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A B S T R A C T

Changes in plasma concentration of small organic metabolites could be due to their altered production or urinary
excretion and changes in their urine concentration may be due to the changes in their filtered load, tubular
reabsorption, and/or altered urine volume. Therefore, these factors should be considered in interpretation of the
changes observed in plasma or urine of the target metabolite(s). Fasting plasma and urine samples from 180 CKD
patients and 120 age-matched healthy controls were determined by UPLC-HDMS-metabolomics and quantitative
real-time RT-PCR techniques. Compared with healthy controls, patients with CKD showed activation of NF-κB
and up-regulation of pro-inflammatory and pro-oxidant mRNA and protein expression as well as down-
regulation of Nrf2-associated anti-oxidant gene mRNA and protein expression, accompanied by activated
canonical Wnt/β-catenin signaling. 124 plasma and 128 urine metabolites were identified and 40 metabolites
were significantly altered in both plasma and urine. Plasma concentration and urine excretion of 25 metabolites
were distinctly different between CKD and controls. They were related to amino acid, methylamine, purine and
lipid metabolisms. Logistic regression identified four plasma and five urine metabolites. Parts of them were good
correlated with eGFR or serum creatinine. 5-Methoxytryptophan and homocystine and citrulline were good
correlated with both eGFR and creatinine. Clinical factors were incorporated to establish predictive models. The
enhanced metabolite model showed 5-methoxytryptophan, homocystine and citrulline have satisfactory
accuracy, sensitivity and specificity for predictive CKD. The dysregulation of CKD was related to amino acid,
methylamine, purine and lipid metabolisms. 5-methoxytryptophan, homocystine and citrulline could be
considered as additional GFR-associated biomarker candidates and for indicating advanced renal injury. CKD
caused dysregulation of the plasma and urine metabolome, activation of inflammatory/oxidative pathway and
Wnt/β-catenin signaling and suppression of antioxidant pathway.

1. Introduction

The body's metabolic processes result in formation numerous
systemic or tissue specific small molecular size organic metabolites
released in the circulation. Via glomerular filtration, tubular reabsorp-

tion and secretion, kidney plays a key role in disposition of these
metabolites. In addition kidney generates numerous metabolites in-
cluding amino acids. Therefore changes in kidney function can affect
the blood level and urinary excretion of metabolites in humans and
animals. Moreover, the underlying causes of chronic kidney disease
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(CKD) such as diabetes and autoimmune disorders independently
impact generation of metabolites and compound the effects of kidney
disease. Technological advances which allow comprehensive determi-
nation of small molecular weight metabolites have provided an
important tool to measure the full spectrum of endogenous metabolites
in biological samples [1–3]. Application of these sophisticated systems
has provided a valuable tool for early diagnosis, identification of
reliable biomarkers, elucidation of the mechanism of various diseases,
and monitoring of their progression and response to therapeutic
interventions. Several studies have demonstrated marked changes in
the plasma or urine concentrations of numerous metabolites in patients
[4,5] and animals with CKD [6–9]. Although altered metabolic changes
have been identified in CKD, in many cases the underlying mechanisms
of the observed changes remain unclear. To our knowledge, simulta-
neous determination of plasma level and the rate of urinary excretion of
metabolites have not been reported in patients with CKD and healthy
controls. Simultaneous determination of plasma level and the rate of
urinary excretion of metabolites are critical because the rise in plasma
concentration could be due to either increased production and or
reduced urinary excretion of the given metabolite(s). Likewise the rise
in urine level may be due either to increased abundance or reduced
tubular reabsorption of the target metabolite(s) whereas the decline in
the urine concentration may be due to the impaired urinary concen-
trating capacity which is invariably present in CKD or polyuric states
e.g. diuretic therapy or osmotic diuresis as seen with glucosuria in
diabetes. Therefore, these variables should be carefully considered in
interpretation of the mechanism of the observed changes in plasma and
urine levels of the identified metabolite(s) and selection of biomarker
metabolite(s) for CKD. In order to eliminate the error caused by
differences in urinary concentrating capacity in the present study the
urine metabolite data were presented as the ratios with the correspond-
ing urine creatinine concentrations. In addition to determine the
difference in the rate of production versus decreased glomerular
filtration or tubular reabsorption of the target metabolites, changes in
plasma levels were viewed in the context of their urinary excretion.

Oxidative stress and inflammation played a central role in the
development and progression of pathogenesis of CKD [10,11]. Under
physiological conditions, oxidative stress provokes the anti-oxidant and
cytoprotective proteins upregulation to prevent dysfunction and kidney
damage. The process was mediated by activated nuclear factor-ery-
throid-2-related factor 2 (Nrf2) which adjust the basal activity and
coordinated induction of many genes that encode anti-oxidant and
phase 2 detoxifying enzymes and associated with proteins [11].
Oxidative stress and inflammation are closely interacted as they caused
a vicious cycle in which oxidative stress triggers inflammation by
several mechanisms including transcription factor kappa B (NF-κB)
activation which caused the activation and recruitment of immune
cells. Inflammation, in turn, triggered oxidative stress via production of
reactive oxygen and nitrogen species by the activation of leukocytes
and resident cells. Taken together, these events promote kidney injury
by inflicting necrosis and fibrosis. Canonical Wnt/β-catenin signaling
pathway was an evolutionarily conserved developmental signaling
cascade that played a vital role in the regulation of organ development
and tissue homeostasis [12]. Despite being relatively silent in normal
adult kidneys, Wnt/β-catenin signaling is activated in the different
CKD, such as obstructive nephropathy, adriamycin nephropathy,
chronic allograft nephropathy and diabetic nephropathy [13–16],
which was accompanied by oxidative stress and inflammation. It was
reported that activated oxidative stress and inflammation were closed
associated with dysregulation of amino acid, uremic toxin (indoxyl
sulfate, uric acid), bile acid, fatty acid, triglyceride, glycerophospholi-
pid metabolisms in rats with chronic kidney disease [17,18].

Application of UPLC-QTOF/HDMS is highly suitable for large-scale
metabolomic evaluation [19]. In this study, a non-targeted and targeted
metabolomics approach was performed to simultaneously determine
the plasma and urine metabolites from CKD patients and controls

(Fig. 1). The study uncovers the relationship between identified
metabolites and gene expression of inflammation/Wnt/β-catenin sig-
naling cascade to illuminate the molecular pathogenesis of patients
with advanced CKD.

2. Materials and methods

2.1. Chemicals and reagents

Creatinine, hippuric acid, uric acid, hypoxanthine, xanthine, myoi-
nositol, cis-aconitic acid, indoxyl sulfate and aldosterone were obtained
from the National Institutes for Food and Drug Control (Beijing, China).
Amino acids including L-methionine, L-lysine, L-phenylalanine, L-homo-
serine, homocysteine, L-tyrosine, L-glutamine, citrulline, L-arginine, L-
cysteine, L-glutamic acid, L-alanine and L-aspartic acid were purchased
from Amresco Company. Kynurenine, kynurenic acid, dopamine, 1-
methyladenosine, L-xanthosine, xanthurenic acid, indole, p-cresol sul-
fate, uracil, p-cresol, guanosine, succinic acid, deoxyuridine, guanine,
taurine and thymine were purchased from Sigma Company or Aladdin
Company. Antibodies against nuclear factor kappa B p65, Nrf2,
cyclooxygenase-2 (COX-2), 12-lipoxygenase (12-LP), etc. were pur-
chased from Santa Cruz Biotechnology or Abcam Company.

2.2. Participants

The participants included 120 adult CKD patients and 80 healthy
controls recruited for the discovery phase and additional 60 CKD
patients and 40 healthy controls recruited for the validation phase
between February 2013 and November 2014 at the Traditional Chinese
Medicine Hospital and the Fourth Hospital of Xi’an. Patients with stage
4–5 CKD based on estimated glomerular filtration rate (eGFR) for at
least 3 months were enrolled in the study. Patients with acute kidney
injury, liver disease, gastrointestinal pathology, active vasculitis, or
cancer, and those who required dialysis, immunosuppressive or che-
motherapy therapy or had received kidney transplant were excluded.
Baseline demographic and clinical data and list of medications were
collected from patients' medical records. 120 age-matched healthy
controls with no history of kidney disease were enrolled. The study
was approved by the Ethical Committee and all patients provided
informed consent prior to entering the study.

Blood and urine samples were obtained after an overnight fasting
and plasma was separated and stored at −80 °C. BMI was calculated
from body weight (kg) divided by height squared (m2) based on World
Health Organization (WHO) categories. Systolic (SBP) and diastolic
blood pressure (DBP) was measured after a five minutes rest in the
sitting position. Estimated glomerular filtration rate (eGFR) was
calculated using the Modification of Diet of Renal Disease equation.
Serum concentrations of urea nitrogen (BUN), creatinine, albumin,
triglycerides, total cholesterol (TC), high-density lipoprotein-cholester-
ol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), uric acid,
intact parathyroid hormone (iPTH), potassium, sodium, calcium and
phosphate were determined using an Olympus AU640 automatic
analyzer. Urine total protein was measured by colorimetric assay.
White blood cell count (WBC), red blood cell count (RBC) and
haemoglobin were determined by HF-3800 analyzer.

2.3. Gene expression study by quantitative real-time polymerase chain
reaction (q-RT-PCR)

Red Blood Cell Lysis Buffer (Tiangen, China) was added into fresh
patient's plasma. After dissociating red blood cells, biological samples
were centrifuged at 450g for 10 min and save the pellet. The pellet was
suspended by a High Pure RNA Isolation Kit (RNAiso Plus, Takara Bio,
Japan) according to the manufacturer's guide, including DNase-free
treatment. Primers applied for quantitative real-time RT-PCR (q-RT-
PCR) are listed in Table 1. The quantity and purity of the RNA
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preparations were determined by measuring the optical densities at 260
and 280 nm. Quantitative real-time RT-PCR (qRT-PCR) was carried out
by the Bio-Rad PCR system. Total RNA was reverse transcribed by a
Transcriptor First Strand cDNA Synthesis Kit according to the instruc-
tions of the manufacturer (Roche, Germany) using Bio-Rad T100™
system. Quantitative real-time RT-PCR (q-RT-PCR) was performed on
Bio-Rad CFX 96 Touch ™ system (Bio-Rad, USA). The PCR reaction
mixture in a 20-µL volume contained 10 µL of SYBR® Premix Ex Taq™ II
(Takara Bio, Japan), 1.0 µL of reverse transcription product (1 μg
cDNA), 0.4 µL of sense and antisense primer sets and 8.2 µL of double
distilled water. The mRNA levels of genes were calculated by normal-
izing with β-actin. Initial activation at 95 °C for 30 s, followed by 40
cycles with denaturation at 94 °C for 5 s, annealing at 60 °C for 30 s,
and extension was at 65 °C for 5 s. Reactions were replicated three
times per experiment and experiments were replicated three times to
verify the positive results.

2.4. Protein expression study by Western blot analysis

Western blot for protein expression were done in plasma samples.
The total protein concentration was determined using Pierce™ BCA
Protein Assay Kit (23227, Thermo Scientific, USA) according to the
manufacturer's instructions. Protein expression was performed by
Western blot analyses as described previously [17,18]. The ratio of
each protein was calculated by densitometry using free ImageJ software
(version 1.48 v, NIH, Bethesda, MD, USA) and Band densities were
normalized by Histone H3 or GAPDH expression levels.

2.5. Sample preparation

The plasma samples were thawed at room temperature prior to

analysis. 400 µL acetonitrile was added to 200 µL plasma and vortex-
mixed vigorously for three min. The mixture was settled for ten min,
and then centrifuged at 13,000 rpm for ten min at 4 °C. The 400 µL
supernatant were pipetted out and lyophilized. Urine samples were
thawed and then centrifuged at 13,000 rpm for ten min to remove solid
materials. The supernatant was diluted at a ratio of 3:1 with distilled
water, vortex mixed for UPLC-MS analysis.

2.6. UPLC-HDMS analysis for plasma samples

The plasma samples were analyzed by a 2.1 mm×100 mm
ACQUITY 1.8 µm HSS T3 using a Waters Acquity™ UPLC system
equipped with a Waters Xevo™ G2 QTof MS. A gradient of acetonitrile
(A) and 0.1% formic acid in water (B) and used as follows: a linear
gradient of 0–1.0 min, 0.0% A; 1.0–16.0 min, 0.0–100% A;
16.0–20.0 min, 100% A and 20.0–22.0 min, 100–0.0% A. The flow rate
was 0.40 ml/min. The autosampler was maintained at 4 °C. The
lyophilized plasma samples were dissolved in 100 µL of acetonitrile/
water (4:1). Every 2 µL sample solution was injected for each run.

MS of the optimal conditions were as follows: capillary voltage:
2.5 kV, cone voltage: 30 V, desolvation gas temperature: 500 °C, source
temperature: 120 °C, desolvation gas flow: 600 L/h, cone gas flow:
50 L/h, The scan range was from 50 to 1200 m/z. Leucine–enkephalin
was used for accurate mass acquisition. Waters MassLynx v4.1 was used
for all the acquisition and analysis of data in both positive ion mode and
negative ion mode.

2.7. UPLC-HDMS analysis for urine samples

The urine samples were analyzed by a 2.1 mm×100 mm ACQUITY
1.8 µm HSS T3 using a Waters Acquity™ UPLC system equipped with a

Fig. 1. Flow diagram of metabolomic analysis was used to show the overview of study design.
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Waters Xevo™ G2 QTof MS. A gradient of acetonitrile (A) and 0.1%
formic acid in water (B) and used as follows: a linear gradient of
0–1.0 min, 1.0% A; 1.0–8.0 min, 1.0–40% A; 8.0–9.0 min, 40.0–99% A;
9.0–12.0 min, 99% and 12.0–15.0 min, 99.0–1.0% A. The flow rate was
0.40 ml/min. The autosampler was maintained at 4 °C. The lyophilized
plasma samples were dissolved in 100 µL of acetonitrile/water (4:1).
Every 2 µL sample solution was injected for each run.

MS of the optimal conditions were as follows: capillary voltage:
3.0 kV, cone voltage: 40 V, desolvation gas temperature: 500 °C, source
temperature: 110 °C, desolvation gas flow: 800 L/h, cone gas flow:
50 L/h, The scan range was from 50 to 1200 m/z. Leucine–enkephalin
was used for accurate mass acquisition. Waters MassLynx v4.1 was used
for all the acquisition and analysis of data in both positive ion mode and
negative ion mode.

2.8. Data analysis, model development, biomarker selection and cross
validation

The acquired raw data from UPLC-HDMS analysis in positive and
negative ion modes were first pre-processed by Markerlynx XS and
Progenesis QI (Waters, Manchester, U.K.). Orthogonal partial least
square-discriminant analysis (OPLS-DA) and principal component ana-
lysis (PCA) was performed to discriminate between patients with CKD
and healthy controls. The variables were selected based on variable
importance in the projection (VIP>1.5) from the normalized peak
intensity. We reduced the resulting matrix by removing any ion perks
with zero value in the samples to obtain consistent differential
variables. The urine data of patients with CKD and healthy controls
were normalized by variable intensity/creatinine intensity. Variables or
normalized variables were selected by one-way analysis of variance
(ANOVA) with a threshold of P<0.05 in SPSS 19.0 (SSPS Inc.,

Chicago, USA). Based on reported literatures, significantly variables
were identified and confirmed by comparing MS data, MS/MS frag-
ments, molecular weights and elemental compositions with the avail-
able reference chemicals.

Identified metabolites were subjected to further statistical analysis
by univariate and multivariate statistical methods. Fold change (FC)
was calculated based on mean ratios for CKD/controls. Metabolites
were also selected by Mann-Whitney U test with a threshold of
P<0.05. The resultant P values from ANOVA were further adjusted
by a false discovery rate (FDR) based on the Hochberg-Benjamini
method. Significantly altered variables were defined and further
identified by a VIP>1.5, P< 0.05 and FDR<0.05. Variables or
metabolites are visualized using heat map and z-score plots analyses.
The z-score of metabolites was calculated according to reference
distribution of the control samples. Then each metabolite was centered
by the control mean and scale by the control standard deviation.
Analysis of Pearson correlation coefficient was performed to find the
correlations between the potential biomarkers.

2.9. Binary logistic regression (BLR) and ROC curve analysis

Based on the binary outcome of CKD and control as dependent
variables, we developed a BLR model to find the best combination of
plasma and urine differential metabolites. PLS-DA-based ROC analysis
was performed for the selection of candidate biomarkers.

3. Results

3.1. General data

The general clinical and demographic data are presented in Table 2.

Table 1
Reference genes evaluated in this study: species, primer sequences and product sizes.

Gene Species Forward Reverse Product Size (bp)

IκBα Homo sapiens CTCCGAGACTTTCGAGGAAATAC CCATTGTAGTTGGTAGCCTTCA 134
NF-κB p65 Homo sapiens CTGTCCTTTCTCATCCCATCTT TCCTCTTTCTGCACCTTGTC 139
COX−2 Homo sapiens GTTCCAGACAAGCAGGCTAATA CCACTCAAGTGTTGCACATAATC 78
MCP−1 Homo sapiens CCCAGTCACCTGCTGTTAT ACAGCTTCTTTGGGACACTT 102
iNOS Homo sapiens TGCCAAGCTGAAATTGAATGAG CTTCGCCTCGTAAGGAAATACA 112
p47phox Homo sapiens GGTTCTGTCAGATGAAAGCAAAG GTATGGCTCACCTGCATAGTT 113
12-LO Homo sapiens TCCGCTACACCATGGAAATC CTGTGCTCACTGCCTTATCA 84
p67phox Homo sapiens GTGGAGGCACTCTTCAGTTATG CAGCCATTCTTCATTCACCTTTG 102
Rac1 Homo sapiens GAATCTGGGCTTATGGGATACA ATCTGTTTGCGGATAGGATAGG 76
gp91phox Homo sapiens ACCCTCCTATGACTTGGAAATG TGATGACCACCTTCTGTTGAG 99
keap1 Homo sapiens CACAACAGTGTGGAGAGGTATG CGGCATAAAGGAGACGATTGA 115
Nrf2 Homo sapiens GTTGCCCACATTCCCAAATC CGTAGCCGAAGAAACCTCAT 105
HO−1 Homo sapiens CCAGCAACAAAGTGCAAGATTC CCACCAGAAAGCTGAGTGTAAG 117
GPX Homo sapiens GGGCAAGGTACTACTTATCGAG CTCGTTCATCTGGGTGTAGTC 76
Gclc Homo sapiens GACCCATGGAGGTGCAATTA AACCTTTGACAGTGGAATGAGA 119
NQO−1 Homo sapiens AGAGGTACAGGATGAGGAGAAA ATCTGGTTGTCAGTTGGGATG 87
Wnt1 Homo sapiens CGGCGTTTATCTTCGCTATCA GTAGTCACACGTGCAGGATT 95
Wnt2 Homo sapiens CGGGAATCTGCCTTTGTTTATG TTGGATCACAGGAACAGGATTT 103
Wnt2b Homo sapiens TGCAGTGACAACATCCACTAC GCGACCACAGCGGTTATTA 117
Wnt3 Homo sapiens CTGACTTCGGCGTGTTAGT CCTCGTTGTTGTGCTTGTTC 93
Wnt3a Homo sapiens CAAGATTGGCATCCAGGAGT ATGAGCGTGTCACTGCAAAG 173
Wnt4 Homo sapiens ATGGAAGTACACCCTCTGG CCTGGAAGGACCCACAGATA 201
Wnt5a Homo sapiens GGGTGGGAACCAAGAAAAAT TGGAACCTACCCATCCCATA 194
Wnt6 Homo sapiens GAGAGTGCCAGTTCCAGTTC GTCTCCCGAATGTCCTGTTG 94
Wnt7a Homo sapiens CGTGCTCAAGGACAAGTACA GTACGACAGTGGCTTCTTGAT 103
Wnt7b Homo sapiens CCTGCTGAAGGAGAAGTACAA GTCTCCATGGGCTTCTGATAG 120
Wnt8a Homo sapiens CAGAGGCGGAACTGATCTTT TGTTGTGGCTGTTCTGTAGG 111
Wnt8b Homo sapiens CCAATCGGGAGACAGCATTT AGTCATCACAGCCACAGTTATC 108
Wnt9a Homo sapiens GCGGAGACAACCTTAAGTACAG ACGAGGTTGTTGTGGAAGTC 103
Wnt9b Homo sapiens TGTAAGTGCCATGGCGTATC CCGAGTCATAGCGCAGTTT 106
Wnt10a Homo sapiens GTGCTCCTGTTCTTCCTACTG CACACTGTGTTGGCATTGAG 113
Wnt10b Homo sapiens TCTGACAAGGGGACAGAACC TCATTGGCTTAGACCCGACT 240
Wnt16 Homo sapiens CCAGTTCAGACACGAGAGATG GCAGCCATCACAGCATAAATAA 138
β-catenin Homo sapiens ACAAGCCACAAGATTACAAG ATCAGCAG TCTCATTCCAA 92
β-actin Homo sapiens AGGCATCCTCACCCTGAAGTA CACACGCAGCTCATTGTAGA 103
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CKD patients had significantly higher SBP and DBP and significantly
lower eGFR compared with healthy controls. Serum BUN, creatinine,
uric acid, potassium and phosphate levels as well as urine proteins were
significantly higher, while serum albumin and calcium were signifi-
cantly lower in CKD patients.

3.2. Differential gene expression profile of IκBα/NF-κB, Keap1/Nrf2 and
Wnt/β-catenin signaling

The plasma in patients with advanced CKD showed a marked up-
regulation in nuclear translocation of p65 mRNA expression, indicating
activation of NF-κB signaling. Activation of IκBα/NF-κB was accom-
panied by significant up-regulation of inflammatory genes including
cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and
monocyte chemotactic protein-1 (MCP-1), and up-regulation of pro-
oxidant gene p47phox and down-regulation of anti-oxidant system
including Nrf2, catalase, heme oxygenase 1 (HO-1), glutathione
peroxidase (GPX), glutamate-cysteine ligase catalytic subunit (GCLC)
and NAD(P)H quinone dehydrogenase 1 (NQO1) (Figs. 2A and 3A). But
p67Phox, Rac1 and gp91phox mRNA expression was significant down-
regulated in patients with advanced CKD. Western blot showed that
activation of NF-κB p65 and significantly increased p-IκBα/IκBα ratio
were accompanied by significant upregulation of inflammatory proteins
including COX-2, iNOS, MCP-1, p47phox, 12-LO, p67phox, Rac1 and
gp91phox and downregulation of anti-oxidant system including Nrf2,
catalase, HO-1, GPX, GCLC and NQO1 (Figs. 2B and 3B). Activation of
inflammatory and oxidative signaling pathways in patients with
advanced CKD was accompanied by significant up-regulation of 15
Wnt genes including Wnt1, 2, 2b, 3, 4, 5a, 6, 7a, 7b, 8a, 8b, 9a, 9b, 10a
and 16 and β-catenin genes in patients with advanced CKD. However,
Wnt10b was significant downregulated and Wnt3a was not detected in
patients with advanced CKD (Fig. 4A). Western blot showed that
protein expressions of nuclear and cytoplasmic β-catenin and nuclear

active β-catenin were dramatically upregulated in patients with CKD
(Fig. 4B). Canonical Wnt/β-catenin signaling pathways was activated in
patients with advanced CKD. Taken together, these findings point to
activation of the pro-inflammatory, pro-oxidant, and down-regulation
of Nrf2-mediated antioxidant and phase 2 detoxifying enzymes and
related proteins accompanied by activated Wnt/β-catenin signaling
pathways.

3.3. Important differential plasma and urine metabolites

Initially, variables were selected according to the VIP values from S-
plots, which reflect the influence of each variable in the two groups.
317 and 199 variables from plasma samples had VIP values greater than
1.5 in positive ion and negative ion modes, respectively. Subsequently,
212 and 198 variables from plasma samples had a P<0.05 based one-
way ANOVA in positive ion and negative ion modes, respectively. After
excluding xenobiotics and different fragment ions from the same
metabolites 65 and 59 metabolites were identified in positive ion and
negative ion modes, respectively (Table S1). Similarly, 353 and 198
variables from urine samples had a VIP>1.5 in positive ion and
negative ion modes, respectively. Subsequently, 238 and 134 variables
from urine samples had a P<0.05 based on one-way ANOVA in
positive ion and negative ion modes, respectively. After excluding the
xenobiotics and different fragment ions from the same metabolites 89
and 39 metabolites were identified in positive ion and negative ion
modes, respectively (Table S2). PCA score plots and heatmap display
showed that plasma or urine metabolites could separate patients with
CKD from control (Fig. 5A, B and S1). Using a combination of the VIP
values and one-way ANOVA analysis, 124 plasma metabolites and 128
urine metabolites were identified (Tables S1 and S2). The z-score
showed that the metabolites in plasma and urine were significantly
altered in CKD (Fig. 5C and D). For each of these 124 plasma
metabolites and 128 urine metabolites, Fig. 6A and B shows the mean

Table 2
Summary of clinical and demographic baseline characteristics of patients with CKD and health control subjects.

Variable Discover phase Validation phase

Control Patient with CKD Control Patient with CKD

Number 80 120 40 60
Age (years) 53.7 (11.2) 57.3 (14.5) 54.1 (9.6) 57.1 (15.8)
Men (%) 56.3 58.3 57.5 58.3
Body mass index (kg/m2) 24.3 (3.5) 25.4 (5.2) 23.3 (2.8) 25.9 (4.9)

Etiology of advanced CKD NA 70 hypertension NA 30 hypertension
26 glomerular disease 16 glomerular disease
14 chronic nephritis 8 chronic nephritis
10 obstructive uropathy 6 obstructive uropathy

CKD vintage (months) NA 38(32) NA 39 (34)
Lipid-lowering drug use (%) NA 24.5 NA 26.9
Antihypertensive drug use (%) NA 87.9 NA 86.9
SBP (mm Hg) 121.7 (12.6) 144.2 (15.2)b 119.5 (13.3) 141.2 (16.8)b

DBP (mm Hg) 75.1 (11.3) 82.4 (12.5)b 74.6 (10.3) 83.7 (10.8)b

eGFR (ml/min/1.73 m2) 99.5 (15.1) 14.4 (5.1)b 97.4 (23.2) 13.2 (4.2)b

BUN (mmol/L) 5.11 (1.05) 33.0 (16.2)b 5.06 (0.87) 34.6 (17.6)b

Serum creatinine (μmol/L) 68.7 (14.1) 516 (208)b 73.8 (17.2) 486 (216)b

Urine proteins (g/24 h) NA 1.86 (1.49)b NA 1.77 (1.65)b

Uric acid (μmol/L) 303.3(87.6) 460 (125)b 289.4 (81.5) 483 (129)b

Potassium (mmol/L) 3.89 (1.23) 4.63 (0.71)b 3.94 (1.17) 4.62 (0.79)b

Sodium (mmol/L) 140.7 (3.2) 141.4 (4.9) 138.6 (3.8) 139.2 (4.7)
Calcium (mmol/L) 2.28 (0.42) 2.14 (0.29)a 2.19 (0.38) 2.04 (0.41)a

Phosphate (mmol/L) 1.08 (0.23) 1.45 (0.34)b 1.03 (0.21) 1.51 (0.38)b

Albumin (g/L) 48.5 (7.9) 35.7 (6.1)b 47.1 (8.4) 36.6 (6.4)b

White blood cell (×109/L) 6.63 (2.12) 8.79 (2.75)b 6.58 (1.97) 9.29 (3.62)b

Red blood cell (×1012/L) 4.51 (1.45) 3.33 (0.78)b 4.26 (1.51) 3.13 (0.87)b

Haemoglobin (g/L) 145.3 (12.8) 99.6 (22.3)b 142.4 (13.2) 93.3 (25.6)b

Results are summarized as mean (SD) and categorical variables are given as percentages.
N/A, not available.

a P<0.05;
b P<0.001.
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ratio of each plasma or urinary metabolite in CKD patients versus
controls, plotted against their corresponding minus logarithm of P value
(Tables S1 and S2). Further, 119 out of 125 plasma metabolites and 106
out of 128 urine metabolites had a P<0.05 based on the combination
of Mann-Whitney U test and Bonferroni-adjusted FDR methods (Tables
S1 and S2).

40 metabolites were significantly altered in both plasma and urine
(Table 3). Compared with the controls, 18 metabolites were signifi-
cantly increased in CKD plasma while they were significantly decreased

in CKD urine; 6 metabolites were significantly decreased in CKD plasma
while they were significantly increased in CKD urine; 11 metabolites
were significantly increased in both plasma and urine of CKD patients;
and 5 metabolites were significantly decreased in both plasma and
urine of CKD patients. Additionally, 79 out of 119 plasma metabolites
were significantly altered in CKD patients and 66 out of 106 urine
metabolites were significantly altered in CKD patients.

Fig. 2. NF-κB target gene and protein expression in plasma from CKD patients. Quantitative real-time RT-PCR and Western blot depicting nuclear content of p65 active subunit of NF-κB
and expression of COX-2, iNOS, MCP-1, P47Phox, p67Phox, Rac1 and gp91phox in the plasma of the healthy controls and patients with advanced CKD. *P<0.05, **P<0.01 compared with
the healthy controls.
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3.4. ROC curve and prediction model

To assess the potential value of the differential metabolites that can
discriminate CKD from controls, PLS-DA-based ROC curve was pre-
pared. 25 out of 40 significantly altered metabolites in both plasma and
urine had AUC value greater than 0.85 and displayed sensitivities and
specificities above 85% (Table 3). We further performed a combination
ROC curves for each metabolite (data not show). The AUC value was
larger than each metabolite in plasma or urine. Additionally, predicted
class probabilities showed that 116 out of 120 plasma samples from
CKD were correctly grouped (96.7% sensitivity). All 80 controls were
located in control area (100% specificity) (Fig. 6C). 120 urine samples
from CKD were correctly grouped (100% sensitivity) and 79 out of 80
controls were located in control area (98.7% specificity) (Fig. 6D).

Though 39 metabolites only in plasma had an AUC ≥0.85, only 27
metabolites displayed sensitivities and specificities of above 85% (data
not show). PCA and heatmap of 27 plasma metabolites showed that
CKD and control can be clearly separated (Fig. 7A and B). To under-
stand the functional role of these altered plasma metabolites, the KEGG
metabolic library was used by Metaboanalyst (Fig. S2A). The top five
pathways in plasma by p value (top four) or impact (top one) were
shown in Table S3. Altered these plasma pathways in CKD indicates

that disturbed certain central metabolites have an important effect on
multiple pathways that are interconnected. We further constructed BLR
model to assess these metabolites for the discrimination between CKD
and controls. Canavaninosuccinate, 5-methoxytryptophan (5-MTP),
homocystine and leucine were identified by forward stepwise analysis.
Compared with the controls, these metabolites were significantly
altered in CKD (Fig. 7D). These metabolites have a high AUC, sensitivity
and specificity and thus could be considered as suitable plasma
biomarkers to best predict CKD status (Fig. 7C). To further validate
four metabolites that could be useful for predicting CKD, we analyzed
the correlation between each metabolites and eGFR or creatinine.
Except for leucine, canavaninosuccinate, 5-MTP and homocystine were
good positively or negatively correlated with eGFR (R>0.9318)
(Fig. 7E). 5-MTP and homocystine were good correlated with creatinine
(R>0.9507) (Fig. 7F).

Similarly, 21 urine metabolites had high sensitivity and specificity
to clearly separate CKD from the control group (Fig. 8A and B). The top
six pathways in plasma by p value (top four) or impact (top two) were
shown in Table S4. Altered these plasma pathways in CKD indicates
that disturbed certain central metabolites have an important effect on
multiple pathways that are interconnected. Five metabolites including
1-methyladenosine, spermidine, xanthosine, xanthurenic acid and

Fig. 3. Anti-oxidative stress Nrf2 and Nrf2 target gene and protein expression in plasma from CKD patients. Quantitative real-time RT-PCR and Western blot depicting Nrf2, catalase, HO-
1, GPX, GCLC and NQO1 in the plasma of the healthy controls and patients with advanced CKD. *P<0.05, **P<0.01 compared with the healthy controls.
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citrulline were identified by BLR. Compared with the controls, these
metabolites were significantly altered in CKD patients (Fig. 8D) and
thus could be considered as suitable urine biomarkers of advanced CKD
(Fig. 8C). Xanthosine, xanthurenic acid and citrulline were good
positively or negatively correlated with eGFR (R>0.9355) (Fig. 8E).
Only xanthosine was good correlated with creatinine (R> 0.9223)
(Fig. 8F).

3.5. Differential metabolite validation

For validation of 25 urine and plasma metabolites, these metabolites
were measured in the plasma and urine of an independent cohort. 19
metabolites had a P<0.05 and AUC ≥0.85 and a sensitivity and
specificity above 85% (Table S5). Predicted class probability showed
that plasma samples achieved a sensitivity of 88.3% and a specificity of
92.5%, respectively (Fig. S3A). Urine samples achieved a sensitivity of
91.7% and a specificity of 92.5%, respectively (Fig. S3B).

To evaluate the diagnostic power of the four potential plasma and
five potential urine biomarkers for CKD, data from the above-men-

tioned independent cohort were analyzed using the previously de-
scribed models. Four plasma biomarkers could separate CKD from
controls (Fig. 9A) and had a high sensitivity and specificity (Fig. 9B).
The sensitivity and specificity of the combination of four plasma
biomarkers was 93.3% and 92.5%, respectively (Fig. 9C). Similarly,
five urine biomarkers could separate CKD from controls (Fig. 9D) with
high sensitivity and specificity (Fig. 9E). The sensitivity and specificity
of the combination of four plasma biomarkers were 91.9% and 92.5%,
respectively (Fig. 9F). Thus four plasma and five urine metabolites
could be considered as suitable biomarkers of advanced CKD.

3.6. Metabolite and phenotype

Plasma metabolites 5-MTP and homocystine and urinary metabolite
citrulline were good correlated with both eGFR and creatinine. Clinical
factors, such as age, gender, CKD vintage and medication was usually
incorporated to establish diagnostic models, and the variables were
used to enhance metabolite biomarker models [20]]. To enhance 5-
MTP, homocystine and citrulline models, three clinical factors (age,

Fig. 4. Total 16 Wnt and β-catenin gene expression as well as β-catenin and active β-catenin protein expression in plasma from CKD patients. Quantitative real-time RT-PCR including
Wnt1, 2, 2b, 3, 4, 5a, 6, 7a, 7b, 8a, 8b, 9a, 9b, 10a, 10b and 16 and β-catenin as well as nuclear and cytoplasmic β-catenin and active β-catenin protein expression in the plasma of the
healthy controls and patients with advanced CKD. *P<0.05, **P<0.01 compared with the healthy controls.
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gender and CKD vintage) were selected to be each metabolite for
inclusion in the predictive model. The enhanced metabolite model
showed excellent AUC for differentiating patients with CKD from
controls, with high sensitivity and specificity (Fig. 10).

4. Discussion

Oxidative stress and inflammation plays a key role in the pathogen-
esis of various CKD and its adverse complications. The present gene
expression and metabolomics data indicated the activated inflamma-
tion in patients with CKD. The patients with CKD showed a significant
increase in nuclear translocation of p65, up-regulation of inflammatory
and pro-oxidant gene expressions as well as down-regulation of anti-
oxidant system gene expressions. Leal et al. determined the levels of NF-
κB and Nrf2 mRNA in nondialysis and hemodialysis patients and
healthy controls. NF-κB mRNA expression was increased and Nrf2
mRNA expression was decreased in nondialysis patients compared with
healthy individuals, but did not arrive at statistical significance [21]
This study also demonstrated that NF-κB mRNA expression was
significantly increased and Nrf2 mRNA expression was significantly
decreased in hemodialysis patients compared with nondialysis patients.
Another study indicated that hemodialysis patients had significantly
up-regulation of NF-κB mRNA expression and dramatically down-
regulation of Nrf2 and NQO1 mRNA expressions compared with
healthy controls. Plasma levels of TNF-α and malondialdehyde were
significantly increased in hemodialysis patients compared with healthy
controls [22] It has been reported that NF-kB p65 mRNA and NF-kB p65
protein expression levels were both significantly higher in type 2
diabetic nephropathy compared with healthy controls [23] Addition-
ally, many studies have demonstrated significantly up-regulation of
oxidative stress and inflammation proteins and down-regulation of anti-
oxidant system proteins in patients with CKD [24–27].

Wang et al. reported that an increase in mRNA expression of β-
catenin and axin2 in kidney tissues of patients with lupus nephritis
compared with control kidney tissues, accompanied by an increase of β-
catenin protein expression [28] Their study also showed that β-catenin
mRNA expression was significantly higher in lupus nephritis patients
without renal interstitial fibrosis compared to those with renal inter-
stitial fibrosis and increased β-catenin mRNA expression positively
correlated with the creatinine clearance rate (Ccr). Another study
showed that canonical Wnt/β-catenin and Wnt/Ca2+ signaling were
both dramatically changed with the development of chronic kidney
damage [15]. Wnt3, lymphoid enhancer-binding factor 1 and T-cell
factor 1 showed differential regulation in canonical Wnt/β-catenin
pathway. Target genes fibronectin 1, CD44, matrix metalloproteinase 7
and nitric oxide synthase 2 were up-regulated in the progression of
renal damage. Altered Wnt/Ca2+ pathway was demonstrated by up-
regulation expression of Wnt6, Wnt7a, protein kinase C, Cam Kinase II
and nuclear factor of activated T-cell transcription factors and the
target gene vimentin. Taken together, these findings point to activation
of the pro-inflammatory, pro-oxidant, and down-regulation of Nrf2-
mediated antioxidant system were accompanied by activated Wnt/β-
catenin signaling pathways.

On the basis of our model construction, multiple step metabolite
selection and cross validation, 124 plasma metabolites and 128 urine
metabolites were identified and 40 metabolites were significantly
altered in both plasma and urine. 25 differential metabolites from
combined plasma and urine were successfully identified which robustly
separated CKD patients from controls and they reflected dysregulation
of 30 metabolic pathways (Fig. 9G and H). Additionally, 27 plasma
metabolites and 21 urine metabolites were related to 11 and 19
metabolic pathways, respectively (Fig. S4). Four plasma metabolites
(canavaninosuccinate, 5-MTP, homocystine, leucine) and five urinary
metabolites (1-methyladenosine, spermidine, xanthosine, xanthurenic

Fig. 5. Metabolomic profiling of plasma and urine samples from two groups identifies metabolites that distinguish patients with CKD from controls. Outlier analysis of 124 identified
metabolites in plasma (B) and 128 identified metabolites in urine (C). PCA of metabolites from 120 CKD samples and 80 control samples. Different principal components have a different
contribution to separating CKD from controls in this study. Green crosses and red triangles represent controls and CKD, respectively. (D) Control-based z-score plot of metabolomic
alterations from plasma and urine in control and patients with CKD. Each point represents an individual metabolite in one sample. Z-score plots for the data normalized to the mean of the
control samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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acid, and citrulline) were identified by binary logistic regression. Part of
them was good correlated with eGFR or serum creatinine. These
abnormal altered metabolites could be restored by treatment of
enalapril and lisinopril. Plasma metabolites 5-MTP and homocystine
and urinary metabolite citrulline were good correlated with both eGFR
and creatinine. General clinical factors were incorporated to establish
diagnostic models. The enhanced metabolite model showed 5-MTP,
homocystine and citrulline have an excellent AUC with high sensitivity
and specificity for predictive CKD. They could be considered as
additional GFR-associated biomarker candidates and for indicating
advanced renal injury.

Plasma levels of 4 and 6 AA as well as urine levels of 2 and 22 AA
were significantly increased and decreased in CKD, respectively (Tables
S1 and S2). Previous studies have shown significant changes in plasma

and urine AA profiles and significant reduction of plasma concentra-
tions of most AA in CKD patients [29,33]. Increased phenylalanine and
alanine as well as decreased tryptophan were observed in plasma of
advanced CKD patients [33]. Other studies showed increased plasma
phenylalanine and decreased tryptophan in CKD patients [30] and
decreased urine phenylalanine in glomerulonephritides patients [31].
Another study demonstrated the association of altered plasma valine,
alanine, glutamate and glycine with different stages of CKD [32].
Additionally, urine asparagine, leucine, proline and citrulline were
significant increased in advanced CKD patients [3,34]. The present
study identified 5-HTP, homocystine and leucine as plasma biomarker
candidates. 5-MTP is synthesized from tryptophan via tryptophan
hydroxylase-1 and hydroxyindole O-methyltransferase [35]. It has been
reported that fibroblasts produce and release 5-MTP which promotes

Fig. 6. The geometric mean ratio of each metabolite for individuals in CKD patients versus controls. The y-axis shows minus logarithm of P value. The x-axis shows the logarithm of ratio
of CKD/control of each plasma sample (A) or urine sample (B). The log2(CKD/Control) with a value>0 indicated a relatively higher intensity present in CKD patients, whereas a
value< 0 indicated a relatively lower intensity compared with the healthy subjects. Diagnostic performances of the 25 metabolites in both plasma (D) and urine (E) based on the PLS-DA
model. The black dots and black circles with red squares are for the incorrectly predicted samples in patient with CKD and controls, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article).
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COX-2 over-expression [36]. In fact CKD is associated with expansion of
fibroblasts and upregulation of COX-2 expression in the kidney and
cardiovascular tissues [37]. For this reason 5-MTP synthesis is a
valuable lead for new therapeutic targets and anti-inflammatory drug
development. 5-HTP was first identified as a significant metabolite in
advanced CKD. Plasma homocystine has been demonstrated to increase
in parallel with the decline of the GFR [38]. Several reports have shown
that hemodialysis lowers plasma homocystine only transiently [39,40]

and elevated plasma homocystine can not be lowered efficiently by
peritoneal dialysis [41]. Interestingly, decreased plasma leucine was
reported in uremic patients, stages 4–5 CKD and diabetic nephropathy
[42,43]. In the present study citrulline was identified as urine biomar-
ker. Several studies have shown increased urine citrulline in advanced
CKD [33]. The CKD-induced changes in AA metabolism have been, in
part, attributed to the systemic inflammation and metabolic acidosis
which are common features of CKD [44]. In fact compared with the

Fig. 7. Multivariate analyses and correlation analysis of four significantly altered plasma metabolites in CKD patients. (A) The PCA score scatter plot using 27 differential metabolites
from plasma sample between the CKD patients and controls. (B) Heatmap of 27 differential metabolites from plasma sample between the CKD patients and control. Red and blue in
heatmap indicates increased and decreased levels, respectively. Rows: sample; columns: metabolite. THCA: trihydroxycoprostanoic acid. (C) PLS-DA-based ROC curves for the predictive
power of four plasma biomarkers and for distinguishing CKD from controls. (D) Bar graphs of significant changes of four plasma biomarkers between CKD and controls. Abundance is
represented as the relative intensity (y axis) of different groups (x axis). The statistical significance of differences between the two groups was marked. ***P<0.001 compared to the
controls. (E) Correlation between canavaninosuccinate, 5-methoxytryptophan, homocystine and leucine levels (peak intensity) measured by the UPLC-MS and eGFR by calculated
formula. (F) Correlation between canavaninosuccinate, 5-methoxytryptophan, homocystine and leucine levels (peak intensity) measured by the UPLC-MS and serum creatinine (µmol/L)
measured by the clinical laboratory. The x-axes show the eGFR value or serum creatinine concentration. The y-axis shows the peak intensity of each plasma sample. The correlation
coefficient is shown in each graph. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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controls, CKD patients showed significant increase in plasma TNF-α and
IL-6 levels reflecting the presence of systemic inflammation. Several key
oxidant pathways can lead to the excessive generation of oxidative
intermediates during disease progression. Amino acids were natural
targets of these pathways and serve as markers of organ injury in
addition to serving as a reactive oxygen and nitrogen species inter-
mediate [45]. The protein phenylalanine residues subjected to hydroxyl
radical damage form meta-tyrosine and ortho-tyrosine. Oxidation
reactions of tyrosine residues include cross-linking (to form oo′-
dityrosine; mediated by tyrosine radicals, reactive oxygen species and
reactive nitrogen species), chlorination (to form 3-chlorotyrosine;

catalyzed by myeloperoxidase) and nitration (to from 3-nitrotyrosine;
mediated by reactive nitrogen species) [45].

Abnormal AA metabolites including indoxyl sulfate, indole-3-car-
boxylic acid, kynurenine, kynurenic acid, 4-aminohippuric acid, hip-
puric acid and xanthurenic acid (byproducts of tryptophan metabo-
lism), p-cresol, p-cresol sulfate, dopamine (byproduct of tyrosine
metabolism), taurine (byproduct of cystcine metabolism) and octanoyl-
carnitine were observed in plasma and urine of CKD patients. As noted
above under normal condition filtered AA is fully reabsorbed in
proximal tubules. Tubulointerstitial injury is a constant feature of all
forms of CKD and the degree of tubulointerstitial injury correlates

Fig. 8. Multivariate analyses and correlation analysis of five significantly altered urinary metabolites in CKD patients. (A) The PCA score scatter plot using 21 differential metabolites from
urine sample between the CKD patients and controls. (B) Heatmap of 27 differential metabolites from urine sample between the CKD patients and control. Red and blue in heatmap
indicates increased and decreased levels, respectively. Rows: sample; columns: metabolite. THCA: trihydroxycoprostanoic acid. (C) PLS-DA-based ROC curves for the predictive power of
five urine metabolites and for distinguishing CKD from controls. (D) Bar graphs of significant changes of five urine metabolites between CKD and controls. Abundance is represented as
the relative intensity (y axis) of different groups (x axis). The statistical significance of differences between the two groups was marked. ***P<0.001 compared to the controls. (E)
Correlation between 1-methyladenosine, spermidine, xanthosine, xanthurenic acid and citrulline levels (peak intensity) measured by the UPLC-MS and eGFR by calculated formula. (F)
Correlation between 1-methyladenosine, spermidine, xanthosine, xanthurenic acid and citrulline levels (peak intensity) measured by the UPLC-MS and serum creatinine (µmol/L)
measured by the clinical laboratory. The x-axes show the eGFR value or serum creatinine concentration. The y-axis shows the peak intensity of each urine sample. The correlation
coefficient is shown in each graph. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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Fig. 9. Biomarker validations from four plasma metabolites and five urine metabolites from additional 60 CKD patients and 40 age-matched healthy controls. The three-dimensional PCA
score scatter plot using four metabolites (canavaninosuccinate, 5-methoxytryptophan, homocystine and leucine) in plasma (A) and five metabolites (1-methyladenosine, spermidine,
xanthosine, xanthurenic acid and citrulline) in urine (D) between the patients with CKD and controls. PLS-DA-based ROC curves for the predictive power of four plasma biomarkers (B)
and five urine biomarkers (E) for distinguishing CKD from controls. Diagnostic performance of the four plasma biomarkers (C) and five urine biomarkers (F) based on the PLS-DA model.
The black dots or black circles with red squares are for the incorrectly predicted samples in patient with CKD and controls, respectively. (G) IPA with MetPA of 25 potential biomarkers
combined plasma and urine. The size and color of each circle was based on pathway impact value and p-value, respectively. (H) Visualization of the remarkably disturbed metabolic
pathways in plasma and urine by MetScape analysis. The identified metabolites in the current study were shown by red hexagons. Hexagons with green lines means that the significantly
changes of the identified metabolite in CKD had statistical significance (P< 0.05). The size of hexagons showed the fold change of the differential metabolite in CKD relative to control. In
addition, pink hexagons showed metabolites participating in the metabolic pathway but not been identified in the current study. CKD were associated with purine metabolism, TCA cycle,
aminoacyl-tRNA biosynthesis, nitrogen metabolism, taurine and hypotaurine metabolism, biotin metabolism, pantothenate and CoA biosynthesis, inositol phosphate metabolism,
galactose metabolism, ascorbate and aldarate metabolism, primary bile acid biosynthesis, pyrimidine metabolism and steroid hormone biosynthesis. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article).
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better than glomerular injury with the prognosis of the disease [46].
Nkuipou-Kenfack et al. found a strong association between plasma and
urinary metabolites and peptides with kidney function and CKD
progression [34]. They identified serum hydroxykynurenine as a
biomarker [34]. The first and rate-limiting step in tryptophan conver-
sion to kynurenine is catalyzed by indoleamine 2,3-dioxygenase,
kynurenine is then metabolized to kynurenic acid. Inflammatory states
have been shown to increase production of kynurenine by upregulation
of indoleamine 2,3-dioxygenase in endothelial cells [47]. Zinellu et al.
found a correlation between kynurenine/tryptophan ratio and oxidative
stress indices malondialdehyde and allantoin/uric acid ratio [48],
which also confirms previous study on the association between
oxidative stress and inflammation in nephropathic pre-dialyzed patients
[49,50] Thus systemic inflammation which is invariably present in CKD
patients must contribute to increased plasma kynurenine. It has been
reported that anti-oxidant taurine can ameliorate oxidative stress and
inflammation in CKD [48,51]. Elevated plasma indoxyl sulfate and
hippuric acid have been regarded as biomarkers for predicting the
stages of CKD [52]. Additionally, other uremia solutes p-cresol and p-
cresol sulfate are significantly altered in plasma and urine of CKD
patients [5,53]. Accumulated evidence indicated that oxidative stress
and inflammation in patients with CKD were associated with marked
alteration of amino acid concentrations in plasma and urine.

TMA and TMAO are byproducts of bacterial metabolism of phos-
phatidylcholine, choline, or L-carnitine. Plasma TMA and TMAO are
elevated in CKD patients and contribute to the cardiovascular disease
and overall mortality in this population. Both plasma and urine TMA
and TMAO were significantly elevated in our CKD patients. Plasma
TMAO concentration in CKD patients has been shown to directly
correlate with plasma concentration of urea and creatinine, indicating
close association of TMAO with the degree of renal insufficiency
[54,55]. Additionally, increased urine TMAO in CKD patients observed
in our study is consistent with previous study [56]. The excellent review
reported that intestine and its microbial bacteria were the main source
of several well-known pro-inflammatory uremic toxins such as TMA,
TMAO, indoxyl sulfate, p-cresol sulfate in patients with CKD [57].
Taken together, increased TMA and TMAO were closely associated with
oxidative stress and inflammation in patients with CKD.

Urine spermidine was significantly reduced in our CKD patients.
Several studies have demonstrated elevated plasma polyamine in
uremia [58,59]. Serum spermine has been shown to inversely correlate
with hematocrit and directly correlate with the serum creatinine and
BUN and significantly fall with hemodialysis in ESRD patients [59].
Elevation of plasma spermidine in CKD patients was associated with
and largely due to its reduced urinary excretion [58]. It has been
reported that dysregulation of the polyamine pathway leads to inflam-
mation, renal failure and diabetes [60].

Plasma 1-methylguanosine level was increased, whereas its urinary

excretion was decreased confirming the result of a previous study of
uremic patients [61]. In contrast plasma deoxyuridine level was
decreased whereas its urinary excretion was increased in our CKD
patients. These findings are consistent with previous studies in CKD and
diabetic nephropathy patients [5,62]. Increased uridine and deoxyade-
nosine as well as decreased inosine in both plasma and urine were
observed in our CKD patients confirming the results of previous studies
[5,61].

Plasma concentration of purine metabolites, hypoxanthine and
xanthine were increased whereas their urinary excretion was decreased
in our CKD. Additionally, increased plasma uric acid and decreased 1-
methylxanthine in both plasma and urine was observed. The previous
studies have shown increased plasma hypoxanthine, xanthine and uric
acid in CKD patients [5,63], which are consistent with the results of the
present study. In confirmation of earlier studies [56,64] increased
plasma and decreased urine myoinositol were found in our CKD
patients. Since myoinositol is a second messenger in inflammatory cells
its increased plasma level in our CKD patients may reflect the associated
inflammatory state. Besides the above-mentioned metabolites which
were found in both plasma and urine, 1-methyladenosine and xantho-
sine were detected only in urine of the CKD patients. The urinary
excretion of 1-methyladenosine was significantly decreased in our CKD
group. This accounts for the previously reported accumulation of this
modified ribonucleoside in the uremic serum [61]. In agreement with
the previous study [61] urinary excretion of xanthosine was signifi-
cantly increased in our CKD patients. Plasma concentration of 1-
methyladenosine was significantly elevated in our CKD group. This
was associated with reduced urinary excretion of this modified
ribonucleoside.

Plasma succinic acid and cis-aconitic acid were elevated whereas
plasma citric acid was reduced in CKD patients. This was associated
with increased urine cis-aconitic acid and decreased urine oxoglutaric
acid and succinic acid levels. These findings are consistent with
reported results [65,66]. The observed changes in plasma and urine
TCA intermediates point to the systemic and renal tubular mitochon-
drial dysfunction in CKD patients. One study demonstrated that
mitochondrial localization of heme oxygenase 1 with increased heme
oxygenase activity in the mitochondrial fraction of Mito-HO-1 renal
epithelial cells was observed and decreased tricarboxylic acid cycle
intermediates following hypoxia was significantly mitigated in Mito-
HO-1 renal epithelial cells [67].

5. Conclusion

Plasma concentration and urine excretion of 25 metabolites from 30
metabolic pathways were distinctly different between the CKD and
control groups. The combined plasma and urinary metabolite were
related to amino acid, methylamine, purine, and lipid metabolisms and

Fig. 10. ROC curves analysis of enhanced PLS−DA model for the predictive power of combined each metabolite (5-MTP, homocystine and citrulline) and three general clinical
parameters (age, gender and CKD vintage) for differentiating patients with CKD from controls.
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TCA cycle. These were associated with activation of NF-κB, up-regula-
tion of pro-inflammatory and pro-oxidant and down-regulation of Nrf2
activity and its down-stream antioxidant and cytoprotective proteins,
accompanied by activated canonical Wnt/β-catenin signaling. Plasma
metabolites 5-MTP and homocystine and urinary metabolite citrulline
were good correlated with both eGFR and creatinine. General clinical
factors were incorporated to establish diagnostic models. The enhanced
metabolite model showed 5-MTP, homocystine and citrulline have high
sensitivity and specificity for predictive CKD. Plasma 5-MTP in CKD was
identified as novel biomarker candidates. They could be considered as
additional GFR-associated biomarker candidates and for indicating
advanced renal injury.
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