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Abstract

GenBank, the EMBL European Nucleotide Archive and the DNA DataBank of Japan,

known collectively as the International Nucleotide Sequence Database Collaboration or

INSDC, are the three most significant nucleotide sequence databases. Their records are

derived from laboratory work undertaken by different individuals, by different teams,

with a range of technologies and assumptions and over a period of decades. As a conse-

quence, they contain a great many duplicates, redundancies and inconsistencies, but

neither the prevalence nor the characteristics of various types of duplicates have been

rigorously assessed. Existing duplicate detection methods in bioinformatics only address

specific duplicate types, with inconsistent assumptions; and the impact of duplicates in

bioinformatics databases has not been carefully assessed, making it difficult to judge the

value of such methods. Our goal is to assess the scale, kinds and impact of duplicates in

bioinformatics databases, through a retrospective analysis of merged groups in INSDC

databases. Our outcomes are threefold: (1) We analyse a benchmark dataset consisting

of duplicates manually identified in INSDC—a dataset of 67 888 merged groups with

111 823 duplicate pairs across 21 organisms from INSDC databases – in terms of the

prevalence, types and impacts of duplicates. (2) We categorize duplicates at both se-

quence and annotation level, with supporting quantitative statistics, showing that differ-

ent organisms have different prevalence of distinct kinds of duplicate. (3) We show that

the presence of duplicates has practical impact via a simple case study on duplicates, in

terms of GC content and melting temperature. We demonstrate that duplicates not only

introduce redundancy, but can lead to inconsistent results for certain tasks. Our findings

lead to a better understanding of the problem of duplication in biological databases.
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Introduction

Many kinds of database contain multiple instances of re-

cords. These instances may be identical, or may be similar

but with inconsistencies; in traditional database contexts,

this means that the same entity may be described in con-

flicting ways. In this paper, as elsewhere in the literature,

we refer to such repetitions—whether redundant or incon-

sistent—as duplicates. The presence of any of these kinds

of duplicate has the potential to confound analysis that ag-

gregates or reasons from the data. Thus, it is valuable to

understand the extent and kind of duplication, and to have

methods for managing it.

We regard two records as duplicates if, in the context of a

particular task, the presence of one means that the other is

not required. Duplicates are an ongoing data quality problem

reported in diverse domains, including business (1), health

care (2) and molecular biology (3). The five most severe data

quality issues in general domains have been identified as re-

dundancy, inconsistency, inaccuracy, incompleteness and un-

timeliness (4). We must consider whether these issues also

occur in nucleotide sequence databases.

GenBank, the EMBL European Nucleotide Archive

(ENA) and the DNA DataBank of Japan (DDBJ), the three

most significant nucleotide sequence databases, together

form the International Nucleotide Sequence Database

Collaboration (INSDC) (5). The problem of duplication in

the bioinformatics domain is in some respects more acute

than in general databases, as the underlying entities being

modelled are imperfectly defined, and scientific under-

standing of them is changing over time. As early as 1996,

data quality problems in sequence databases were

observed, and concerns were raised that these errors may

affect the interpretation (6). However, data quality prob-

lems persist, and current strategies for cleansing do not

scale (7). Technological advances have led to rapid gener-

ation of genomic data. Data is exchanged between reposi-

tories that have different standards for inclusion.

Ontologies are changing over time, as are data generation

and validation methodologies. Data from different individ-

ual organisms, with genomic variations, may be conflated,

while some data that is apparently duplicated—such as

identical sequences from different individuals, or even dif-

ferent species—may in fact not be redundant at all. The

same gene may be stored multiple times with flanking re-

gions of different length, or, more perniciously, with differ-

ent annotations. In the absence of a thorough study of the

prevalence and kind of such issues, it is not known what

impact they might have in practical biological

investigations.

A range of duplicate detection methods for biological

databases have been proposed (8–18). However, this

existing work has defined duplicates in inconsistent ways,

usually in the context of a specific method for duplicate

detection. For example, some define duplicates solely on

the basis of gene sequence identity, while others also con-

sider metadata. These studies addressed only some of the

kinds of duplication, and neither the prevalence nor the

characteristics of different kinds of duplicate were

measured.

A further, fundamental issue is that duplication (redun-

dancy or inconsistency) cannot be defined purely in terms

of the content of a database. A pair of records might only

be regarded as duplicates in the context of a particular ap-

plication. For example, two records that report the coding

sequence for a protein may be redundant for tasks that

concern RNA expression, but not redundant for tasks that

seek to identify their (different) locations in the genome.

Methods that seek to de-duplicate databases based on spe-

cific assumptions about how the data is to be used will

have unquantified, potentially deleterious, impact on other

uses of the same data.

Thus definitions of duplicates, redundancy and incon-

sistency depend on context. In standard databases, a du-

plicate occurs when a unique entity is represented

multiple times. In bioinformatics databases, duplicates

have different representations, and the definition of ‘en-

tity’ may be unclear. Also, duplicates arise in a variety of

ways. The same data can be submitted by different

research groups to a database multiple times, or to differ-

ent databases without cross-reference. An updated ver-

sion of a record can be entered while the old version

still remains. Or there may be records representing the

same entity, but with different sequences or different

annotations.

Duplication can affect use of INSDC databases in a var-

iety of ways. A simple example is that redundancy (such as

records with near-identical sequences and consistent anno-

tations) creates inefficiency, both in automatic processes

such as search, and in manual assessment of the results of

search.

More significantly, sequences or annotations that are

inconsistent can affect analyses such as quantification of

the correlation between coding and non-coding sequences

(19), or finding of repeat sequence markers (20).

Inconsistencies in functional annotations (21) have the po-

tential to be confusing; despite this, an assessment of 37

North American branchiobdellidans records concluded

that nearly half are inconsistent with the latest taxonomy

(22). Function assignments may rely on the assumption

that similar sequences have similar function (23), but re-

peated sequences may bias the output sequences from the

database searches (24).
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Why care about duplicates?

Research in other disciplines has emphasized the import-

ance of studying duplicates. Here we assemble comments

on the impacts of duplicates in biological databases,

derived from public or published material and curator

interviews:

1. Duplicates lead to redundancies: ‘Automated analyses

contain a significant amount of redundant data and

therefore violate the principles of normalization. . . In a

typical Illumina Genomestudio results file 63% of the

output file is composed of unnecessarily redundant

data’ (25). ‘High redundancy led to an increase in the

size of UniProtKB (TrEMBL), and thus to the amount

of data to be processed internally and by our users, but

also to repetitive results in BLAST searches . . . 46.9

million (redundant) entries were removed (in 2015)’

(http://www.uniprot.org/help/proteome_redundancy.)

We explain the TrEMBL redundancy issue in detail

below.

2. Duplicates lead to inconsistencies: ‘Duplicated samples

might provide a false sense of confidence in a result,

which is in fact only supported by one experimental

data point’ (26), ‘two genes are present in the dupli-

cated syntenic regions, but not listed as duplicates (true

duplicates but are not labelled). This might be due to

local sequence rearrangements that can influence the re-

sults of global synteny analysis’ (25).

3. Duplicates waste curation effort and impair data qual-

ity: ‘for UniProtKB/SwissProt, as everything is checked

manually, duplication has impacts in terms of curation

time. For UniProtKB/TrEMBL, as it (duplication) is not

manually curated, it will impact quality of the dataset’.

(Quoted from Sylvain Poux, leader of manual curation

and quality control in SwissProt.)

4. Duplicates have propagated impacts even after being

detected or removed: ‘Highlighting and resolving miss-

ing, duplicate or inconsistent fields . . . �20% of (these)

errors require additional rebuild time and effort from

both developer and biologist’ (27), ‘The removal of

bacterial redundancy in UniProtKB (and normal flux in

protein) would have meant that nearly all (>90%) of

Pfam (a highly curated protein family database using

UniProtKB data) seed alignments would have needed

manual verification (and potential modification)

. . .This imposes a significant manual biocuration bur-

den’ (28).

The presence of duplicates is not always problematic,

however. For instance, the purpose of the INSDC data-

bases is mainly to archive nucleotide records. Arguably,

duplicates are not a significant concern from an archival

perspective; indeed the presence of a duplicate may indi-

cate that a result has been reproduced and should be

viewed as confident. That is, duplicates can be evidence for

correctness. Recognition of such duplicates supports re-

cord linkage and helps researchers to verify their sequenc-

ing and annotation processes. However, there is an implicit

assumption that those duplicates have been labelled accur-

ately. Without labelling, those duplicates may confuse

users, whether or not the records represent the same

entities.

To summarize, the question of duplication is context-

dependent, and its significance varies in these contexts: dif-

ferent biological databases, different biocuration processes

and different biological tasks. However, it is clear that we

should still be concerned about duplicates in INSDC. Over

95% of UniProtKB data are from INSDC and parts of

UniProtKB are heavily curated; hence duplicates in INSDC

would delay the curation time and waste curation effort in

this case. Furthermore, its archival nature does not limit

the potential uses of the data; other uses may be impacted

by duplicates. Thus, it remains important to understand

the nature of duplication in INSDC.

In this paper, we analyse the scale, kind and impacts of

duplicates in nucleotide databases, to seek better under-

standing of the problem of duplication. We focus on

INSDC records that have been reported as duplicates by

manual processes and then merged. As advised to us by

database staff, submitters spot duplicates and are the

major means of quality checking in these databases;

sequencing projects may also merge records once the gen-

ome construction is complete; other curated databases

using INSDC records such as RefSeq may also merge re-

cords. Revision histories of records track the merges of du-

plicates. Based on an investigation of the revision history,

we collected and analysed 67 888 merged groups contain-

ing 111 823 duplicate pairs, across 21 major organisms.

This is one of three benchmarks of duplicates that we have

constructed (53). While it is the smallest and most nar-

rowly defined of the three benchmarks, it allows us to in-

vestigate the nature of duplication in INSDC as it arises

during generation and submission of biological sequences,

and facilitates understanding the value of later curation.

Our analysis demonstrates that various duplicate types

are present, and that their prevalence varies between organ-

isms. We also consider how different duplicate types may

impact biological studies. We provide a case study, an as-

sessment of sequence GC content and of melting point, to

demonstrate the potential impact of various kinds of dupli-

cates. We show that the presence of duplicates can alter the

results, and thus demonstrate the need for accurate recogni-

tion and management of duplicates in genomic databases.
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Background

While the task of detecting duplicate records in biological

databases has been explored, previous studies have made a

range of inconsistent assumptions about duplicates. Here,

we review and compare these prior studies.

Definitions of duplication

In the introduction, we described repeated, redundant and

inconsistent records as duplicates. We use a broad defin-

ition of duplicates because no precise technical definition

will be valid in all contexts. ‘Duplicate’ is often used to

mean that two (or more) records refer to the same entity,

but this leads to two further definitional problems: deter-

mining what ‘entities’ are and what ‘same’ means.

Considering a simple example, if two records have the

same nucleotide sequences, are they duplicates? Some peo-

ple may argue that they are, because they have exactly the

same sequences, but others may disagree because they

could come from different organisms.

These kinds of variation in perspective have led to a

great deal of inconsistency. Table 1 shows a list of biolo-

gical databases from 2009 to 2015 and their corresponding

definitions of duplicates. We extracted the definition of du-

plicates, if clearly provided; alternatively, we interpreted

the definition based on the examples of duplicates or other

related descriptions from the database documentation. It

can be observed that the definition dramatically varies be-

tween databases, even those in the same domain.

Therefore, we reflectively use a broader definition of dupli-

cates rather than an explicit or narrow one. In this work,

we consider records that have been merged during a

manual or semi-automatic review as duplicates. We ex-

plain the characteristics of the merged record dataset in de-

tail later.

A pragmatic definition for duplication is that a pair of

records A and B are duplicates if the presence of A means

that B is not required, that is, B is redundant in the context

of a specific task or is superseded by A. This is, after all,

the basis of much record merging, and encompasses many

of the forms of duplicate we have observed in the litera-

ture. Such a definition provides a basis for exploring alter-

native technical definitions of what constitutes a duplicate

and provides a conceptual basis for exploring duplicate de-

tection mechanisms. We recognize that (counterintuitively)

this definition is asymmetric, but it reflects the in-practice

treatment of duplicates in the INSDC databases. We also

recognize that the definition is imperfect, but the aim of

our work is to establish a shared understanding of the

problem, and it is our view that a definition of this kind

provides a valuable first step.

Duplicates based on a simple similarity

threshold (redundancies)

In some previous work, a single sequence similarity thresh-

old is used to find duplicates (8, 9, 11, 14, 16, 18). In this

work, duplicates are typically defined as records with se-

quence similarity over a certain threshold, and other fac-

tors are not considered. These kinds of duplicates are often

referred to as approximate duplicates or near duplicates

(37), and are interchangeable with redundancies. For in-

stance, one study located all records with over 90% mutual

sequence identity (11). (A definition that allows efficient

Table 1. Definitions of ‘duplicate’ in genomic databases from 2009 to 2015

Database Domain Interpretation of the term ‘duplicate’

(29) biomolecular interaction

network

repeated interactions between protein to protein, protein to DNA, gene to gene; same inter-

actions but in different organism-specific files

(30) gene annotation (near) identical genes; fragments; incomplete gene duplication; and different stages of gene

duplication

(31) gene annotation near or identical coding genes

(32) gene annotation same measurements on different tissues for gene expression

(33) genome characterization records with same meta data; same records with inconsistent meta data; same or inconsistent

record submissions

(34) genome characterization create a new record with the configuration of a selected record

(35) ligand for drug discovery records with multiple synonyms; for example, same entries for TR4 (Testicular Receptor 4)

but some used a synonym TAK1 (a shared name) rather than TR4

(36) peptidase cleavages cleavages being mapped into wrong residues or sequences

Databases in the same domain, for example gene annotation, may be specialized for different perspectives, such as annotations on genes in different organisms

or different functions, but they arguably belong to the same broad domain.
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implementation, but is clearly poor from the point of view

of the meaning of the data; an argument that 90% similar

sequences are duplicated, but that 89% similar sequences

are not, does not reflect biological reality.) A sequence

identity threshold also applies in the CD-HIT method for

sequence clustering, where it is assumed that duplicates

have over 90% sequence identity (38). The sequence-based

approach also forms the basis of the non-redundant data-

base used for BLAST (39).

Methods based on the assumption that duplication is

equivalent to high sequence similarity usually share two

characteristics. First, efficiency is the highest priority; the

goal is to handle large datasets. While some of these meth-

ods also consider sensitivity (40), efficiency is still the

major concern. Second, in order to achieve efficiency,

many methods apply heuristics to eliminate unnecessary

pairwise comparisons. For example, CD-HIT estimates the

sequence identity by word (short substring) counting and

only applies sequence alignment if the pair is expected to

have high identity.

However, duplication is not simply redundancy.

Records with similar sequences are not necessarily dupli-

cates and vice versa. As we will show later, some of the du-

plicates we study are records with close to exactly identical

sequences, but other types also exist. Thus, use of a simple

similarity threshold may mistakenly merge distinct records

with similar sequences (false positives) and likewise

may fail to merge duplicates with different sequences

(false negatives). Both are problematic in specific studies

(41, 42).

Duplicates based on expert labelling

A simple threshold can find only one kind of duplicate,

while others are ignored. Previous work on duplicate de-

tection has acknowledged that expert curation is the best

strategy for determining duplicates, due to the rich experi-

ence, human intuition and the possibility of checking exter-

nal resources that experts bring (43–45). Methods using

human-generated labels aim to detect duplicates precisely,

either to build models to mimic expert curation behaviour

(44), or to use expert curated datasets to quantify method

performance (46).They can find more diverse types than

using a simple threshold, but are still not able to capture

the diversity of duplication in biological databases. The

prevalence and characteristics of each duplicate type are

still not clear. This lack of identified scope introduces re-

strictions that, as we will demonstrate, impair duplicate

detection.

Korning et al. (13) identified two types of duplicates:

the same gene submitted multiple times (near-identical se-

quences), and different genes belonging to the same family.

In the latter case, the authors argue that, since such genes

are highly related, one of them is sufficient to represent the

others. However, this assumption that only one version is

required is task-dependent; as noted in the introduction,

for other tasks the existence of multiple versions is signifi-

cant. To the best of our knowledge, this is the first pub-

lished work that identified different kinds of duplicates in

bioinformatics databases, but the impact, prevalence and

characteristics of the types of duplicates they identify is not

discussed.

Koh et al. (12) separated the fields of each gene record,

such as species and sequences, and measured the similar-

ities among these fields. They then applied association rule

mining to pairs of duplicates using the values of these fields

as features. In this way, they characterized duplicates in

terms of specific attributes and their combination. The

classes of duplicates considered were broader than Korning

et al.’s, but are primarily records containing the same se-

quence, specifically: (1) the same sequence submitted to

different databases; (2) the same sequence submitted to the

same database multiple times; (3) the same sequence with

different annotations; and (4) partial records. This means

that the (near-)identity of the sequence dominates the

mined rules. Indeed, the top ten rules generated from Koh

et al.’s analysis share the feature that the sequences have

exact (100%) sequence identity.

This classification is also used in other work (10, 15,

17), which therefore has the same limitation. This work

again does not consider the prevalence and characteristics

of the various duplicate types. While Koh has a more de-

tailed classification in her thesis (47), the problem of char-

acterization of duplicates remains.

In this previous work, the potential impact on bioinfor-

matics analysis caused by duplicates in gene databases is

not quantified. Many refer to the work of Muller et al. (7)

on data quality, but Muller et al. do not encourage the

study of duplicates; indeed, they claim that duplicates do

not interfere with interpretation, and even suggest that du-

plicates may in fact have a positive impact, by ‘providing

evidence of correctness’. However, the paper does not pro-

vide definitions or examples of duplicates, nor does it pro-

vide case studies to justify these claims.

Duplication persists due to its complexity

De-duplication is a key early step in curated databases.

Amongst biological databases, UniProt databases are well-

known to have high quality data and detailed curation

processes (48). Uniprot use four de-duplication processes

depending on the requirements of using specific databases:

‘one record for 100% identical full-length sequences in one

species’; ‘one record per gene in one species’; ‘one record
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for 100% identical sequences over the entire length, re-

gardless of the species’; and ‘one record for 100% identical

sequences, including fragments, regardless of the species’,

for UniProtKB/TrEMBL, UniProtKB/SwissProt, UniParc

and UniRef100, respectively (http://www.uniprot.org/help/

redundancy). We note the emphasis on sequence identity in

these requirements.

Each database has its specific design and purpose, so

the assumptions made about duplication differ. One com-

munity may consider a given pair to be a duplicate whereas

other communities may not. The definition of duplication

varies between biologists, database staff and computer

scientists. In different curated biological databases, de-

duplication is handled in different ways. It is far more com-

plex than a simple similarity threshold; we want to analyse

duplicates that are labelled based on human judgements ra-

ther than using a single threshold. Therefore, we created

three benchmarks of nucleotide duplicates from different

perspectives (53). In this work, we focus on analysing one

of these benchmarks, containing records directly merged in

INSDC. Merging of records is a way to address data dupli-

cation. Examination of merged records facilitates under-

standing of what constitutes duplication.

Recently, in TrEMBL, UniProt staff observed that it

had a high prevalence of redundancy. A typical example is

that 1692 strains of Mycobacterium tuberculosis have

been represented in 5.97 million entries, because strains of

this same species have been sequenced and submitted mul-

tiple times. UniProt staff have expressed concern that such

high redundancy will lead to repetitive results in BLAST

searches. Hence, they used a mix of manual and automatic

approaches to de-duplicate bacterial proteome records,

and removed 46.9 million entries in April 2015 (http://

www.uniprot.org/help/proteome_redundancy). A ‘dupli-

cate’ proteome is selected by identifying: (a) two proteomes

under the same taxonomic species group, (b) having over

90% identity and (c) selecting the proteome of the pair

with the highest number of similar proteomes for removal;

specifically, all protein records in TrEMBL belonging to

the proteome will be removed (http://insideuniprot.blog

spot.com.au/2015/05/uniprot-knowledgebase-just-got-

smaller.html). If proteome A and B satisfy criteria (a) and

(b), and proteome A has 5 other proteomes with over 90%

identity, whereas proteome B only has one, A will be

removed rather than B. This notion of a duplicate differs

from those above, emphasizing the context dependency of

the definition of a ‘duplicate’. This de-duplication strategy

is incomplete as it removes only one kind of duplicate, and

is limited in application to full proteome sequences; the ac-

curacy and sensitivity of the strategy is unknown.

Nevertheless, removing one duplicate type already signifi-

cantly reduces the size of TrEMBL. This not only benefits

database search, but also affects studies or other databases

using TrEMBL records.

This de-duplication is considered to be one of the two

significant changes in UniProtKB database in 2015 (the

other change being the establishment of a comprehensive

reference proteome set) (28). It clearly illustrates that du-

plication in biological databases is not a fully solved prob-

lem and that de-duplication is necessary.

Overall, we can see that foundational work on the

problem of duplication in biological sequence databases

has not previously been undertaken. There is no prior thor-

ough analysis of the presence, kind and impact of dupli-

cates in these databases.

Data and methods

Exploration of duplication and its impacts requires data.

We have collected and analysed duplicates from INSDC

databases to create a benchmark set, as we now discuss.

Collection of duplicates

Some of the duplicates in INSDC databases have been

found and then merged into one representative record. We

call this record the exemplar, that is, the current record re-

tained as a proxy for a set of records. Staff working at

EMBL ENA advised us (by personal communication) that

a merge may be initiated by original record submitter,

database staff or occasionally in other ways. We further

explain the characteristics of the merged dataset below,

but note that records are merged for different reasons,

showing that diverse causes can lead to duplication. The

merged records are documented in the revision history. For

instance, GenBank record AC011662.1 is the complete se-

quence of both BACR01G10 and BACR05I08 clones for

chromosome 2 in Drosophila melanogaster. Its revision

history (http://www.ncbi.nlm.nih.gov/nuccore/6017069?re

port¼girevhist) shows that it has replaced two records

AC007180.20 and AC006941.18, because they are

‘SEQUENCING IN PROGRESS’ records with 57 and 21

unordered pieces for BACR01G10 and BACR05I08

clones, respectively. As explained in the supplementary ma

terials, the groups of records can readily be fetched using

NCBI tools.

For our analysis, we collected 67 888 groups (during

15–27 July 2015), which contained 111 823 duplicates (a

given group can contain more than one record merge)

across the 21 popular organisms used in molecular re-

search listed in the NCBI Taxonomy web page (http://

www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/).

The data collection is summarized in Supplementary Table

S1, and, the details of the collection procedure underlying
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the data are elaborated in the Supplementary file Details of

the record collection procedure. As an example, the

Xenopus laevis organism has 35 544 directly related re-

cords. Of these, 1,690 have merged accession IDs; 1620

merged groups for 1660 duplicate pairs can be identified in

the revision history.

Characteristics of the duplicate collection

As explained in ‘Background’ section, we use a broad def-

inition of duplicates. This data collection reflects the broad

definition, and in our view is representative of an aspect of

duplication: these are records that are regarded as similar

or related enough to merit removal, that is, are redundant.

The records were merged for different reasons, including:

• Changes to data submission policies. Before 2003, the se-

quence submission length limit was 350 kb. After releas-

ing the limit, the shorter sequence submissions were

merged into a single comprehensive sequence record.

• Updates of sequencing projects. Research groups may

deposit current draft records; later records will merge the

earlier ones. Also, records having overlapping clones are

merged when the construction of a genome is close to

complete (49).

• Merges from other data sources. For example, RefSeq

uses INSDC records as a main source for genome assem-

bly (50). The assembly is made according to different or-

ganism models and updated periodically and the records

may be merged or split during each update (51). The pre-

dicted transcript records we discuss later are from

RefSeq (still searchable via INSDC but with RefSeq

label).

• Merges by record submitters or database staff occur

when they notice multiple submissions of the same

record.

While the records were merged due to different reasons,

they can all be considered duplicates. The various reasons

for merging records represent the diversity. If those records

above had not been merged, they would cause data redun-

dancy and inconsistency.

These merged records are illustrations of the problem of

duplicates rather than current instances to be cleaned.

Once the records are merged, they are no longer active or

directly available to database users. However, the obsolete

records are still of value. For example, even though over

45 million duplicate records were removed from UniProt,

the key database staff who were involved in this activity

are still interested in investigating their characteristics.

(Ramona Britto and Benoit Bely, the key staff who

removed over 45 million duplicate records from

UniProtKB.)They would like to understand the similarity

of duplicates for more rapid and accurate duplicate identi-

fication in future, and to understand their impacts, such as

how their removal affects database search.

From the perspective of a submitter, those records

removed from UniProtKB may not be duplicates, since

they may represent different entities, have different annota-

tions, and serve different applications. However, from a

database perspective, they challenge database storage,

searches and curation (48). ‘Most of the growth in se-

quences is due to the increased submission of complete

genomes to the nucleotide sequence databases’ (48). This

also indicates that records in one data source may not be

considered as duplicates, but do impact other data sources.

To the best of our knowledge, our collection is the larg-

est set of duplicate records merged in INSDC considered to

date. Note that we have collected even larger datasets

based on other strategies, including expert and automatic

curation (52). We focus on this collection here, to analyse

how submitters understand duplicates as one perspective.

This duplicate dataset is based on duplicates identified by

those closest to the data itself, the original data submitters,

and is therefore of high quality.

We acknowledge that the data set is by its nature in-

complete; the number of duplicates that we have collected

is likely to be a vast undercounting of the exact or real

prevalence of duplicates in the INSDC databases. There

are various reasons for this that we detail here.

First, as mentioned above, both database staff and sub-

mitters can request merges. However, for submitters, re-

cords can only be modified or updated if they are the

record owner. Other parties who want to update records

that they did not themselves submit must get permission

from at least one original submitter (http://www.ncbi.nlm.

nih.gov/books/NBK53704/). In EMBL ENA, it is suggested

to contact the original submitter first, but there is an add-

itional process for reporting errors to the database staff

(http://www.ebi.ac.uk/ena/submit/sequence-submis

sion#how_to_update). Due to the effort required for these

procedures, the probability that there are duplicates that

have not been merged or labelled is very high.

Additionally, as the documentation shows, submitter-

based updates or correction are the main quality control

mechanisms in these databases. Hence, the full collections

of duplicates listed in Supplementary Table S1 presented in

this work are limited to those identified by (some) submit-

ters. Our other duplicate benchmarks, derived from map-

ping INSDC to Swiss-Prot and TrEMBL, contain many

more duplicates (53). This implies that many more poten-

tial duplicates remain in INSDC.

The impact of curation on marking of duplicates can be

observed in some organisms. The total number of records

in Bos taurus is about 14% and 1.9% of the number of
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records in Mus musculus and Homo sapiens, respectively,

yet Bos taurus has a disproportionately high number of du-

plicates in the benchmark: >20 000 duplicate pairs, which

is close (in absolute terms) to the number of duplicates

identified in the other two species. Another example is

Schizosaccharomyces pombe, which only has around 4000

records but a relatively large number (545) of duplicate

pairs have been found.

An organism may have many more duplicates if its

lower taxonomies are considered. The records counted in

the table are directly associated to the listed organism; we

did not include records belonging to taxonomy below the

species level in this study. An example of the impact of this

is record AE005174.2, which replaced 500 records in 2004

(http://www.ncbi.nlm.nih.gov/nuccore/56384585). This

record belongs to Escherichia coli O157:H7 strain

EDL933, which is not directly associated to Escherichia

coli and therefore not counted here. The collection statis-

tics also demonstrate that 13 organisms contain at least

some merged records for which the original records have

different submitters. This is particularly evident in

Caenorhabditis elegans and Schizosaccharomyces pombe

(where 92.4 and 81.8%, respectively, of duplicate records

are from different submitters). A possible explanation is

that there are requests by different members from the same

consortium. While in most cases the same submitters (or

consortiums) can merge the records, the merges cumula-

tively involve many submitters or different consortiums.

This benchmark is the only resource currently available

for duplicates directly merged in INSDC. Staff have also

advised that there is currently no automatic process for col-

lecting such duplicates.

Categorization of duplicates

Observing the duplicates in the collection, we find that

some of them share the same sequences, whereas others

have sequences with varied lengths. Some have been anno-

tated by submitters with notes such as ‘WORKING

DRAFT’. We therefore categorized records at both se-

quence level and annotation level. For sequence level, we

identified five categories: Exact sequences, Similar se-

quences, Exact fragments, Similar fragments and Low-

identity sequences. For annotation level, we identified

three categories: Working draft, Sequencing-in-progress

and Predicted. We do not restrict a duplicate instance to be

in only one category.

This categorization represents diverse types of dupli-

cates in nucleotide databases, and each distinct kind has

different characteristics. As discussed previously, there is

no existing categorization of duplicates with supporting

measures or quantities in prior work. Hence, we adopt this

categorization and quantify the prevalence and characteris-

tics of each kind, as a starting point for understanding the

nature of duplicates in INSDC databases more deeply.

The detailed criteria and description of each category

are as follows. For sequence level, we measured local se-

quence identity using BLAST (9). This measures whether

two sequences share similar subsequences. We also calcu-

lated the local alignment proportion (the number of identi-

cal bases in BLAST divided by the length of the longer

sequence of the pair) to estimate the possible coverage of

the pair globally without performing a complete (expen-

sive) global alignment. Details, including formulas, are

provided in the supplementary materials Details of measur-

ing submitter similarity and Details of measuring sequence

similarities.

Category 1, sequence level

Exact sequences. This category consists of records that

share exact sequences. We require that the local identity

and local alignment proportion must both be 100%. While

this cannot guarantee that the two sequences are exactly

identical without a full global alignment, having both local

identity and alignment coverage of 100% strongly implies

that two records have the same sequences.

Category 2, sequence level

Similar sequences. This category consists of records that

have near-identical sequences, where the local identity and

local alignment proportion are <100% but no< 90%.

Category 3, sequence level

Exact fragments. This category consists of records that

have identical subsequences, where the local identity is

100% and the alignment proportion is< 90%, implying

that the duplicate is identical to a fragment of its

replacement.

Category 4, sequence level

Similar fragments. By correspondence with the relationship

between Categories 1 and 2, this category relaxes the con-

straints of Category 3. It has the same criteria of alignment

proportion as Category 3, but reduces the requirement for

local identity to no< 90%.

Category 5, sequence level

Low-identity sequences. This category corresponds to du-

plicate pairs that exhibit weak or no sequence similarity.

This category has three tests: first, the local sequence iden-

tity is< 90%; second, BLAST output is ‘NO HIT’, that is,

no significant similarity has been found; third, the expected

value of the BLAST score is> 0.001, that is, the found

match is not significant enough.
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Categories based on annotations

The categories at the annotation level are identified based

on record submitters’ annotations in the ‘DEFINITION’

field. Some annotations are consistently used across the or-

ganisms, so we used them to categorize records.

If at least one record of the pair contains the words

‘WORKING DRAFT’, it will be classified as Working

draft, and similarly for Sequencing-in-progress and

Predicted, containing ‘SEQUENCING IN PROGRESS’

and ‘PREDICTED’, respectively.

A more detailed categorization could be developed

based on this information. For instance, there are cases

where both a duplicate and its replacement are working

drafts, and other cases where the duplicate is a working

draft while the replacement is the finalized record. It might

also be appropriate to merge Working draft and

Sequencing-in-progress into one category, since they seem

to capture the same meaning. However, to respect the ori-

ginal distinctions made by submitters, we have retained it.

Presence of different duplicate types

Table 2 shows distribution of duplicate types in selected

organisms. The distribution of all the organisms is

summarized in Supplementary Table S2. Example records

for each category are also summarized in Supplementary

Table S3.

Recall that existing work mainly focuses on duplicates

with similar or identical sequences. However, based on the

duplicates in our collection, we observe that duplicates

under the Exact sequence and Similar sequence categories

only represent a fraction of the known duplicates. Only

nine of the 21 organisms have Exact sequence as the most

common duplicate type, and six organisms have small

numbers of this type. Thus, the general applicability of

prior proposals for identifying duplicates is questionable.

Additionally, it is apparent that the prevalence of

duplicate types is different across the organisms. For

sequence-based categorization, for nine organisms the

highest prevalence is Exact sequence (as mentioned above),

for two organisms it is Similar sequences, for eight organ-

isms it is Exact fragments, and for three organisms it is

Similar fragments (one organism has been counted twice

since Exact sequence and Similar fragments have the same

count). It also shows that ten organisms have duplicates

that have relatively low sequence identity.

Overall, even this simple initial categorization illustrates

the diversity and complexity of known duplicates in the

primary nucleotide databases. In other work (53), we

reproduced a representative duplicate detection method

using association rule mining (12) and evaluated it with a

sample of 3498 merged groups from Homo sapiens. The

performance of this method was extremely poor. The

major underlying issues were that the original dataset only

contains duplicates with identical sequences and that the

method did not consider diverse duplicate types.

Thus, it is necessary to categorize and quantify dupli-

cates to find out distinct characteristics held by different

categories and organisms; we suggest that these different

duplicate types must be separately addressed in any dupli-

cate detection strategy.

Impacts of duplicates: case study

An interesting question is whether duplicates affect biolo-

gical studies, and to what extent. As a preliminary investi-

gation, we conducted a case study on two characteristics of

DNA sequences: GC content and melting temperature. The

GC content is the proportion of bases G and C over the se-

quence. Biologists have found that GC content is corre-

lated with local rates of recombination in the human

genome (54). The GC content of microorganisms is used to

Table 2. Samples of duplicates types classified in both sequence level and annotation level

Organism Total records Sequence-based Annotation-based Others

ES SS EF SF LI WD SP PR LS UC

Bos taurus 245 188 2923 3633 5167 6984 147 0 0 18 120 2089 0

Homo sapiens 12 506 281 2844 7139 11 325 6889 642 2951 316 17 243 1496 0

Caenorhabditis elegans 74 404 1736 7 109 44 5 0 121 0 0 0

Rattus norvegicus 318 577 2511 5302 7556 3817 107 0 0 15 382 2 0

Danio rerio 153 360 721 2740 1662 3504 75 1 34 7684 521 491

Mus musculus 1 730 941 2597 4689 6678 7377 379 1926 1305 16 510 2011 1

Total records: Number of records in total directly belong to the organism (derived from NCBI taxonomy database); ES: exact sequences; SS: similar sequences;

EF: exact fragments; SF: similar fragments; LI: low-identity sequences; WD: working draft; SP: sequencing-in-progress record; PR: predicted sequence; LS: long se-

quence; UC: unclassified pairs.
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distinguish species during the taxonomic classification

process.

The melting temperature of a DNA sequence is the tem-

perature at which half of the molecules of the sequence

form double strands, while another half are single-

stranded, a key sequence property that is commonly used

in molecular studies (55). Accurate prediction of the melt-

ing temperature is an important factor in experimental suc-

cess (56). The GC content and the melting temperature are

correlated, as the former is used in determination of the

latter. The details of calculations of GC content and melt-

ing temperature are provided in the supplementary Details

of formulas in the case study.

We computed and compared these two characteristics

in two settings: by comparing exemplars with the original

group, which contains the exemplars along with their du-

plicates; and by comparing exemplars with their corres-

ponding duplicates, but with the exemplar removed.

Selected results are in Table 3 (visually represented in

Figures 1 and 2) and Table 4 (visually represented in

Figure 1. A selection of results for organisms in terms of GC content (Exemplar vs. Original merged groups) Categories are the same as Table 1; mdiff

and std: the mean and standard deviation of absolute value of the difference between each exemplar and the mean of the original group, respectively.

Table 3. A selection of results for organisms in terms of GC content and melting temperatures (Exemplar vs. Original merged

groups)

Organism Category Size GC (%) Melting temperature

Tb Ts Ta

mdiff std mdiff std mdiff std mdiff std

Bos taurus EF 3530 1.85 1.83 0.74 0.76 0.74 0.78 0.94 0.94

SF 4441 1.61 1.61 0.64 0.64 0.64 0.64 0.82 0.81

LI 101 2.80 3.10 1.14 1.40 1.15 1.46 1.45 1.69

ALL 12 822 1.11 1.54 0.44 0.63 0.44 0.63 0.57 0.79

Homo sapiens EF 5360 1.51 2.04 0.92 1.28 1.01 1.50 1.01 1.28

SF 5003 1.01 1.60 0.41 0.63 0.41 0.71 0.52 0.84

LI 369 3.47 3.28 1.56 2.11 1.60 2.42 1.93 2.43

ALL 16 545 0.87 1.65 0.46 0.92 0.48 1.04 0.52 0.99

Rattus norvegicus EF 4880 1.47 1.48 0.58 0.60 0.58 0.62 0.74 0.74

SF 2846 1.21 1.25 0.47 0.48 0.47 0.48 0.61 0.61

LI 9286 0.97 1.31 0.38 0.50 0.37 0.50 0.49 0.65

ALL 12 411 0.91 1.25 0.36 0.50 0.36 0.51 0.46 0.63

Danio rerio EF 1496 1.59 1.54 0.59 0.57 0.58 0.57 0.77 0.75

SF 3142 1.55 1.44 0.59 0.55 0.58 0.55 0.76 0.71

LI 6761 1.06 1.35 0.40 0.51 0.39 0.50 0.52 0.66

ALL 7895 1.01 1.32 0.38 0.50 0.38 0.49 0.50 0.65

Categories are the same as Table 1; mdiff and std: the mean and standard deviation of absolute value of the difference between each exemplar and the mean of

the original group, respectively; Tb, Ts, Ta: melting temperature calculated using basic, salted and advanced formula in supplement respectively. The values illus-

trating larger distinctions with experimental tolerances have been made bold.
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Figures 3 and 4), respectively (full results in Supplementary

Tables S4 and S5). First, it is obvious that the existence of

duplicates introduces much redundancy. After de-

duplication, the size of original duplicate set is reduced by

50% or more for all the organisms shown in the table.

This follows from the structure of the data collection.

Critically, it is also evident that all the categories of du-

plicates except Exact sequences introduce differences for

Figure 2. A selection of results for organisms in terms of melting temperatures (Exemplar vs. Original merged groups) mdiff and std: the mean and

standard deviation of absolute value of the difference between each exemplar and the mean of the original group respectively; Tb, Ts, Ta: melting

temperature calculated using basic, salted and advanced formula in supplement, respectively.

Table 4. A selection of results for organisms in terms of GC content and melting temperatures (Exemplar vs. Duplicate pairs)

Organism Category Size GC (%) Melting temperature (�C)

Tb Ts Ta

mdiff std mdiff std mdiff std mdiff std

Bos taurus EF 5167 3.44 3.41 1.40 1.58 1.41 1.69 1.77 1.85

SF 6984 2.86 2.86 1.14 1.13 1.13 1.13 1.46 1.45

LI 149 5.47 5.41 2.22 2.42 2.22 2.50 2.83 2.93

ALL 20 945 2.18 2.80 0.88 1.19 0.88 1.23 1.12 1.46

Homo sapiens EF 11 325 3.38 3.79 1.99 2.85 2.20 3.35 2.14 2.73

SF 6890 2.19 3.02 0.89 1.27 0.89 1.31 1.31 1.57

LI 642 5.67 5.40 2.49 3.32 2.54 3.78 3.09 3.86

ALL 30 336 2.15 3.24 1.11 2.09 1.19 2.40 1.26 2.13

Rattus norvegicus EF 7556 2.58 2.59 1.03 1.14 1.04 1.20 1.31 1.36

SF 3817 2.19 2,27 0.85 0.88 0.85 0.88 1.10 1.13

LI 107 3.73 3.43 1.58 1.48 1.59 1.53 1.98 1.81

ALL 19 295 1.63 2.21 0.65 0.93 0.65 0.96 0.83 1.14

Danio rerio EF 1662 3.06 3.00 1.14 1.11 1.12 1.10 1.49 1.45

SF 3504 3.03 2.81 1.15 1.07 1.14 1.07 1.49 1.39

LI 7684 2.06 2.62 0.78 0.98 0.77 0.98 1.01 1.28

ALL 9227 1.95 2.55 0.74 0.96 0.73 0.95 0.96 1.25

Categories are the same as Table 1; mdiff and std: the mean and standard deviation of absolute value of the difference between each exemplar and the mean of

the duplicates group, respectively; Tb, Ts, Ta: melting temperature calculated using basic, salted and advanced formula in supplement respectively. The values

illustrating larger distinctions with experimental tolerances have been made bold.
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the calculation of GC content and melting temperature.

These mdiff (mean of difference) values are significant, as

they exceed other experimental tolerances, as we explain

below. (The values illustrating larger distinctions have

been made bold in the table.) Table 2 already shows that

exemplars have distinctions with their original groups.

When examining exemplars with their specific pairs, the

differences become even larger as shown in Table 3. Their

mean differences and standard deviations are different,

meaning that exemplars have distinct characteristics com-

pared to their duplicates.

These differences are significant and can impact inter-

pretation of the analysis. It has been argued in the context

of a wet-lab experiment exploring GC content that well-

defined species fall within a 3% range of variation in GC

percentage (57). Here, duplicates under specific categories

could introduce variation of close to or> 3%. For melting

temperatures, dimethyl sulphoxide (DMSO), an external

chemical factor, is commonly used to facilitate the amplifi-

cation process of determining the temperature. An add-

itional 1% DMSO leads to a temperature difference

ranging from 0.5 �C to 0.75 �C (55). However, six of our

Figure 3. A selection of results for organisms in terms of GC content (Exemplar vs. Duplicate pairs) Categories are the same as Table 1; mdiff and std:

the mean and standard deviation of absolute value of the difference between each exemplar and the mean of the duplicates group, respectively.

Figure 4. A selection of results for organisms in terms of melting temperatures (Exemplar vs. Duplicate pairs) mdiff and std: the mean and standard

deviation of absolute value of the difference between each exemplar and the mean of the original group, respectively; Tb, Ts, Ta: melting temperature

calculated using basic, salted and advanced formula in supplement, respectively.
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measurements in Homo sapiens have differences of over

0.5 �C and four of them are 0.75 �C or more, showing that

duplicates alone can have the same or more impact as ex-

ternal factors.

Overall, other than the Exact fragments and Similar

fragments categories, the majority of the remainder has dif-

ferences of GC content and melting temperature of over

0.1 �C. Many studies report these values to three digits of

precision, or even more (58–63). The presence of dupli-

cates means that these values in fact have considerable un-

certainty. The impact depends on which duplicate type is

considered. In this study, duplicates under the Exact frag-

ments, Similar fragments and Low-identity categories have

comparatively higher differences than other categories. In

contrast, Exact sequences and Similar sequences have only

small differences. The impact of duplicates is also depend-

ent on the specific organism: some have specific duplicate

types with relatively large differences, and the overall dif-

ference is large as well; some only differ in specific dupli-

cate types, and the overall difference is smaller; and so on.

Thus it is valuable to be aware of the prevalence of differ-

ent duplicate types in specific organisms.

In general, we find that duplicates bring much redun-

dancy; this is certainly disadvantageous for studies such as

sequence searching. Also, exemplars have distinct character-

istics from their original groups such that sequence-based

measurement involving duplicates may have biased results.

The differences are more obvious for specific duplicate pairs

within the groups. For studies that randomly select the re-

cords or have dataset with limited size, the results may be

affected, due to possible considerable differences. Together

they show that why de-duplication is necessary. Note that

the purpose of our case study is not to argue that previous

studies are wrong or try to better estimate melting tempera-

tures. Our aim is only to show that the presence of dupli-

cates, and of specific types of duplicates, can have a

meaningful impact on biological studies based on sequence

analysis. Furthermore, it provides evidence for the value of

expert curation of sequence databases (64).

Our case study illustrates that different kinds of dupli-

cates can have distinct impacts on biological studies. As

described, the Exact sequences records have only a minor

impact under the context of the case study. Such duplicates

can be regarded as redundant. Redundancy increases the

database size and slows down the database search, but

may have no impact on biological studies.

In contrast, some duplicates can be defined as inconsist-

ent. Their characteristics are substantially different to the

‘primary’ sequence record to which they correspond, so

they can mislead sequence analysis. We need to be aware

of the presence of such duplicates, and consider whether it

they must be detected and managed.

In addition, we observe that the impact of these differ-

ent duplicate types, and whether they should be considered

to be redundant or inconsistent, is task-dependent. In the

case of GC content analysis, duplicates under Similar frag-

ments may have severe impact. For other tasks, there may

be different effects; consider for example exploration of

the correlation between non-coding and coding sequences

(19) and the task of finding repeat sequence markers (20).

We should measure the impact of duplicates in the context

of such activities and then respond appropriately.

Duplicates can have impacts in other ways. Machine

learning is a popular technique and effective technique for

analysis of large sets of records. The presence of duplicates,

however, may bias the performance of learning techniques

because they can affect the inferred statistical distribution

of data features. For example, it was found that much du-

plication existed in a popular dataset that has been widely

used for evaluating machine learning methods used to de-

tect anomalies (65); its training dataset has over 78% re-

dundancy with 1 074 992 records over-represented into

4 898 431 records. Removal of the duplicates significantly

changed reported performance, and behaviour, of methods

developed on that data.

In bioinformatics, we also observe this problem. In ear-

lier work we reproduced and evaluated a duplicate detec-

tion method (12) and found that it has poor generalization

performance because the training and testing dataset con-

sists of only one duplicate type (53). Thus, it is important

to be aware of constructing the training and testing data-

sets based on representative instances. In general, two

strategies for addressing this issue: one using different can-

didate selection techniques (66); another is using large-

scale validated benchmarks (67). In particular, duplicate

detection surveys point out the importance of the latter: as

different individuals have different definitions or assump-

tions on what duplicates are, this often leads to the corres-

ponding methods working only in narrow datasets (67).

Conclusion

Duplication, redundancy and inconsistency have the poten-

tial to undermine the accuracy of analyses undertaken on

bioinformatics databases, particularly if the analyses in-

volve any form of summary or aggregation. We have

undertaken a foundational analysis to understand the

scale, kinds and impacts of duplicates. For this work, we

analysed a benchmark consisting of duplicates spotted by

INSDC record submitters, one of the benchmarks we col-

lected in (53). We have shown that the prevalence of dupli-

cates in the broad nucleotide databases is potentially high.

The study also illustrates the presence of diverse duplicate

types and that different organisms have different
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prevalence of duplicates, making the situation even more

complex. Our investigation suggests that different or even

simplified definitions of duplicates, such as those in previ-

ous studies, may not be valuable in practice.

The quantitative measurement of these duplicate re-

cords showed that they can vary substantially from

other records, and that different kinds of duplicates have

distinct features that imply that they require different

approaches for detection. As a preliminary case study, we

considered the impact of these duplicates on measurements

that depend on quantitative information in sequence data-

bases (GC content and melting temperature analysis),

which demonstrated that the presence of duplicates intro-

duces error.

Our analysis illustrates that some duplicates only intro-

duce redundancy, whereas other types lead to inconsist-

ency. The impact of duplicates is also task-dependent; it is

a fallacy to suppose that a database can be fully de-

duplicated, as one task’s duplicate can be valuable infor-

mation in another context.

The work we have presented based on the merge-based

benchmark as a source of duplication, may not be fully

representative of duplicates overall. Nevertheless, the col-

lected data and the conclusions derived from them are reli-

able. Although records were merged due to different

reasons, these reasons reflect the diversity and complexity

of duplication. It is far from clear how the overall preva-

lence of duplication might be more comprehensively as-

sessed. This would require a discovery method, which

would inherently be biased by the assumptions of the

method. We therefore present this work as a contribution

to understanding what assumptions might be valid.

Supplementary data

Supplementary data are available at Database Online.
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