries, and 
also genetically similar viruses circulating in Venezuela at the time 
of the outbreak9. A similar although smaller outbreak occurred in 
Japan in 2014, again thought to have involved a viremic traveler 
with ongoing autochthonous spread associated with a large park 
in Tokyo10.

Overall, the drivers behind the global expansion in disease are 
thought to include certain vector and host factors, including the 
urban-adapted Aedes mosquito vector becoming newly established 
in many areas of the world through distribution on cargo ships, glo-
balization, and increase in breeding sites through rapid and often 
poorly planned urbanization of cities11. Other suggested factors 
include climate change and increase in population mobility and 
air travel12,13. These factors combined with ineffective vector con-
trol programs and no licensed therapeutics or vaccines has meant 
dengue is now a public health threat for two-thirds of the world’s 
population.

Viral structure and epitope binding
The dengue virus is a single-stranded, positive-sense enveloped 
RNA virus, 50 nm in diameter. The dengue virus genome encodes 
three structural proteins (capsid [C], precursor membrane [prM], 
and envelope [E]) and seven non-structural proteins (NS1, NS2A, 
NS2B, NS3, NS4A, NS4B, and NS5).

Studies using cell culture have shown prM and E insert into the 
virion membrane to form the glycoprotein shell of the virus. During 
viral production and assembly, there is a complex series of rear-
rangements of prM and E. The virus is assembled in the endoplas-
mic reticulum, where 180 copies of both prM and E associate into 
trimeric spikes, each containing three prM and three E proteins14. 
prM acts as a chaperone protecting the hydrophobic fusion loop of 
E from triggering premature fusion with host cell membranes. As 
the virion traffics through the Golgi, furin protease cleaves prM, 
and as the virion is secreted from the cell the cleaved pr polypeptide 
is released and the E protein rearranges into 90 dimers, giving a 
smooth mature virus particle15. Following adhesion to poorly charac-
terized cellular receptors, the virus is endocytosed and acidification 
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of the endocytic vesicle then triggers E to reassociate from dimers 
to trimers, which exposes the fusion loop, allowing the virion to 
fuse with the endocytic membrane, releasing the viral RNA into the 
host cell cytoplasm16. One further complication of this is that furin 
cleavage of prM is often incomplete, leading to the production of 
virions with varying amounts of cleaved and uncleaved prM17,18.

The E protein has three domains (DI-III), is required for receptor 
binding and cell fusion and entry19, and is the major target for neu-
tralizing antibodies, with potent neutralizing mouse monoclonal 
antibodies binding to epitopes on the DIII region20,21. The most 
potent human antibodies appear to bind to conformationally sen-
sitive epitopes that are only found on intact virions and not with 
denatured or monomeric E protein22. It is now clear that the binding 
of some antibodies is limited by the accessibility of their epitopes, 
and that breathing of the virion and conformational change in the 
arrangement of E in the virion lattice may be required for binding23. 
In addition, broadly neutralizing anti E monoclonal antibodies 
directed at DII have been found to increase their avidity follow-
ing secondary infection24. There are a number of serotype-specific 
human monoclonal antibodies which also recognize quaternary 
epitopes: HM14C10, 5J7, and 1F4 bind epitopes across three 
adjacent E monomers, whilst 2D22 binds across the E dimer25–28. 
Antibodies to prM are produced at high levels following dengue 
infection, but they are very poor at neutralizing infection, reaching 
a threshold of activity with none able to fully neutralize infection29. 
During the process of viral maturation, prM is cleaved, so anti-prM 
antibodies may fail to neutralize many viral particles because the 
antibody binding threshold required for neutralization will not be 
met. As mentioned above, the cleavage of prM is, however, fre-
quently incomplete, which means that many virions contain enough 
prM to drive ADE but insufficient to promote neutralization. In 
addition, immature viruses which are usually non-infectious and 
which have a high density of uncleaved prM can become infectious 
to cells via ADE17,29.

An exciting recent development by our group is the discovery of 
a new class of antibodies directed at a novel epitope: the E dimer 
epitope (EDE), which is capable of potently neutralizing all four 
dengue serotypes30. The structure of these broadly neutralizing 
antibodies was characterized using X-ray crystallography and 
cryo-electron microscopy, and revealed that they recognized a 
serotype-invariant site that is located at the E-dimer interface, which 
includes contacts to the main chain of the E fusion loop31. This is 
also the binding site of prM during viral maturation, as previously 
described32. This has major implications for the future development 
of a subunit vaccine.

Other advances have recently been made in determining the struc-
ture and function of the NS1 protein. NS1 is a 50 kDa glycoprotein 
that is secreted from dengue-infected cells and can be detected in 
the patient’s serum from early in the disease through to several days 
after defervescence. NS1 may play a role in the pathogenesis of 
severe disease, as higher levels have been detected in dengue shock 
patients33. Further work has identified that NS1 is secreted from 
infected cells as a hexamer, which creates a barrel shape around a 
lipid core34, and using cryo-electron microscopy the assembly and 
antibody binding of NS1 have also been described35,36. Antibodies 

against NS1 may be a potential therapeutic target, and modified 
NS1 may provide an alternative vaccine strategy37.

Clinical severity and risk prediction
The severe manifestations that develop in a small proportion of 
dengue-infected patients occur relatively late in the course of the 
illness, usually day 4–6, at the time of fever clearance. The most 
common severe manifestation is vascular leakage, which can lead 
to hemodynamic compromise, shock, and death. In addition, bleed-
ing from mucosal surfaces and organ impairment in the form of 
hepatitis, myocarditis, and encephalitis can occur. This 48-hour 
period around defervescence has been classed as the “critical 
phase” and is the time when patients require closer monitoring. The 
WHO updated their classification and guidelines in 2009 to incor-
porate a set of warning signs to identify higher risk patients. These 
include a set of signs and symptoms and laboratory parameters to 
guide clinicians as to which patients are at a higher risk for disease 
progression (Box 2). In addition, several studies have identified cer-
tain risk factors that can influence disease severity in dengue; these 
include specific host and viral factors that likely act in concert to 
determine the disease phenotype38.

Viral factors include both the infecting serotype and the genotype 
of the virus, with certain genotypes within each serotype considered 
more virulent than the others, and have been linked to outbreaks 
of severe disease39,40. Higher viral loads have been associated with 
disease severity in both primary and secondary dengue and with 
different serotypes41,42.

The underlying immune status of the host is one of the most impor-
tant factors in determining disease outcome, with a primed immune 
response, under certain conditions, facilitating a higher viral infected 
cell mass through ADE43 and original antigenic sin44, which will be 
discussed further in the pathogenesis section below. Other host fac-
tors include age of the host, with children more likely to experience 
plasma leakage and shock, and adults more likely to develop organ 
impairment and significant bleeding45. Elderly patients and those 
with co-morbidities, including diabetes and hypertension, have also 
been found to be at an increased risk of severe dengue46, possibly 
due to pre-existing endothelial dysfunction in this group. Female 
sex and age of less than 5 years have also been identified as risk 
factors for poor outcomes47. Genetic predisposition is also likely 
to play a role, with a genome-wide association study in Vietnam 
identifying two loci that were associated with severe disease, MICB 
and PLCE148, and a further study confirming these loci were also 
associated with less severe forms of dengue, as well as with dengue 
in infants49. Other genetic factors that have been shown to affect dis-
ease severity include certain HLA alleles, variations in the vitamin 
D receptor and Fc gamma receptor IIa, and also CD209 (G allele 
variant of DCSIGN1-336)50–52.

Pathogenesis of severe disease
There have been several recent advances in understanding den-
gue’s pathogenesis; however, the exact mechanisms remain to be 
fully defined. The observation that severe dengue occurs more fre-
quently in secondary infections may be explained by ADE, where 
heterotypic non-neutralizing antibodies from a previous dengue 
infection facilitate viral binding to Fc receptors of monocytes and 
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macrophages, leading to higher viral loads and more marker inflam-
matory response43. In addition, cross-reactive memory T cells also 
appear to play an important role in triggering the inflammatory cas-
cade. The exact role of CD8+ T cells in the pathogenesis of severe 
disease is a rapidly evolving field, with some studies suggesting 
a pathogenic role with higher frequencies of cross-reactive CD8+ 
T cells being found in severe disease during secondary infections. 
Cells of low affinity for the infecting virus but higher affinity for 
other, presumed previous serotypes may be less effective at clearing 
the infection, resulting in a higher viremia. However, other stud-
ies suggest an HLA-linked protective role of CD8+ cells with a 
robust multifunctional response being associated with less severe 
disease53. Further work has demonstrated the T cell response was 
most marked to NS3 protein, with high cytokine and low CD107a 
(a marker of cell degranulation) predominating54. The resulting 
cytokine release, particularly tumor necrosis factor alpha and other 
vasoactive mediators, may then play a role in the increase in capil-
lary permeability seen in severe dengue55–57.

The mechanisms linking these immunopathogenesis studies to 
vascular injury are still lacking. NS1 has been implicated in the 
pathogenesis of vascular leak. High levels of the soluble NS1 have 
been identified in patients’ plasma, from early in the disease and 
for up to 2 weeks later41, and like the viral load, NS1 antigenemia 
appears to correlate with disease severity33. NS1, along with the 
viral E protein, are able to bind to heparan sulfate, one of the major 
glycosaminoglycans (GAGs) in the glycocalyx of the endothelial 
cell layer58,59. The glycocalyx consists of a negatively charged net-
work of glycoproteins, proteoglycans, and GAGs that covers the 
luminal surface of the microvascular endothelium. It provides size 
and charge selectivity to the capillary wall permeability, as well as 
acting as a transducer of sheer stress60. The adherence of NS1 and 
of the DENV E protein to the glycocalyx, and the resulting dam-
age, could alter the permeability properties of the microvascular 
layer, which may contribute to the characteristic vascular leak that 
is associated with severe dengue58,59,61.

NS1 and anti-NS1 antibodies have also been implicated in the 
pathogenesis of thrombocytopenia and coagulopathy that is char-
acteristic in dengue62,63. NS1 can also activate complement, which 
may contribute to the vascular leak through the generation of 
anaphylatoxins and the terminal complement complex SC5b-959. 
High plasma levels of NS1 and SC5b-9 in dengue patients corre-
lated with disease severity, and were also detected along with the 
anaphylatoxin C5a in the pleural fluid of dengue shock patients. 
In addition, anti-NS1 antibodies have been implicated in comple-
ment-mediated cytolysis and endothelial cell damage64,65. Recent 
in vitro studies have demonstrated that NS1 can alter endothelial 
monolayer integrity through the activation of Toll-like receptor 4 
on peripheral blood mononuclear cells66, and altered endothelial 
permeability was prevented in mice by blocking NS1 through vac-
cination and monoclonal antibodies to NS167.

Other immunological parameters that may play a role in the patho-
genesis of severe dengue include plasmablast frequency, with high 
levels correlating with the critical phase68, mast cell activation 
and mast-cell-derived mediators, particularly vascular endothelial 
growth factor69,70, and antibody-immune complexes71,72.

Current and novel therapeutic options
The current management of dengue relies on supportive treatment 
in the form of close monitoring for any of the “warning signs” and 
careful fluid balance for those identified to have capillary leak. 
Intravenous fluid is usually only required for patients with signifi-
cant vascular leak and hemodynamic instability, or patients unable 
to tolerate oral fluids. The current WHO management guidelines 
recommend the initial use of crystalloid solutions, followed by col-
loid solutions for patients with profound or unresponsive shock2. 
Further trials are required to investigate whether earlier intervention 
with a colloid solution would benefit patients with dengue shock. 
Also fluid management in adult/elderly patients and those with 
co-morbidities is required, as evidence from randomized controlled 
trials in these groups are lacking.

There have been several disappointing therapeutic trials in dengue 
investigating both antivirals and adjunctive therapies. Two recent 
antiviral trials studying balapiravir in Vietnam and celgosivir in 
Singapore failed to demonstrate any beneficial effect on viremia or 
clinical outcome73,74.

In addition, adjunctive therapies have yet to demonstrate any disease- 
modifying effect. The anti-malarial drug chloroquine, although it 
showed promising antiviral effects in vitro75, did not translate into 
a reduction in viremia or NS1 duration in a randomized control-
led trial in adult dengue patients76. Immunomodulation with corti-
costeroids has also failed to alter disease severity both in patients 
with established dengue shock and also when given early in the 
disease course77,78. A study using intravenous immunoglobulin did 
not impact on the development of severe thrombocytopenia79, nor 
did prophylactic platelet transfusions have any benefit on bleeding 
manifestations in adult patients with severe thrombocytopenia80.

In vitro studies have shown lovastatin is able to interrupt the DENV 
assembly pathway81 and increase survival in animal models82. 
A human study investigating lovastatin in early dengue has just been 
published, again showing no benefit in modifying dengue clinical 
outcomes83. It is anticipated that dengue drug discovery in the next 
few years will be assisted by improved animal models for dengue84 
and also the possibility of a human infection model85.

New strategies for dengue control
Efforts to control the spread of dengue in the last two decades have 
failed, mainly due to the lack of a licensed vaccine and difficulties in 
controlling the major global vectors Aedes aegypti mosquitoes and, 
more recently, Aedes albopictus86. These day-biting, anthropophilic 
mosquitoes are highly adapted to the urban environment, breeding 
primarily in man-made water containers. Previously, vector control 
efforts were aimed at the elimination of the container breeding sites, 
improved access to piped water supplies, and improved manage-
ment of water storage. The use of larvicides and insecticides were 
mainly used during outbreaks and had many limitations, including 
resistance87. However, new technologies showing some promise 
for future dengue control are biologic and genetic modification of 
mosquitoes. The intracellular bacterium Wolbachia, when intro-
duced into Aedes mosquitoes, can influence the ability of the insects 
to transmit the virus, indirectly by reducing the mosquito’s life 
span and directly by reducing viral replication in the mosquito88,89. 
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Field trials are underway in Vietnam90 and Australia91 (also Brazil 
and Indonesia), and have demonstrated successful invasion of Wol-
bachia-infected mosquitoes into natural mosquito populations at 
the release sites92. In addition, there are some promising results of 
genetically manipulated mosquitoes with engineered sterile male 
Aedes mosquitoes in field trials in the Cayman Islands93.

Although currently there is no global dengue vaccine available 
for public health use, in the last 2 months the first ever dengue 
vaccine (CYD-TDV, Sanofi-Pasteur) was licensed in Mexico fol-
lowed by the Philippines, in addition there are several candidate 
vaccines in different phases of development, e.g. live attenuated, 
inactivated whole virus, and subunit and recombinant vaccines. 
Several live attenuated vaccines have progressed to clinical trials, 
but the concern for ADE with an unbalanced response to all four 
serotypes has been a major challenge. The lead candidate and 
recently licensed in 2 countries is a tetravalent live attenuated vac-
cine (CYD-TDV, Sanofi-Pasteur) has recently completed the first 
phase III dengue vaccine trial in Asia94 and Latin America95. The 
overall vaccine efficacy was 56.5% in Asian children and 64.7% in 
slightly older children in Latin America. However, this varied by 
serotype, with poor efficacy for DENV-2 of only 35% in the Asian 
study and 42.3% in Latin America, and also varied depending on 
background flavivirus immunity, with poor efficacy demonstrated 
in flavivirus-naive people. A further study has recently been pub-
lished reporting the results of the first long-term follow up (3 years 
post vaccination) of the CYD-TDV vaccine and has shown contin-
ued benefit in vaccinated children aged 9–16 years. However, in the 
younger age group (<9 years), there was an increase in hospitaliza-
tion when compared to unvaccinated subjects96.

These studies have also highlighted the need to improve our under-
standing of the immunological correlates of disease, as neutralizing 
antibodies to all four serotypes were demonstrated among vac-
cines in an earlier phase of the study but did not translate to equal 
protection.

Other live attenuated vaccine candidates have reported promis-
ing results from phase 1 trials, including NIH Δ30 and DENVax 
from Takeda97–99. DENV-1, -3, and -4 of NIH Δ30 candidate were 
attenuated by deleting 30 nucleotides at the 3’ untranslated region 
of the viral genome, while DENV-2 was generated by replacing the 
DENV-4 prM and E genes with those from DENV-2. DENVax is a 
live attenuated DENV-2 backbone with three recombinant vaccine 
viruses (serotypes 1, 3, and 4) expressing prM and E genes98.

Whole inactivated tetravalent vaccines may offer a safer alternative 
strategy, and a recent study in macaques demonstrated good immu-
nogenicity when the vaccine was combined with an adjuvant100. 
Subunit vaccines using the DENV E protein (domain III) as the 
major immunogen have shown potential in preclinical trials101, 
and a subunit vaccine (DEN-80E) developed by Merck has now 
progressed to clinical trials102. With the recent identification of a 
conserved epitope on the E protein (EDE), this is an area that is 
likely to develop further in the future30. As with testing novel den-
gue therapeutics, vaccine efficacy studies should also benefit from 
potential human infection models in the near future103.

Conclusion and future direction
Dengue is one of the world’s most rapidly emerging diseases, and 
as incidence continues to rise in endemic areas, and transmission 
in new regions of the world becomes established, there are major 
public health challenges ahead. There have been recent advances in 
our understanding of the epidemiology, risk factors for severe dis-
ease, and pathogenesis, plus the identification of therapeutic targets, 
which may lead to novel treatments. Improved animal and human 
infection models should lead to better understanding of disease evo-
lution and assist drug development. In addition, the advance in the 
study of human monoclonal antibodies has opened up a new avenue 
for vaccine development, which should concentrate on inducing 
the potent neutralizing anti-EDE antibodies against all four sero-
types and avoid anti-prM antibodies, which have low neutralizing 
activity and high potential to enhance viral infection through ADE. 
Future randomized controlled trials of novel therapeutics and flu-
ids, including in adults, will be required to guide evidence-based 
practice in all patient groups. With the possibility that the first ever 
dengue vaccine may be licensed in more countries in the next cou-
ple of years, and the further deployment of Wolbachia bio-control, 
reversing the spread of dengue may now be a real prospect.
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