
Published online 31 October 2014 Nucleic Acids Research, 2014, Vol. 42, No. 21 12961–12972
doi: 10.1093/nar/gku1019

iPro54-PseKNC: a sequence-based predictor for
identifying sigma-54 promoters in prokaryote with
pseudo k-tuple nucleotide composition
Hao Lin1,3,*, En-Ze Deng1, Hui Ding1, Wei Chen2,3,* and Kuo-Chen Chou3,4,*

1Key Laboratory for Neuro-Information of Ministry of Education, Center of Bioinformatics, School of Life Science and
Technology, University of Electronic Science and Technology of China, Chengdu 610054, China, 2Department of
Physics, School of Sciences, and Center for Genomics and Computational Biology, Hebei United University,
Tangshan 063000, China, 3Gordon Life Science Institute, Belmont, MA, USA and 4Center of Excellence in Genomic
Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia

Received March 26, 2014; Revised October 03, 2014; Accepted October 08, 2014

ABSTRACT

The �54 promoters are unique in prokaryotic
genome and responsible for transcripting carbon
and nitrogen-related genes. With the avalanche of
genome sequences generated in the postgenomic
age, it is highly desired to develop automated meth-
ods for rapidly and effectively identifying the �54

promoters. Here, a predictor called ‘iPro54-PseKNC’
was developed. In the predictor, the samples of DNA
sequences were formulated by a novel feature vec-
tor called ‘pseudo k-tuple nucleotide composition’,
which was further optimized by the incremental fea-
ture selection procedure. The performance of iPro54-
PseKNC was examined by the rigorous jackknife
cross-validation tests on a stringent benchmark data
set. As a user-friendly web-server, iPro54-PseKNC
is freely accessible at http://lin.uestc.edu.cn/server/
iPro54-PseKNC. For the convenience of the vast ma-
jority of experimental scientists, a step-by-step pro-
tocol guide was provided on how to use the web-
server to get the desired results without the need to
follow the complicated mathematics that were pre-
sented in this paper just for its integrity. Meanwhile,
we also discovered through an in-depth statistical
analysis that the distribution of distances between
the transcription start sites and the translation initia-
tion sites were governed by the gamma distribution,
which may provide a fundamental physical principle
for studying the �54 promoters.

INTRODUCTION

Promoter is a region of DNA that determines the transcrip-
tion of a particular gene. In prokaryotes, it is the � factors of
RNA holoenzyme that recognize and bind to the promoter
sequences during gene transcription (1). Accordingly, the
types of prokaryotic promoters are defined by the types of
� factors. At present, the known � factors belong to two
main families: one is �70, which regulates the transcription
of the majority of housekeeping genes under normal con-
ditions (2); the other is �54, which is in charge of the tran-
scription of the specific genes in response to environmental
changes (3).

Although both the �70 and �54 promoters usually con-
tain two basic regulatory elements (4), their consensus se-
quences and locations are quite different. For �70, one of
its basic regulatory elements is with the consensus sequence
TATAAT located at around -10bp upstream from the tran-
scription start site (TSS), and the other is with TTGACA at
around -35bp. However, for �54, the corresponding two el-
ements are with TGC[AT][TA] at around -12bp (Figure 1)
and with [CT]TGGCA[CT][GA] at around -24bp, respec-
tively (5). Interestingly, the holoenzyme of �54 promoters
in initiating RNA synthesis (6) will depend on enhancer-
binding proteins (Figure 1).

These promoters will transcript the genes to control
numerous ancillary processes and environmental respon-
sive processes (7), including the expression of chemotaxis
transducers, assembly of motility organs (8), nitrogen fix-
ation (9), arginine catabolism (10), alginate biosynthesis
(11), flagellar assembly (5) and so forth. Several special
bacteria such as Escherichia coli, Salmonella typhimurium
and Pseudomonas putida (12) extensively use �54 promoter-
dependent transcription to regulate the metabolisms neces-
sary for their survival. Therefore, it is crucial to in-depth
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Figure 1. A schematic illustration to show the basic structure of �54 pro-
moter and its biological process.

understand the subsequent steps of gene expression and es-
tablish the network of gene transcription so as to reveal
the mechanism involved in �54 promoters transcription.
The correct identification of �54 promoters is the first step
for understanding their regulatory mechanisms; it is also
important for discovering those genes missed by the wet-
experimental evidences (13).

Although the biochemical experimental approaches can
provide the details for �54 promoters, the wet-experimental
technique is time-consuming and expensive. With the
avalanche of biological sequences generated in the post-
genomic era, it is highly desirable to develop computa-
tional methods to identify �54 promoters in prokaryotic
genomes. Although phylogenetic footprinting takes the ad-
vantage of relative conservation of motifs among related
species (14,15), these motifs are short and not fully con-
served among species (16,17), which may lead to a lot of
false positives. Furthermore, it is time-consuming for phy-
logenetic tree to identify promoters. Accordingly, it would
be a feasible avenue to resort to the machine learning-based
approaches, which have been proved to be quite powerful
and efficient in dealing with various biological problems.

Actually, over the past three decades, based on the fea-
ture of promoter sequences, a series of algorithms, such
as increment of diversity with quadratic discriminant (18),
partial least squares (19), position weight matrix (20), hid-
den Markov model (21), artificial neural network (22) and
support vector machine (SVM) (23) have been developed
to identify prokaryotic promoters. Although these meth-
ods have made considerable contributions to the progresses
in recognizing prokaryotic promoters, they mainly focused
on the �70 promoters because more experimental data were
available for this kind of promoters. With the development
of high-throughput sequencing technology, the accumula-
tion of experimental data on the �54 promoters has also
provided us with a feasible avenue to develop computational
methods for identifying the �54 promoters (23,24). For in-
stance, de Avila et al. (25) recently developed the DNA du-
plex stability-based method for the recognition and classifi-

cation of �54 promoter sequences and achieved the overall
accuracy of 78.8%.

Although the aforementioned methods could yield quite
encouraging results, further developments in this area are
definitely needed due to the following reasons. (i) The data
sets constructed in these methods were too small to re-
flect the statistical profile of �54 promoters. (ii) No cutoff
threshold (26) was imposed to winnow the redundant sam-
ples or those with high sequence similarity with others in
a same subset data set. (iii) The DNA local properties that
might have some intrinsic correlation with the promoters
and play an important role in identifying them were totally
ignored (27), needless to say how to use them to incorporate
the global sequence order information. (iv) No web-server
whatsoever was provided for these methods, and hence their
usage is quite limited, particularly for the broad experimen-
tal scientists.

The present study was devoted to enhance the prediction
power and quality in identifying the �54 promoters from the
aforementioned four aspects.

As demonstrated by a series of recent publications (28–
32) and summarized in a comprehensive review (33), to de-
velop a really useful predictor for a biological system, one
needs to go through the following five steps: (i) select or con-
struct a valid benchmark data set to train and test the pre-
dictor; (ii) represent the samples with an effective formula-
tion that can truly reflect their intrinsic correlation with the
target to be predicted; (iii) introduce or develop a powerful
algorithm to conduct the prediction; (iv) properly perform
cross-validation tests to objectively evaluate the anticipated
prediction accuracy; (v) establish a user-friendly web-server
for the predictor that is accessible to the public. Below, let
us elaborate how to deal with these five steps one-by-one.

MATERIALS AND METHODS

Benchmark data set

To construct a high quality benchmark data set, only ex-
perimentally confirmed �54 promoter sequences and TSSs
were collected. Thus, 92 samples were obtained from the
RegulonDB 8.0 (http://regulondb.ccg.unam.mx/) (34) and
74 from Barrios et al. (1). Subsequently, by mapping the
(92 + 74) = 166 �54 promoters into their genomes using
BLAST program, kept were only those samples whose pri-
mary sequences having the length of 81 bp from −60 to +20
bp with the TSS at their between (i.e. the site of 0 bp).

The construction of negative data set is very important
for training the predictor. In this work, the non-promoter
sequences or negative samples were extracted from the cod-
ing regions and intergenic regions of E.coli K-12. To as-
sure no potential TSS in the negative samples, the follow-
ing procedure was considered. We initially selected non-
promoter sequences from the middle regions of long cod-
ing sequences. Because the convergent intergenic regions are
the transcription terminal regions of both proximate genes
flanking the intergenic regions, the negative samples for the
non-promoter sequences were extracted from convergent
intergenic regions. The non-promoter sequence samples are
also 81 bp long. The hypothetical non-TSSs are located at
the 61st position, so the non-promoter samples have the

http://regulondb.ccg.unam.mx/
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same profile as the real promoter samples. Sequences with
other IUPAC code letters, such as “N,” “W,” “S” have been
filtered out from both positive and negative data sets.

As elucidated in (35), a data set containing many redun-
dant samples with high similarity would be lack of statisti-
cal representativeness. A predictor, if trained and tested by
a biased benchmark data set, might yield misleading results
with an overestimated accuracy (36). To get rid of the redun-
dancy and avoid bias, the CD-HIT software (37) was uti-
lized by setting its cutoff threshold to winnow those DNA
fragments which had ≥ 75% pairwise sequence identity with
any other in a same subset data set.

Finally, we obtained 161 positive and 161 negative sample
for the benchmark data set S, as can be formulated by

S = S
+ ∪ S

− (1)

where the subset S
+ contains only positive samples or

promoter sequences, S
− only negative samples or non-

promoter sequences, while ∪ represents the ‘union’ in the
set theory. The corresponding detailed sequences are given
in the Supporting Information S1.

Formulate DNA segments with pseudo nucleotide composi-
tion

Suppose a DNA segment consists of L nucleic acid residues;
i.e.

D = R1R2R3R4R5R6R7 · · · RL (2)

where R1 represents the first nucleic acid residue at position
1, R2 the second nucleic acid residue at position 2 and so
forth. Now the problem is how to express the DNA segment
as an input for statistical prediction. Actually, one of the
most challenging problems in computational biology is how
to effectively formulate a biological sequence with a discrete
model or a vector, yet still keep considerable sequence or-
der information. This is because all the existing operation
engines, such as optimization approach (38), covariance
discriminant (CD) (39), neural network (40), SVM (41),
random forest (42), conditional random field (43), nearest
neighbor (NN) (44); K-nearest neighbor (KNN) (45), OET-
KNN (46), Fuzzy K-nearest neighbor (47), ML-KNN algo-
rithm (48) and SLLE algorithm (49), can only handle vector
but not sequence samples. However, a vector defined in dis-
crete model may lose all the sequence-order information.

One way to deal with such a dilemma is to represent
the DNA segment with the k-tuple nucleotide composition
(18), a vector with 4k components; i.e.

D =
[

f K-tuple
1 f K-tuple

2 · · · f K-tuple
i · · · f K-tuple

4k

]T
(3)

where f K-tuple
i is the normalized occurrence frequency of

the i-th k-tuple nucleotide in the DNA segment. As we can
see from Equation (3), by increasing the value of k, al-
though the coverage scope of sequence order will be gradu-
ally increased, the dimension of the vector D will be rapidly
increased as well. For example, when k = 13, its dimen-
sion would become 413 = 67, 108, 864, causing the so-called
‘high-dimension disaster’ (50) or overfitting problem that
will significantly reduce the deviation tolerance or cluster-
tolerant capacity (51) so as to lower down the success rate

of prediction. Therefore, the k-tuple nucleotide composi-
tion approach can only incorporate the local or short-range
sequence-order information, but certainly not the global or
long-range sequence-order information.

Actually, similar problem also occurred in computational
proteomics, where in order for incorporating the global
or long-range sequence order information for proteins, the
pseudo amino acid composition (52,53) or Chou’s PseAAC
(54) was propose. Since the concept of PseAAC was pro-
posed in 2001 (52), it has been penetrating into almost
all the fields of protein attribute predictions (see, e.g. (55–
57) and a long list of publications cited in (58). Because it
has been widely used, recently three types of open access
soft-ware, called ‘PseAAC-Builder’ (59), ‘propy’ (60) and
‘PseAAC-General’ (58), were established: the former two
are for generating various modes of special PseAAC, while
the third one for those of general PseAAC.

Encouraged by the successes of introducing the PseAAC
approach into computational proteomics, recently Chen
et al. (28) proposed the ‘pseudo dinucleotide composition’
or PseDNC to identify recombination spots of DNA. Along
such a direction, we are to propose a more general formu-
lation to incorporate the global or long-range sequence or-
der information of DNA and use it to identify the �54 pro-
moters. The new formulation is called ‘pseudo k-tuple nu-
cleotide composition’ or PseKNC, as given by

DPseKNC

=
[

dK-tuple
1 dK-tuple

2 · · · dK-tuple
4k dK-tuple

4k+1 · · · dK-tuple
4k+λ

]T (4)

in which

dK-tuple
u

=

⎧⎪⎨
⎪⎩

f K-tuple
u∑4k

i=1 f K-tuple
i +w

∑λ
j=1 θ

K-tuple
j

, 1 ≤ u ≤ 4k

wθ
K-tuple
u−4k∑4k

i=1 f K-tuple
i +w

∑λ
j=1 θ

K-tuple
j

, (4k + 1) ≤ u ≤ (4k + λ)

(5)

where f K-tuple
i (i = 1, 2, · · · , 4k) have the same meaning as

those in Equation (3), while θ j is the j-th tire correlation
factor that reflects the sequence order correlation between
all the j-th most contiguous dinucleotides along a DNA se-
quence (see Supplementary Figure S1 in Supporting Infor-
mation S2), as formulated by

θ j = 1
L− j−1

L− j−1∑
i=1

�
(
Ri Ri+1; Ri+ j Ri+1+ j

)
( j = 1, 2, · · · , λ < L)

(6)

In the above two equations, λ is the number of the total
counted ranks or tiers of the correlations along a DNA se-
quence, and w the weight factor. Their concrete values as
well as the final value for k will be further discussed later.
The correlation function �

(
Ri Ri+1; Ri+ j Ri+1+ j

)
in Equa-

tion (6) is defined by

�
(
Ri Ri+1; Ri+ j Ri+1+ j

)
= 1

μ

μ∑
ν=1

[
Pν(Ri Ri+1) − Pν(Ri+ j Ri+1+ j )

]2 (7)

where μ is the number of local DNA structural properties
considered that is equal to 6 in the current study as will
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be explained below; Pν(Ri Ri+1), the numerical value of the
ν-th (ν = 1, 2, · · · , μ) DNA local structural property for
the dinucleotide Ri Ri+1 at position i and Pν(Ri+ j Ri+1+ j )
the corresponding value for the dinucleotide Ri+ j Ri+1+ j at
position i + j , as will be given below.

DNA local structural property parameters

Many evidences have showed that DNA local structural
properties play important roles in a series of biological pro-
cesses, such as protein–DNA interactions (61), formation
of chromosomes (62), nucleosome occupancy (63) and mei-
otic recombination (28). As an important and special reg-
ulator, promoters usually take possession of some distinct
DNA structural properties to allow special regulatory pro-
tein binding. Several models (23,62,64) have been developed
to predict the eukaryotic and prokaryotic promoters by us-
ing the basic physical properties. It was shown in these mod-
els that the physicochemical properties did play a crucial
role in promoter recognition. Recently, the report by Du-
ran et al. (65) strongly supports the hypothesis that an an-
cient regulatory mechanism encoded by the intrinsic physi-
cal properties of the DNA may contribute to the complexity
of transcription regulation in the human genome.

Illuminated by Duran et al.’s work (65), here the DNA
local structure characteristics are used to define PseKNC.
Generally speaking, the spatial arrangements of two suc-
cessive base pairs can be characterized by six quantities, of
which three are the local translational parameters and the
other three the local angular parameters (see Supplemen-
tary Figure S2 in Supporting Information S2), as formu-
lated by

Translational =
{ Slide

Shift
Rise

Angular =
{ Roll

Tilt
Twist

(8)

The six structural parameters of dinucleotides have been
calculated by Goni et al. (61) based on the long atomistic
molecular dynamics (MD) simulations in water, and their
concrete values are given in Supplementary Table S1 of
Supporting Information S3, which will be used to calculate
the global or long-range sequence-order effects for the pro-
moter sequences via Equations (6) and (7).

Note that before substituting the values of physicochem-
ical property into Equation (7), they were all subjected to a
standard conversion as described by the following equation:

Pν(Ri Ri+1) = P0
ν (Ri Ri+1) − 〈

P0
ν (Ri Ri+1)

〉
SD

〈
P0

ν (Ri Ri+1)
〉 (9)

where the symbol < > means taking the average of the
quantity therein over the 16 different combinations of A, C,
G, T for Ri Ri+1, and SD means the corresponding standard
deviation (26). The converted values obtained by Equa-
tion (9) will have a zero mean value over the 16 different
dinucleotides, and will remain unchanged if going through
the same conversion procedure again. Listed in Supplemen-
tary Table S2 of Supporting Information S3 are the values
of Pν(Ri Ri+1) (ν = 1, 2, · · · , 6) obtained via the standard
conversion of Equation (9) from those of Supplementary
Table S1.

Support vector machine (SVM)

SVM is a machine-learning algorithm based on the sta-
tistical learning theory and has been successfully used in
the realm of bioinformatics (see, e.g. (41,66,67)). The ba-
sic idea of SVM is to transform the input data into a high
dimensional feature space and then determine the optimal
separating hyperplane. A brief introduction about the for-
mulation of SVM was given in (66,68). For more details
about SVM, see a monograph (69). In the current study,
the Libsvm package designed by Lin’s lab (70) was used
to implement SVM, which can be freely downloaded from
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

The DNA samples as formulated by Equation (4) were
used as inputs for the SVM. It was observed that the ra-
dial basis function yielded better prediction results than the
other kernel functions and hence was used in the current
study. In the SVM operation engine, the regularization pa-
rameter C and the kernel width parameter γ were optimized
via an optimization procedure using a grid search approach
defined by

{
2−5 ≤ C ≤ 215 with step of 2
2−15 ≤ γ ≤ 2−5 with step of 2−1 (10)

Performance evaluation

In evaluating the accuracy of a statistical predictor, two
things are important. One is how to test the predictor, and
the other is what kind metrics should be used to measure
the accuracy.

Use jackknife cross-validation to test the prediction. As
summarized in a review (71), three cross-validation test
methods are often used in literature. They are independent
data set test, sub-sampling (or K-fold cross-validation) test,
and jackknife test. However, among the three methods, the
jackknife test is deemed the least arbitrary and most objec-
tive because it can always yield a unique outcome for a given
benchmark data set as elucidated in (33) and demonstrated
by the equations (28)–(32) therein. Accordingly, the jack-
knife test has been increasingly used and widely recognized
by investigators to examine the accuracy of various predic-
tors (see, e.g. (55,56,72–75)). Accordingly, the jackknife test
was also used to examine the performance of the model pro-
posed in the current study.

Use a set of four metrics to measure the prediction qual-
ity. To provide a more intuitive and easier-to-understand
method to measure the prediction quality, the following set
of four metrics based on the formulation used by Chou (76)
in studying signal peptide prediction was adopted. Accord-
ing to Chou’s formulation, the sensitivity, specificity, overall
accuracy and Matthews correlation coefficient can be ex-

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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pressed as (28,43,75,77)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn = 1 − N+
− ,

N+ 0 ≤ Sn ≤ 1

Sp = 1 − N−
+

N− , 0 ≤ Sp ≤ 1

Acc = 1 − N+
− +N−

+
N++N− , 0 ≤ Acc ≤ 1

MCC =
1−

(
N+−
N+ + N−+

N−

)
√(

1+ N−+ −N+−
N+

)(
1+ N+− −N−+

N−

) , −1 ≤ MCC ≤ 1

(11)

where N+ is the total number of the �54 promoter se-
quences investigated while N+

− the number of �54 promoter
sequences incorrectly predicted as the non-�54 promoter se-
quences; N– the total number of the non-�54 promoter se-
quences investigated while N−

+ the number of the non-�54

promoter sequences incorrectly predicted as the �54 pro-
moter sequences.

According to Equation (11) we can easily see the fol-
lowing. When N+

− = 0 meaning none of the �54 promoter
sequences was mispredicted to be a non-�54 promoter se-
quences, we have the sensitivity Sn = 1; while N+

− = N+

meaning that all the �54 promoter sequences were mispre-
dicted to be the non-�54 promoter sequences, we have the
sensitivity Sn = 0. Likewise, when N−

+ = 0 meaning none
of the non-�54 promoter sequences was mispredicted, we
have the specificity Sp = 1; while N−

+ = N− meaning all
the non-�54 promoter sequences were incorrectly predicted
as �54 promoter sequences, we have the specificity Sp =
0. When N+

− = N−
+ = 0 meaning that none of the �54 pro-

moter sequences in the positive data set S
+ and none of

the non-�54 promoter sequences in the negative data set
S

− was incorrectly predicted, we have the overall accuracy
Acc = 1; while N+

− = N+ and N−
+ = N− meaning that all

the �54 promoter sequences in the positive data set and all
the non- �54 promoter sequences in the negative data set
were mispredicted, we have the overall accuracy Acc = 0.
The Matthews correlation coefficient MCC is usually used
for measuring the quality of binary (two-class) classifica-
tions. When N+

− = N−
+ = 0 meaning that none of the �54

promoter sequences in the positive data set and none of the
non-�54 promoter sequences in the negative data set was
mispredicted, we have MCC = 1; when N+

− = N+/2 and
N−

+ = N−/2 we have MCC = 0 meaning no better than
random prediction; when N+

− = N+ and N−
+ = N− we have

MCC = –1 meaning total disagreement between prediction
and observation. As we can see from the above discussion,
it is much more intuitive and easier-to-understand when us-
ing Equation (11) to examine a predictor for its four metrics,
particularly for its Mathew’s correlation coefficient. It is in-
structive to point out that the metrics as defined in Equa-
tion (11) are valid for single-label systems only; for multi-
label systems (78–81), a set of more complicated metrics
should be used as given in (48).

Feature selection

With the increase of k and �, the dimension of DPseKNC of
Equation (4) used to represent the samples of DNA seg-
ments will increase rapidly, leading to the high-dimension
disaster (50,82) in the following three unfavorable aspects:

(i) the overfitting disadvantage that will make the predictor
with a serious bias and extremely low capacity for general-
ization; (ii) the information redundancy or noise that will
bring about the error of misrepresentation resulting in very
poor prediction accuracy; (iii) unnecessarily increasing the
computational time.

To deal with the high-dimension disaster, we utilized
the feature selection technique to optimize the features in-
cluded. Doing so not only can acquire a deeper insight into
the intrinsic properties of promoter sequences, but also can
improve the understandability, scalability and accuracy of
the prediction model (83).

In the present study, we performed feature selection using
the wrapper-type feature selection algorithm called F-score
(84), by which the F-score of the i-th feature is defined by

Fi

= (x̄(+)
i −x̄i )2+(x̄(−)

i −x̄i )2

1
n+−1

∑n+
k=1 (x̄(+)

k,i −x̄(+)
i )2+ 1

n−−1

∑n−
k=1 (x̄(−)

k,i −x̄(−)
i )2

(12)

where n+ is the total number of the positive samples, n– the
total number of the negative samples, x̄(+)

i is the mean value
of the i-th feature of the entire positive samples, x̄(−)

i that of
the entire negative samples, and x̄i the mean value of the to-
tal samples, x̄(+)

k,i represents the i-th feature of the k-th sam-

ple in the positive data set, and x̄(−)
k,i the i-th feature of the

k-th sample in the negative data set.
Obviously, the larger the Fi-score is, the higher discrim-

inative capability the i-th feature will be. Thus, all features
can be ranked based on their F-score values. Based on the
features thus ranked, we used the incremental feature selec-
tion (IFS) to determine the optimal number of feature as
described below. The feature subset starts from a feature
with the highest F-score. A new feature subset was com-
posed when the feature with the second highest F-score was
added. We repeated this process by adding features sequen-
tially from higher to lower rank until all candidate features
are added. Thus, the N feature sets thus formed would be
composed of N ranked features. The τ -th feature set can be
formulated as

Sτ = {
F1 F2 · · · Fτ

}
(1 ≤ τ ≤ N) (13)

For each of such N feature sets, an SVM prediction model
was constructed and examined by the jackknife test on the
benchmark data set. By doing so, we obtained an IFS curve
in a 2D Cartesian coordinate system with index τ as the
abscissa (or X-coordinate), and the overall success rate as
the ordinate (or Y-coordinate). The optimal feature set is
expressed as

Sτ = {
F1 F2 · · · F�

}
(14)

with which the IFS curve reaches its peak. In other words, in
the 2D coordinate system, when X = � the overall success
rate reaches its maximum.

RESULTS AND DISCUSSIONS

Parameter optimization

As we can see from Equations (4) and (5), the results of the
current predictor will depend on three parameters, k, � and
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w, where k reflects the local or short-range sequence order
effect, � represents the tiers counted for the global or long-
range sequence order effect, and w is the factor to reflect the
weight imposed between the local and global effects that is
usually within the range from 0 to 1. Generally speaking,
the greater the k is, the more local sequence-order informa-
tion the model contains, while the greater the � is, the more
global sequence-order information it contains. However, if
k or � is too large, it would cause the high-dimension dis-
aster as mentioned above. Therefore, our searching for the
optimal values of the three parameters were carried out in
the following regions{ 2 ≤ k ≤ 9 with step 	 = 1

1 ≤ λ ≤ 50 with step 	 = 1
0.1 ≤ w ≤ 1.0 with step 	 = 0.1

(15)

As we can see from Equation (15), a total of 8 × 50 ×
10 = 4000 individual combinations (or points in the 3D pa-
rameter space) needed to be considered for finding the opti-
mal parameter combination. This was actually a routine but
tedious process to optimize the model via a 3D grid search.
To reduce the computational time, we primarily used the
10-fold cross-validation approach to deal with the parame-
ter optimization. Once the optimal values for the three pa-
rameters were determined, the rigorous jackknife test was
performed to evaluate the success rates of the predictor ac-
cording to the four metrics as defined in Equation (11). The
results thus obtained in identifying �54 promoters are sum-
marized by⎧⎪⎨

⎪⎩
Sn = 77.02%
Sp = 83.85%
Acc = 80.43%
MCC = 61.01%

when

( k = 7
λ = 40
w = 0.1

)
(16)

Feature optimization

As we can see from Equation (16), when k = 7 and λ = 40
meaning when the 7-tuple nucleotide composition and 40
additional components (cf. Equations (4) and (5)) were used
to incorporate the local and global sequence order infor-
mations, respectively, an optimal state was found for the
current model. On the other hand, as we can see from
Equation (4), the dimension for the PseKNC vector with
k = 7 and λ = 40 would be 47 + 40 = 16, 424, which is still
too large to avoid the high-dimension problems mentioned
above.

Therefore, it is necessary to select the key ones from the 16
424 components according to the procedures as described
in Section 2.6, where the F-score was calculated through
a simple python script, called ‘fselect.py’, which can be
freely downloaded from http://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/.

By means of the above feature selection procedure, the
number of components for the PseKNC vector was reduced
from 16 424 to 2056, of which 2036 belonged to the local
sequence order information, while 20 to the global one.

Furthermore, we used the binomial distribution (82) to
judge the confidence level (CL) of the 2036 local sequence
components. If the CL of a 7-tuple nucleotide was greater
than 90%, its occurrence was not a random event (82), and

Figure 2. A heat map to describe the F-scores of (a) the 16 384 different
heptamers, and (b) the 40 different global factors as defined in the second
sub-equation of Equation (5). The color scale is ranged from blue (low)
through green and yellow to red (high). See the main text for further ex-
planation. A higher resolution version can be found at http://lin.uestc.edu.
cn/server/iPro54PseKNC/heatmap.jpg.

hence the component corresponding to such a heptamer
was kept; otherwise, left out. By doing so, the 2036 local
sequence components were further reduced to 263.

Finally, the key components for the PseKNC vector were
reduced to 263 + 20 = 283, of which 263 reflecting the
short-range or local sequence order effects, while 20 for
the long-range or global sequence order effect. The details
about the 283 key components are given in Supporting In-
formation S4.

The predictor obtained via the above procedures is called
‘iPro54-PseKNC’, where ‘i’ means identify, ‘Pro54′ means
‘�54 promoter’, and ‘PseKNC’ means ‘pseudo k-tuple nu-
cleotide composition’.

The final jackknife test results obtained by iPro54-
PseKNC on the benchmark data set S (see Supporting In-
formation S1) are as follows⎧⎪⎨

⎪⎩
Sn = 90.06%
Sp = 97.52%
Acc = 93.79%
MCC = 0.8782

(when using 283 key features) (17)

Furthermore, to show the performance of the current
model across the entire range of SVM decision values, the
ROC (receiver operating characteristic) curve was also cal-
culated by the jackknife tests. It was found that the area un-
der the ROC curve (or AUROC) was 0.9825, indicating that
the model is quite robust.

Features analysis

To provide an overall and intuitive view, the following nor-
malized function was introduced to scale the F-score of the
i-th feature

F0
i = Fi − Fmin

Fmax − Fmin
(18)

where Fmin and Fmax are the minimum and maximum F-
score of all the features concerned. Thus, we have F0

i ∈
(0, 1).

To analyze the contributions of different heptamers in the
prediction model, a heat map (85) was provided (Figure 2),
which is a graphical representation of a matrix where the
elements represent the features and are encoded using dif-
ferent colors according to their F0

i values. As we can see
from Figure 2a, although there exist 47 = 16 384 different

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
http://lin.uestc.edu.cn/server/iPro54PseKNC/heatmap.jpg
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Figure 3. The MEME frequency plot to show consensus motifs of the -24
elements and -12 elements of �54 promoters.

heptamers, the majority of them have very small F0
i val-

ues, indicating that the corresponding features are irrelevant
with the promoter recognition. By analyzing the relevant
heptamers, we have found that they possess some consen-
sus motifs. For example, the heptamers TGGCACG, CTG-
GCAC and TGGCACA are with the F-scores ranking top
three among all the features and with the confidence level
of CL > 99.99% always occurring around the -24 element.
Around the -12 element, we have also found the regulatory
sequences TTGCTTT, TATTGCT, ATTGCTT are with the
CL > 98.44%. All these observations are fully in accordance
with the reports from (1,24,25,86,87).

Meanwhile, the heat map graphical technique was also
used to analyze the long-rang factors (cf. the second sub-
equation of Equation (5)). As we can see from Figure 2b,
when � = 2, 8, 9, 10, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26,
27, 29, 30, 31, 38 and 39, the corresponding F0

i values are
much higher than the remaining ones, indicating that such
20 factors are more important in reflecting global sequence
order effects for identifying the �54 promoters, particularly
the three long-range factors with � =17, 23 and 24.

To further investigate the sequence mode in �54 pro-
moters, the MEME (Multiple Em for Motif Elicitation)
(88) was used to discover the consensus motifs in �54

promoters. As we can see from Figure 3, the consensus se-
quence [CT]TGGCA[CT][GA]NNNN[TC]TGC[AT][TA]
was found by MEME. By comparing with the optimized
heptamers obtained from the feature selection technique,
it is exciting to see that the -24 and -12 elements obtained
by MEME are fully consistent with the feature selection
findings, clearly demonstrating that the feature selection
technique is very useful for the feature analysis, and that
the optimized features reported here are appropriate for
�54 promoter prediction.

In order for in-depth analyzing the optimized heptamers,
60 heptamers were singled out as the most important fea-
tures that had CL > 96.87%. Of the 60 heptamers, 50 are
often presented in the �54 promoter sequences (Figure 4a, b,
c), and the other 10 are not (Figure 4d). In other words, the
50 heptamers are positively correlated with �54 promoters
while the other 10 heptamers are negatively correlated with
�54 promoters. Interestingly, 23 of the 50 positive correla-
tion heptamers are -24 elements (Figure 4a), while 12 of the
50 positive correlation heptamers are -12 elements (Figure
4b). The remaining 15 positive correlation heptamers (Fig-
ure 4c) maybe play other important roles in the interaction

Figure 4. A histogram to show the different heptamers between the �54

promoters and the non-�54 promoters: (a) heptamers belonging to the -
24 element; (b) those belonging to the -12 element; (c) those belonging to
neither the -24 element nor the -12 element; (d) those barely appearing in
the �54 promoters.

between RNAP with promoter sequences. It is instructive
to note that the positive correlated heptamers are AT-rich,
whereas the negative correlation heptamers are GC-rich el-
ements, implying that the structure of promoters will affect
RNA polymerase binding. This is because the lack of GC-
rich elements often results in the unstable local secondary
structure, which can be opened by RNA holoenzyme (89).
Of course, it would also be possible that many additional
unknown factors might exist to enhance or inhibit the pro-
moter’s activity. And this will be a new research point in
future work.

A question might be raised as asking why heptamers
could affect predictive performance so much. This ques-
tion can be addressed by noting the following three facts:
(i) most of transcription factor binding sites are sequences
with length ≥7; (ii) a large portion of the whole set of hep-
tamers are non-motifs that can be excluded by feature se-
lection technique; (iii) it has been reported that the distance
of regulatory heptamer elements is conserved in promoters
(90).

Distance distribution between TSS and TIS

It is instructive to calculate the distances between TSS and
translation initiation site (TIS) of all �54 promoters and
plotted them into a histogram (Figure 5) to exhibit their
distribution. We have found that 80% of TSSs are located
within 150 bp upstream from TISs, and the maximum dis-
tance is 402 bp. The mean of the distances between TSSs
and TISs is about 90 bp while the standard deviation is
about 76 bp.

According to modern genetics, the driving force of nu-
cleotide sequence evolution is the random mutation of bases
on the basis of the natural selection (91). The information
stored in genomes is maximized under a set of constraint
conditions. Hence, the distance distribution from TSS to
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Figure 5. A probability distribution curve to describe the distance between
transcription start site (TSS) and translation initiation site (TIS) of �54

promoters. It has been found that the gamma distribution with 1.7 as its
shape parameter and 52.5 as its scale parameter can best fit the distance
between TSS and TIS.

TIS should also obey the maximum information principle
by maximizing the entropy under certain constraints. The
information entropy of the distance distribution f (x) can
be expressed as

H = −
∝∫

0

f (x)ln ( f (x)) dx (19)

For any probability distribution, we have the normaliza-
tion constraint; i.e.

T =
∝∫

0

f (x)dx = 1 (20)

In the natural world, the total of all distances between
TSS and TIS should be a constant, suggesting that the arith-
metic mean of these distances should also be a constant.
Thus we have the second constraint for f (x) as given by

U =
∝∫

0

x f (x)dx (21)

According to the z-curve theory (92), any points in the z-
curve of a DNA sequence will be located in a sphere on the
3D space, suggesting that the distance will obey a geometric
constraint as well. Thus, the geometric mean of the distance
distribution will impose the third constraint on f (x). More-
over, the geometric mean can avoid the influence of the rare
event that TSS is too far away from TIS. To convert mul-
tiplication to addition, let us calculate the geometric mean
via the logarithm function; i.e.

V =
∝∫

0

ln (x) f (x)dx (22)

Now, according to Lagrange multiplier method, we have

δH − C1δT − C2δU − C3δV = 0 (23)

where � is the operator to take the partial derivative on the
variable right after it, while C1, C2 and C3 are the undeter-

mined coefficients. From Equation (23), it follows

f (x) = e−C1−1e−C2 x−C3 (24)

where the coefficients C1, C2 and C3 can be determined via
the three constraints as given by Equations (20)–(22). By
using the constraint of Equation (20), we obtain

e−C1−1 =
⎛
⎝ ∝∫

0

e−C2xx−C3 dx

⎞
⎠

−1

= β−α


(α)
(25)

where α = 1 − C3, β = 1/C2, and 
(α) is gamma function.
Thus, the distribution function f (x) can be expressed as

f (x) = xα−1e−x/β


(α)βα
(26)

The above equation indicates that f (x) is a gamma distri-
bution function with the shape shown in Figure 5. Its shape
parameter is α = 1.7 and scale parameter β = 52.5.

Now we can draw the conclusion that, when the infor-
mation entropy reaches its maximum, the distance distribu-
tion from TSS to TIS of �54 promoters must obey a gamma
distribution. This is a very interesting discovery, which can
actually provide a fundamental physical principle for the
study of �54 promoters.

It was reported that the gamma distribution could also
be used to describe the distributions of protein length (93),
hexamer occurrence frequency in microbial genomes (94)
and codon-pair frequency (95). Our finding is fully consis-
tent with these reports.

Life is a special occasion, which always avoids the mini-
mum and maximum. In view of this, the gamma distribution
is very likely a kind of basic distribution in life. We antici-
pate that the current report will stimulate more experiments
to prove such a deduction.

Prediction of �54 promoters in prokaryotic genome

In order to further test the prediction accuracy of our
method in genome, we collected six �54 promoters with
experimental-mapped TSS from updated RegulonDB. They
are independent from train data set. As mentioned before,
the maximum distance between TSS and TIS is 402 bp. It
has been also reported that the accuracy of TIS in prokary-
otic genome is higher than 90%. Based on the two points,
by using the BLAST program, we mapped the six �54 pro-
moters into their genomes and extracted six sequence frag-
ments, of which each fragment has the length of 500 bp from
−480 to +19 bp with the TIS at their between (i.e. the site
of 0 bp).

Subsequently, we searched for the �54 promoters using
iPro54-PseKNC in the six fragments. By using the sliding
window method (96) with a window size of 81bp and a step
of 1bp, each fragment will be divided into 500−81 = 419
subsequences corresponding to 419 potential TSS positions
located in the 61th positions. Then we calculated the proba-
bility belonging to the promoters of each subsequence. The
probabilities with positions were drawn in Figure 6. We no-
ticed that, in five of its six panels (i.e.Figure 6a,b,c,e,f), the
probabilities around the true TSSs are close to 1, suggesting
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Figure 6. The predicted results by iPro54-PseKNC on the six
experimental-confirmed �54 promoters. (a) Promoter name: rsmDp;
specie: Escherichia coli K-12 MG1655; gene name: rsmD; TIS position:
3602416 in the forward strand; TSS position: 3602320. (b) Promoter
name: nifDp; specie: Bradyrhizobium japonicum USDA 110; gene name:
nifD; TIS position: 1907825 in the forward strand; TSS position: 1907783.
(c) Promoter name: glnAp; specie: Klebsiella oxytoca KCTC 1686; gene
name: glnA; TIS position: 1445478 in the reverse strand; TSS position:
1445558. (d) Promoter name: nifAp; specie: Klebsiella oxytoca KCTC
1686; gene name: nifA; TIS position: 5380473 in the forward strand;
TSS position: 5380399. (e) Promoter name: P1; specie: Sinorhizobium
meliloti AK83; gene name: Sinme 6491; TIS position: 1208909 in the
reverse strand; TSS position: 1208979. (f) Promoter name: glnAp; specie:
Salmonella enterica subsp. serovar Heidelberg str. CFSAN002069; gene
name: glnA; TIS position: 4657888 in the reverse strand; TSS position:
4657967. The up arrows represent true TSSs. The gray square frames
represent the genes, in which the horizontal arrows represent the directions
of transcriptions. The thick blank lines represent the intergenic regions.

that these regions are easily bound by RNAp and other reg-
ulators due to the occurrence of some consensus sequences.
Thus, they can be regarded as correctly predicted �54 pro-
moters. The distances between the probability peaks with
true TSSs are only 33bp, 18bp, 1bp, 18bp and 30bp (Fig-
ure 6a,b,c,e,f), respectively. For the promoter nifAp (Fig-
ure 6d), we noticed that the distance between the predic-
tive probability peak and the true TSS is 300bp. However,
TSSs usually do not occur in coding regions. If we only con-
sider the prediction in intergenic regions, the position (Fig-
ure 6d) with a probability peak is only 42bp, which is not far
from the true TSS. Compared with the previous work (97) in
which a site was deemed as a true TSS when it was predicted
locating at the region upstream 150bp or downstream 50bp

Figure 7. A semi-screenshot for the top page of the iPro54-PseKNC web-
server at http://lin.uestc.edu.cn/server/iPro54-PseKNC.

of a true TSS, our method is much more accurate and catch
the real features of �54 promoters.

Moreover, we also collected 20 �54 promoters of 10 dif-
ferent species from Genbank. Although the -24 and -12 ele-
ments of these promoters had been mapped, their TSSs are
not be found by experiments yet. Using BLAST program we
mapped these promoters into their genomes and extracted
20 sequence fragments, each of which has the length of 500
bp from −480 to +19 bp with the TIS at their between (i.e.
the site of 0 bp). Subsequently, we used iPro54-PseKNC to
scan the 20 DNA fragments with the similar procedure, and
the results thus obtained are given in Supporting Informa-
tion S5. It can be clearly seen from there that the probabil-
ities around -24 and -12 elements for most of the promot-
ers are very close to 1, once again indicating that iPro54-
PseKNC is indeed a very powerful high throughput tool for
predicting �54 promoters.

Web-server guide or protocol

For the convenience of the vast majority of experimental
scientists, a web-server for the iPro54-PseKNC predictor
was established. Furthermore, a step-by-step guide on how
to use the web-server to is given as follows.

Step 1. Open the web server at http://lin.uestc.edu.cn/
server/iPro54-PseKNC and you will see the top page of
iPro54-PseKNC on your computer screen, as shown in Fig-
ure 7. Click on the Read Me button to see a brief introduc-
tion about the predictor and the caveat when using it.

Step 2. Either type or copy/paste the query DNA se-
quences into the input box at the center of Figure 7. The
input sequence should be in the FASTA format. Example
sequences in FASTA format can be seen by clicking on the
Example button right above the input box.

Step 3. Click on the Submit button to see the predicted
result. If you use the three sequence samples in the Example
window as an input, after clicking the Submit button, you
will see the following outcomes shown on the screen of your
computer. (i) The Example-1 query sequence contains 81 bp
and is identified belonging to ‘promoter’. (ii) The Example-
2 query sequence contains 81 bp and is identified belong-
ing to ‘non-promoter’. (iii) The Example-3 query sequence
contains 500 bp and hence has 500 − 81 + 1 = 420 sub-
sequences, of which only those from #265–266 and those

http://lin.uestc.edu.cn/server/iPro54-PseKNC
http://lin.uestc.edu.cn/server/iPro54-PseKNC
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from #306–385 are ‘promoter’ but all the others are ‘non-
promoter’. All these results are fully consistent with the ex-
perimental observations. It only takes about few seconds for
the above computation before the predicted results appear
on your computer screen.

Step 4. Click on the Data button to download the bench-
mark data sets used to train and test the iPro54-PseKNC
predictor.

Step 5. Click on the Citation button to find the relevant
papers that document the detailed development and algo-
rithm of iPro54-PseKNC.

Caveats. Each of the input query sequences must be 81
bp or longer and only contains valid characters: ‘A’, ‘C’, ‘G’,
‘T’.

CONCLUSION

Using the k-tuple nucleotide composition and pseudo
oligonucleotide composition to incorporate, respectively,
the local and global sequence-order informations, a predic-
tor called iPro54-PseKNC was developed for identifying the
�54 promoters. In the predictor, the feature selection tech-
nique was used to winnow out the key features. It was ob-
served that the key features thus obtained did really repre-
sent the regulatory motifs in �54 promoter sequences.

The rates achieved by the predictor were over 90%,
97%, 93% and 0.87 in sensitivity, specificity, accuracy and
Matthews correlation coefficient, respectively. These results
were derived by the rigorous jackknife tests on a stringent
benchmark data set in which none of the DNA fragment
samples had ≥ 75% pairwise sequence identity to any other
in a same subset.

A basic physical principle for the study of �54 promot-
ers was revealed through an in-depth statistical analysis that
the distribution of distances between the transcription start
sites and the translation initiation sites were governed by
the gamma distribution, which may become a fundamental
physical principle for the study of �54 promoters.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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