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Abstract

Computational methods attempting to identify instances of cis-regulatory modules (CRMs) in the genome face a
challenging problem of searching for potentially interacting transcription factor binding sites while knowledge of the
specific interactions involved remains limited. Without a comprehensive comparison of their performance, the reliability and
accuracy of these tools remains unclear. Faced with a large number of different tools that address this problem, we
summarized and categorized them based on search strategy and input data requirements. Twelve representative methods
were chosen and applied to predict CRMs from the Drosophila CRM database REDfly, and across the human ENCODE
regions. Our results show that the optimal choice of method varies depending on species and composition of the
sequences in question. When discriminating CRMs from non-coding regions, those methods considering evolutionary
conservation have a stronger predictive power than methods designed to be run on a single genome. Different CRM
representations and search strategies rely on different CRM properties, and different methods can complement one
another. For example, some favour homotypical clusters of binding sites, while others perform best on short CRMs.
Furthermore, most methods appear to be sensitive to the composition and structure of the genome to which they are
applied. We analyze the principal features that distinguish the methods that performed well, identify weaknesses leading to
poor performance, and provide a guide for users. We also propose key considerations for the development and evaluation
of future CRM-prediction methods.
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Introduction

Cis-regulatory module definition
Cis-acting transcriptional regulation involves the sequence-

specific binding of transcription factors (TFs) to DNA [1,2]. In

most cases, multiple transcription factors control transcription

from a single transcription start site cooperatively. A limited

repertoire of transcription factors performs this complex regula-

tory step through various spatial and temporal interactions

between themselves and their binding sites. On a genome-wide

scale, these transcription factor binding interactions are clustered

as distinct modules rather than distributed evenly. These modules

are called cis-regulatory modules. On DNA sequences, promoters,

enhancers, silencers and others, are examples of these modules.

The appropriate transcription factors compete and bind to these

elements, and act as activators or repressors. Generally a CRM

ranges from a few hundred basepairs long to a few thousand

basepairs long; several transcription factors bind to it, and each of

these transcription factors can have multiple binding sites

(Figure 1).

Berman et al. [3] demonstrated the feasibility of identifying

CRMs by sequence analysis. They scanned the Drosophila genome

for clusters of potential binding sites for five gap gene transcription

factors that are known to, together regulate the early Drosophila

embryo. They found more than a third of the dense clusters of

these binding sites correspond to be CRMs regulating early

embryo gene expressions, characteristic of genes regulated by

maternal and gap transcription factors. Similarly, exploiting the

property that many CRMs contain clusters of similar transcription

factor binding sites (TFBSs), Schroeder et al. [4] computationally

predicted CRMs over the genomic regions of genes of interest with

gap or mixed maternal-gap transcription factors, and identified

both known and novel CRMs within the segmentation gene

network.

Recent study has confirmed the importance of CRM functions,

and revealed how subtle changes to the original arrangement of

module elements can affect its function. Gompel et al. [5] found

that modifications to cis-regulatory elements of a pigmentation

gene Yellow can cause a wing pigmentation spot to appear on

Drosophila biarmipes similar to that seen in Drosophila melanogaster,

thus showing that mutations in CRMs can generate novelty

between species. In a later study [6] they showed the creation and

destruction of distinct regulatory elements of same gene can lead to

a same morphological change. Williams et al. [7] investigated the

genetic switch whereby the Hox protein ABD-B controls bab

expression in a sexually dimorphic trait in Drosophila. They

discovered the functional difference of this case lies not only in the

creation and destruction of the binding sites, but also in their
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orientations and spacings. There is also evidence showing that

disruption of cooperations within a specific CRM can lead to

malformation and disease. One example is given by Kleinjan et al.

[8]. The deletion of any distal regulatory elements of PAX6

changes its expression level and causes congenital eye malforma-

tion, aniridia, and brain defects in human.

Cis-regulatory module prediction methods
Methods attempting to identify CRMs in the genome face a

challenging problem: a module is a mixture of signals –

transcription factor binding sites and other sequence features –

and these signals are spatially clustered within a specific genomic

interval and are frequently, but not universally, conserved between

related species [9]. Searching for a cis-regulatory module consists

of searching for two properties: a set of signals, and the

spatiotemporal relationships between this set of signals. In order

to identify CRMs, one must first define and build a model.

Except for a small number of specific, well-characterized,

interactions, the vast majority of spatiotemporal relationships

between transcription factors remain unknown. This information

deficit limits most CRM prediction methods to defining CRMs

based on their general features: their spatial constraints (i.e. a close

distance between binding sites within a CRM), their phylogenetic

constraints (i.e. a CRM is a conserved block between species) [10–

12], or both. Therefore, pre-compiled binding site profile libraries

and multiple genome alignments are required by many CRM

prediction methods.

The search strategies for the existing methods can be roughly

classified into four families. Window clustering involves significant

clustering of high densities of binding sites within a sequence

window. Probabilistic modelling consists of identifying sequences

that resemble a statistical model of a binding site cluster more than

a model of background DNA. Phylogenetic footprinting searches

for high density regions of binding sites conserved between closely

related species. Discriminative modelling seeks to identify set of

signals on regulatory regions that can maximize the differences

between regulatory regions and non-regulatory regions (Figure 2).

Many methods are hybrids of two or more strategies.

Assessment of methods
We wished to understand the performance of CRM prediction

methods and, if possible, identify an optimal method. We also

hoped to locate the key features that distinguish a good method

and the reasons behind it. More specifically, we would like to

answer these questions: (1) Which search strategy best predicts

CRMs? (2) What types of CRMs are easy or difficult to predict? (3)

What causes false positives and false negatives, and how they can

be reduced in the future?

In order to examine all of these features of CRM prediction

methods, we selected twelve representative methods from the

above four search strategies families: MSCAN [13], MCAST [14],

ClusterBuster [15], Stubb [16], StubbMS [17], MorphMS [18],

CisModule [19], MultiModule [20], CisPlusFinder [21], phast-

Cons score [22] (http://hgdownload.cse.ucsc.edu/goldenPath/

Author Summary

Transcriptional regulation involves multiple transcription
factors binding to DNA sequences. A limited repertoire of
transcription factors performs this complex regulatory step
through various spatial and temporal interactions between
themselves and their binding sites. These transcription
factor binding interactions are clustered as distinct
modules: cis-regulatory modules (CRMs). Computational
methods attempting to identify instances of CRMs in the
genome face a challenging problem because a majority of
these interactions between transcription factors remain
unknown. To investigate the reliability and accuracy of
these methods, we chose twelve representative methods
and applied them to predict CRMs on both the fly and
human genomes. Our results show that the optimal choice
of method varies depending on species and composition
of the sequences in question. Different CRM representa-
tions and search strategies rely on different CRM
properties, and different methods can complement one
another. We provide a guide for users and key consider-
ations for developers. We also expect that, along with new
technology generating new types of genomic data, future
CRM prediction methods will be able to reveal transcrip-
tion binding interactions in three-dimensional space.

Figure 1. Schematic representation of cis-regulatory modules.
A cis-regulatory module contains multiple binding sites of multiple
transcription factors within a compact sequence interval. The binding
affinity and the orientation of each binding site, the spacing and
cooperation relationship between binding sites, and the relevant
distance of cis-regulatory module to transcription start site of the gene
it regulates may all be important properties of a given cis-regulatory
module.
doi:10.1371/journal.pcbi.1001020.g001

Figure 2. Classification of search strategies. Search strategies for
the CRM prediction methods can be broadly subdivided into four
families: window clustering, probabilistic modelling, phylogenetic
footprinting, and discriminative modelling.
doi:10.1371/journal.pcbi.1001020.g002

Assessing Methods of CRM Prediction
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dm2/phastCons9way/), Regulatory Potential [23] and EEL [24].

These twelve methods cover almost all the possible combinations

of CRM representations, information resources used and search

strategies available, as shown in the the summary table (Figure 3).

Their operational principles are summarized (Table 1). Among

these twleve methods, Regulatory Potential and EEL only have

results available for the human genome. Therefore the other ten

methods were applied to predict the CRMs in the Drosophila CRM

database REDfly [25] to assess their general predictive power.

Next, three optimal methods from the REDfly prediction result,

together with Regulatory Potential and EEL, were applied to the

human ENCODE regions, to assess the utility of these methods

when dealing with different genomes of various compositions and

structures.

The family of window clustering methods, such as MSCAN,

MCAST and CisPlusFinder, represent a CRM in a most naı̈ve

form as a statistically significant clustering of high affinity

transcription factor binding sites. MSCAN and MCAST scan a

motif library against a single genome. CisPlusFinder takes the

perfect local ungapped sequences as potential transcription factor

binding sites, then searches for a high density of multiple such

short sequences that are conserved between closely related species.

The family of probabilistic modelling methods, ClusterBuster,

Stubb, StubbMS, MorphMS, CisModule, and MultiModule, all

implement a hidden Markov model (HMM) and they model a

CRM sequence as being generated by a combination of a set of

binding sites. The difference between them is ClusterBuster, Stubb

and CisModule are based on a single genome while StubbMS,

MorphMS and MultiModule are based on a pair or multiple

orthologous genomes. Morever, the difference between StubbMS

and MorphMS lies on their first step of aligning their input

orthologous sequences: StubbMS uses Lagan [26] that produces a

fixed alignment according to the sequence similarity. On the

contrary, MorphMS aligns sequences by probabilistically summing

over all possible alignments by their matches to the potential

binding sites. CisModule and MultiModule are unique from the

rest methods of this family by predicting both binding sites and

CRMs in one step. CisModule encodes binding sites and a CRM

into one hierarchical mixture model and follows Bayesian

inference to predict both the location of CRM and the location

of the binding sites within the CRM simultaneously. MultiModule

follows the same model but improves on CisModule by

incorporating information from comparative genomes.

Among the above two families of methods, the methods using

multiple alignments: CisPlusFinder, StubbMS, MorphMS and

MultiModule are also members of the phylogenetic footprinting

family.

Among these ten methods, CisModule, MultiModule and

CisPlusFinder are the three methods that do not rely on the prior

information of a motif library. To further check how well the

functional CRMs can be predicted without additional binding site

knowledge, we applied a method based purely on sequence

conservation – as represented by phastCons score [22] – as an

independent calibration. PhastCons score is calculated by a

phylogenetic hidden Markov model considering the evolutionary

distance between species. It assigns each nucleotide position a

score which represents the conservation degree of that position.

We followed the approach used by King et al. [27] and took

continuous windows with a mean phastCons score over an

optimized phastCons score threshold as a potential CRM (see

Materials and Methods).

We also identified a few interesting methods which we were

unable to include in this assessment due to incompatibility with the

experimental design of this study or unavailability of required

data. For example HexDiff [28], a method in the discriminative

modelling family, learns a set of over-represented hexamers in

known CRM sequences, and discriminates CRM sequences from

non-CRM sequences by searching for the highest frequency

hexamers. Such a method requires correctly annotated positive

and negative datasets of known CRMs to assess its performance.

Regulatory Potential [23] is another type of discriminative

method, which learns the abundant hexamers and the first order

dependency relationships between columns of aligned position

from known regulatory regions. Similar to MorphMS are EEL

[24], PhylCRM [29] and EMMA [30], which aim to better use

multiple genome information by implementing binding site-based

alignment methods. EEL considers the potential secondary

structure of a DNA-protein complex by weighting the difference

in the distance between adjacent binding sites between the two

aligned species. PhylCRM uses MONKEY [11] directly to predict

true functional binding sites in its first step. MONKEY uses

multiple alignments and models the binding sites of each

transcription factor with a specific evolutionary model. Thus, the

binding sites predicted by MONKEY are enriched for true

conserved functional sites among those gained, lost and turned

over. EMMA takes a similar approach as MorphMS but

incorporates binding site gains and losses. However, this makes

its computational cost increase exponentially with the number of

transcription factors considered, and limits EMMA to more

focused problems, rather than genome-wide studies.

Other methods and previous assessments
There are a number of studies that search for tissue specific or

stage specific CRMs based on a set of co-regulated genes. Some

studies also include information from microarray expression data,

such as LRA [31], ClusterScan [32], Composite Module Analyst

[33], and ModuleMiner [34]. Other methods scan only for regions

where a small set of user defined transcription factors bind but do

not predict novel CRMs, such as STORM & MODSTORM [35],

ModuleScanner [36], Target Explorer [37], and CisModScan

[38]. These types of methods are not included in this assessment

because we focus on genome wide novel CRM prediction

methods.

Several previous publications have reviewed different aspects of

some of these methods. Gotea et al. [39] studied the problem on a

small scale up to 10kb upstream of sets of co-expressed genes;

Aerts et al. [40] performed a genome-scale target genes prediction

for individual transcription factors; King et al. [27] compared

methods using comparative genomics in different ways; Wang et

al. [41] experimentally validated predictions based on the

hypothesis that the combination of high Regulatory Potential

and existence of a conserved known binding motif is a good

predictor for functional CRMs; Halfon et al. [42], Chan and

Kibler [28] and Pierstorff et al. [21], each compared the

performance of several CRM prediction methods. However, their
Figure 3. Properties of CRM prediction methods.
doi:10.1371/journal.pcbi.1001020.g003
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Table 1. The operational principles of the methods based on cited publications.

Method Operational Principle

MSCAN Web server and source code: http://www.cisreg.ca/cgi-bin/mscan/MSCAN
MSCAN identifies binding site cluster with the significance of observed sites, while correcting for local compositional bias of
sequence [13].

MCAST Source code: http://metameme.sdsc.edu/doc/mcast.html
MCAST searches for statistically significant cluster of non-overlapping matches to the query motifs [14].

ClusterBuster Web server and source code: http://zlab.bu.edu/cluster-buster/
ClusterBuster searches for regions that resemble a statistical model of a motif cluster more than a model of ‘background DNA’. The
model of motif cluster is a uniform distribution randomly occurred motifs across the region, and the background model consists
probabilities of independent, random nucleotides. It firstly performs one pass of the Forward algorithm to obtain the log likelihood
score for each subsequence and keeps track of the subsequences with the maximal score. Secondly it performs the Backward
algorithm for those tracked subsequences from their ends to their starts, to refine the optimal start point. At the end, it merges the
tracked subsequences with a greedy algorithm [15].

Stubb Web server and source code: http://stubb.rockefeller.edu/
Stubb parses a CRM as a collection of binding sites interspersed with random bases, while considering correlations between binding sites.
It assumes that a probabilistic process of hidden Markov model generates sequences. At each step, the process chooses either a motif at
random or the background motif. The transition probabilities of the motifs and the background, and the correlated transition probability
between pairs of motifs, are trained by the Expectation-Maximization algorithm to iteratively converge to a locally optimal [16].

StubbMS Web server and source code: http://stubb.rockefeller.edu/
The Stubb HMM framework is integrated with multiple species comparison by using sequence alignment as a first step. For two species,
Lagan is used to find the best syntenic parse of ungapped conserved blocks. The binding site matches in the conserved blocks are
evaluated using a HMM phylogenetic model. The unaligned sequences are computed as one single species and contribute independently
to the final score of a homologous window [16].

MorphMS Source code: http://veda.cs.uiuc.edu/Morphalign/supplement/
MorphMS implements a pair-HMM statistical alignment method to generate alignments between two species. Therefore the uncertainty
of alignment can be quantified probabilistically. The parameters except window length are estimated automatically from the input
sequences. For each window, it then uses HMM model to generate orthologous CRMs. MorphMS produces two log likelihood ratio (LLR)
scores for each position of input sequence: the LLR1 score compares the likelihood of a sequences is generated by mixture of motifs to
the likelihood of this sequence is generated by the background model; LLR2 score shows the likelihood of the two orthologous
sequences are generated independently [18].

CisModule Source code: http://www.stat.ucla.edu/,zhou/CisModule/
CisModule is a hierarchical mixture (HMx) model that describes CRMs in two levels: at the first level the sequences can be viewed as a
mixture of CRMs interspersed by pure background sequences; at the second level, CRMs can be modelled as a mixture of motifs and
within-module background. Bayesian inference is performed with Gipps sampling algorithm for the simultaneous detection of modules,
TFBSs, and motif patterns, based on their joint posterior distribution [19].

MultiModule Source code: http://www.stat.ucla.edu/,zhou/MultiModule/index.html
MultiModule uses a hidden Markov model to model the co-localization of TFBSs within each species then couples the locations of TFBSs
and modules through multiple alignments. Different evolutionary models are developed to capture the difference between the
conservation of the TFBSs and the background. A Markov Chain Monte Carlo algorithm is developed to sample CRMs and their TFBSs
simultaneously by their joint posterior distribution [20].

CisPlusFinder Source code: http://jakob.genetik.uni-koeln.de/bioinformatik/people/nora/nora.html
CisPlusFinder predicts CRMs by identifying high-density regions of perfect local ungapped sequences (PLUSs) based on multiple species
conservation, with a second signal of locally overrepresented sequence motifs. The criterion of PLUSs to be selected is: the PLUSs contains
at least one locally overrepresented core motif and there are additional PLUSs occur within the immediate neighbourhood [21].

EEL Web server and source code: http://www.cs.helsinki.fi/u/kpalin/EEL/
EEL locates the highest-energy elements by considering both conservation and biochemical and physical model of TF binding. The
parameters contribute to the EEL score include both the binding affinities of the TFs to their respective binding sites and the distances
between the adjacent binding sites. The difference on this distance between the two species alignments are also counted, so are the
differences in the angle of the TFs [24].

RP Source code: http://www.bx.psu.edu/projects/rp/
RP identifies regulatory regions by statistically modelling frequencies of short alignment patterns in regulatory regions and background
sequences. It describes two species alignments by five symbols: match involving A and T, match involving C and G, transition,
transversion and gap. It classifies a set of k-mers of these symbols that are more overrepresented in regulatory regions than of neutral
DNAs. The sequences are modelled by (k-1) Markov chain and the parameters are learnt from the experimentally confirmed regulatory
regions and aligned ancestral interspersed repeats [23].

HexDiff Source code: http://www.ics.uci.edu/,bobc/hexdiff.html
HexDiff learns a set of hexamers that are more frequent occurred in known CRMs than non-CRMs, and applies them to predict CRMs
in regulatory systems [28].

PhylCRM Source code: http://the_brain.bwh.harvard.edu/PhylCRM/
PhylCRM quantifies the clustering of the motifs identified by MONKEY in multiple alignments [29].

EMMA Source code: http://veda.cs.uiuc.edu/emma/
EMMA captures different evolutionary modes of TFBSs, and takes uncertainty of alignments and gains of losses of TFBSs into account. It
uses a statistical alignment method and the substitutions are estimated by the HKY model [85]. For the TFBS evolution, it uses the
population-genetic based Halpern-Bruno (HB) model [86]. It models the functional gains and losses of binding sites by switching the
models that governs the evolutions of TFBSs and non-TFBSs, similar to [30,87–89].

doi:10.1371/journal.pcbi.1001020.t001
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results are based on several small sets of data and the number of

methods compared is limited.

Results

Our scenario for using CRM prediction tools involves taking

either a complete, unannotated genome, or a large genomic

interval, and running the tools to identify candidate regulatory

regions. Evaluating methods in this scenario is difficult because

there are few large genomic regions where we are certain that all

regulatory elements have been discovered. Thus it is hard to

accurately estimate the false positive rate. To compose a test

dataset for this experiment, we prepared one true positive dataset

of known CRMs from REDfly - a curated collection of

experimentally validated Drosophila transcriptional cis-regulatory

modules and transcription factor binding sites, and two true

negative datasets of known non-regulatory sequences: introns and

exons from the Drosophila melanogaster genome (see Materials and

Methods). It has been reported that some cis-regulatory elments do

exist in long introns, especially first introns [43–45]. To further

eliminate such contamination from the negative intron dataset, we

assembled only short introns which are smaller or equal to 81 bp

[46] into the negative dataset. To reflect the performance of these

methods when facing the entire genome, we also assembled two

additional datasets from medium length introns and intergenic

regions (see Materials and Methods). The ten selected methods

were applied to predict CRMs against intron, exon and intergenic

sequences. The intrinsically different compositions and character-

istics of these sequences affect the prediction of these methods.`
Each method was applied with – as near as practical – its default

parameter settings. Most methods have a default window size of

either 200 bp or 500 bp. To avoid any bias toward a specific

window size setting, and to understand which size is a more

general representation of real CRMs length, each method was

repeated with both window size settings.

For those methods requiring double or multiple alignments, the

alignments of Drosophila melanogaster and Drosophila pseudoobscura

were retrieved from the MAVID [47] multiple alignments server

(http://www.biostat.wisc.edu/,cdewey/fly_CAF1/), and the

alignments of Homo sapiens and Mus musculus are retrieved from

the UCSC genome browser (http://hgdownload.cse.ucsc.edu/

goldenPath/hg18/encode/MSA/DEC-2007/sequences/). For

those methods requiring a motif library, we used 68 motifs of

Drosophila melanogaster from the Transfac transcription factor

database version 10.4 [48]. For the predictions on ENCODE

data, we used the set of 107 human motifs compiled and used by

the EEL developers in their work [24] (http://www.cs.helsinki.fi/

u/kpalin/EEL/data/).

The REDfly database CRMs: Ranking of methods
The results of the ten selected methods on REDfly are plotted as

a receiver operating characteristic (ROC) curve, where sensitivity

is plotted as a function of specificity at different cut-off thresholds.

Sensitivity is proportional to the true positive rate indicating how

many true CRMs are found from all the annotated CRMs,

(Sensitivity = TP/P = TP/(TP+FN)). Specificity depends on the

true negative rate indicating how many true introns, exons or

intergenic regions are found from the negative dataset (Specifici-

ty = TN/N = TN/(TN+FP)). The ten methods applied are in ten

different colours. Each method has two ROC curves, one is for

window size 200 bp, and another one is for window size 500 bp.

The ROCs of the methods’ ability to distinguish CRMs from

short introns are plotted (Figure 4A). All methods show a positive

predictive power, except MCAST whose prediction power is close

to random. The results show two clear clusters: the methods based

on a single genome, and the methods based on multiple genomes.

Among the single-genome methods, the best performing one is

ClusterBuster. Among the multiple-genomes methods, the best

performing one is MorphMS. Among all the ten methods,

StubbMS and MorphMS outperform the other methods clearly.

The fact that MorphMS performs better than StubbMS suggests

that a probabilistic alignment strategy based on binding sites does

capture the functional element information better than the

conventional alignment strategy based on nucleotides, as stated

in Sinha and He [18].

CisPlusFinder and MultiModule are based on multiple genome

alignments and do not show any dramatic improvement over the

single-genome methods. CisPlusFinder performs well while its

CRM score threshold is high, but it deteriorates as the threshold is

reduced. This might be due to the specific type of CRM targets of

CisPlusFinder: CisPlusFinder defines a CRM as a cluster of so

called perfect local ungapped sequences – multiple copies of over-

represented binding sites in a single sequence. Each set of perfect

local ungapped sequences is a homotypical clustering of binding

sites of one transcription factor, and a cluster of these sequences

refers to the CRMs containing multiple homotypical clusterings of

binding sites. Thus the CRMs containing only binding sites of a

single transcription factor, or a heterotypical cluster of several

single binding sites, will be missed. Another factor that may affect

their performance is that these two methods do not use a motif

library, unlike StubbMS and MorphMS, as predicting both the

transcription factor binding site and the CRM simultaneously is a

more challenging task. Unexpectedly, the simple peak phastCons

score window method outperforms all the more complex methods.

When evolutionary conservation is used as an independent feature

to distinguish the true CRMs from the intronic sequences, its

performance is nearly perfect.

The ROCs of the methods distinguishing CRMs from exons are

plotted (Figure 4B). This result shows a dramatic reversal of the

curves of those methods based on multiple alignments, indicating

that these methods are driven heavily by the conservation feature

of the given sequences and do not have the ability to distinguish

conserved regulatory elements from conserved protein-coding

sequences. This also indicates that there are many false positive

hits of transcription factor binding sites on exon regions as well, as

a motif library of known transcription factor binding sites is not

able to compensate for the high level of sequence conservation.

The more a method relies on the conservation factor when

predicting CRMs, the worse it performs at distinguishing CRMs

from exons. That is why the peak phastCons score window

method performs the worst in this case. The only exception is

CisPlusFinder, which does not fall completely into the bottom

right space. CisPlusFinder requires a candidate CRM sequence

not only to be conserved, but also has the inter-relationships

between the adjacent perfect local ungapped sequences. Only a

cluster of the local ungapped sequences can be the CRM

candidate. This condition reduces the likelihood of conserved

exon sequences being recognized falsely as functional regulatory

sequences. However, it still loses its prediction power as the score

threshold goes down. On the contrary, the methods based on a

single genome stay at a similar level to their results on

distinguishing the CRMs from the introns, and the optimal one

is still ClusterBuster.

To summarize, for the ROC curves above, an Area Under

ROC Curve (AUC) score is calculated as a representation of the

prediction power of a method. Then the methods are ranked by

their AUC scores according to their results of distinguishing the

CRMs from the short introns (Figure 4C). The top three

Assessing Methods of CRM Prediction
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performing methods are all multiple alignments based: phastCons,

MorphMS and StubbMS. However, they all show a weak

predictive power against exons. ClusterBuster ranks fourth for its

predictions against short introns. Compared to the first three

methods, its performance is similar against both short introns and

exons. Given an unannotated genome, such a method will provide

more reliable predictions.

For most of the selected methods under this experimental

setting, their predictions are not very sensitive to the window size

200 bp or 500 bp settings. The probabilistic modelling methods,

especially the ones using multiple genomes, such as StubbMS, are

less sensitive than the window clustering methods, such as

CisPlusFinder. CisPlusFinder performs better when its window

size is set to be 500 bp instead of 200 bp: a longer region is more

prone to have multiple homotypical clusterings as CisPlusFinder

targets for. The slightly preferred window size for majority of

methods is 500 bp, which is similar to the average length 635 bp

of predicted human and mouse CRMs of the database PReMod

[49,50], and the average length 760 bp of fly CRMs of the

database REDfly [51].

We also obtained the prediction results of these ten methods on

a medium length intron dataset (Figure 5A) and an intergenic

dataset (Figure 5B)(Figure 5C. the AUC scores of the assessed

methods). All methods except MorphMS and MCAST, show a

clear performance deterioration compared to the short intron

dataset. This is not surprising considering that the medium length

introns and the intergenic regions are more likely to contain actual

transcription factor binding sites than the short introns, and the

intergenic regions are the most contaminated among these three

regions [52,53]. This is illustrated clearly by the performance

changes of the methods relying on clusters of binding sites only,

such as ClusterBuster, Stubb and MSCAN. The phastCons score

window method performed much worse on these two datasets than

on the short intron dataset. The gap between the predictions of the

window size 200 bp setting and the prediction of the window size

500 bp setting is significantly larger than their difference on the

short intron and the exon datasets. The result of the 500 bp

window size is superior to 200 bp. It is known that introns can

mediate gene expression in various ways [54]. The intron length is

connected to alternative splicing events (http://www.sdbonline.

org/fly/aimain/6rna-ooc.htm) and functional introns tend to be

the larger ones [55]. The conserved intergenic regions are also

known to play regulatory roles [56]. Therefore it is very likely that

there are conserved functional regions existing in the medium

length introns and intergenic regions, and some of them can span

around 200 bp. CRMs can be distinguished from these functional

regions by a larger window size setting of 500 bp. Apart from

above differences, these results agree with those obtained from the

short intron dataset in terms of ranking among the methods and

similar performance between the two window size settings for each

method.

Correlations of methods
Based on the prediction score of REDfly CRMs given by each

method, we normalized the scores of each method to the same

scale between 0 to 1, by dividing each score by the maximum

Figure 4. Ranking of methods (short introns and exons). A.
Predictions of CRMs against short introns. There are two ROC curves for
each method, one for 500 bp and one for 200 bp window size. B.
Predictions of CRMs against exons. There are two ROC curves for each
method, one for 500 bp and one for 200 bp window size. C. Ranking of
methods by Area Under Curve scores.
doi:10.1371/journal.pcbi.1001020.g004
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possible of that method. We then calculated the correlation

coefficients between all pairs of methods (Figure 6A). For each

method, the results with 200 and 500 bp window sizes correlate

closely. Particularly for MorphMS, a very high correlation exists

between the two predictions of these window sizes. This further

confirms the previous results that these methods are not very

sensitive to the window size parameter setting under this

experimental design. One exception is CisPlusFinder, which

shows a stronger prediction power with 500 bp window size

compared to 200 bp. The other exception is CisModule, where

the 200 and 500 bp window size results form two separate clusters.

This might be explained by the fact that CisModule follows a non-

deterministic algorithm and each run returns a slightly different

result.

The high correlation coefficients show the agreement between

these representative methods. Those methods with the same

underlying CRM representations and which require the same

prior information are clustered together as expected (e.g.

MorphMS and StubbMS, CisPlusFinder and MSCAN, and

ClusterBuster and Stubb). Unexpectedly, CisPlusFinder performs

more similar to the multiple alignments probabilistic modelling

methods StubbMS and MorphMS when its window size is set to

be 500 bp. These three methods from two different families all

have strong predictive power with significant agreement, despite

their different underlying mechanisms. Another exception is

MultiModule, which is clustered into the single genome probabi-

listic modelling family together with ClusterBuster and Stubb.

MultiModule itself is a generative probabilistic model, similar to a

hidden Markov model. However, the information from the double

alignment does not improve the performance of MultiModule over

the methods using a single genome only.

Complementarity of methods
Pairwise complementarity of methods is checked by summing

the normalized scores given by each pair of methods for both their

predictions on the CRMs and their predictions on the short intron

negative dataset. The increase or decrease of the AUC scores of

the new pairs over the maximum of the individual methods is

shown (Figure 6B).

Most methods deteriorate when the predictions of two different

window size settings are summed together. This is clearly the case

for MorphMS and the peak phastCons score window method. At

the same time several other methods show an opposite effect, such

as StubbMS for which the summed result brings its prediction

power from AUC score 0.893 and 0.888 to 0.996 (Figure 6C). The

new result is equivalent to the prediction power of phastCons score

and is nearly perfect.

Amongst these methods, the window clustering family methods

CisPlusFinder and MSCAN, especially with the window size

200 bp setting, are highly complementary to probabilistic

modelling family methods StubbMS, CisModule and Multi-

Module. The performances of these pairs of methods are better

than any individual method. One possible reason might be the

different approaches of these methods to defining the candidate

binding site profiles. CisPlusFinder is not constrained to the prior

Figure 5. Ranking of methods (medium length introns and
intergenic regions). A. Predictions of CRMs against medium length
introns. There are two ROC curves for each method, one for 500 bp and
one for 200 bp window size. B. Predictions of CRMs against intergenic
regions. There are two ROC curves for each method, one for 500 bp and
one for 200 bp window size. C. The Area Under Curve scores of the
assessed methods.
doi:10.1371/journal.pcbi.1001020.g005
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knowledge of binding site profiles and therefore has the potential

to search for unknown transcription factor binding sites. Another

reason might be that they focus on different length CRMs: the

probabilistic modelling family methods tend to find short CRMs,

while CisPlusFinder tend to find long CRMs. For example, the

first quartile and the third quartile of the lengths of the predicted

clusters by ClusterBuster with window size 200 bp setting are

149 bp and 790 bp accordingly; in the results of CisPlusFinder

with window size 200 bp setting, there are only two predicted

CRMs shorter than 200 bp, and the first quartile and the third

quartile of the lengths of the predicted clusters are 677–1643 bp

accordingly.

Sequences features affecting predictions
To understand what properties of a CRM make it distinctive,

and what features of a negative sequence cause false positive

predictions, we checked the correlation coefficients between

sequence features of the CRMs, the short introns and the exons,

and the scores given by each method. The sequence features

considered include its average conservation degree measured by

phastCons score and its length (Figure 7).

The predictions of StubbMS and MorphMS are heavily affected

by the average conservation degree of a sequence. This confirms

that the high average sequence conservation is the key feature

these two methods rely on, and it contributes both the true

positives and false positives. The peak phastCons score window

method, searching for continuous windows over a threshold, does

not rely on this feature of CRMs for its prediction. The phastCons

Figure 7. Correlation coefficients between predictions and
sequence features. A. Correlation coefficients between predictions
and sequence conservations, with 95% bootstrap confidence interval. B.
Correlation coefficients between predictions and sequence lengths,
with 95% bootstrap confidence interval.
doi:10.1371/journal.pcbi.1001020.g007

Figure 6. Correlations and complementarity of methods. A.
Correlation coefficients of predictions on CRMs. B. Performance of pairs
of methods. C. Improvement made by combining pairs of methods:

StubbMS_w200 and StubbMS_w500, CisPlusFinder_w200 and
MSCAN_w200 to StubbMS_w200 and StubbMS_w500.
doi:10.1371/journal.pcbi.1001020.g006
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score window method predicts CRMs better than MorphMS and

StubbMS, showing that searching for peak conservation regions

on a sequence can capture more regulatory elements than

counting the average sequence conservation.

For the correlations between the prediction and the sequence

length, which is equivalent to the CRM length in this experimental

design, nine out of ten methods show a correlation to a certain

degree. Especially MultiModule, Stubb and ClusterBuster, the

members of the probabilistic modelling family, have correlation

coefficients over 0.5. Among all, MCAST is the method driven by

the sequence length most. Basically, a long sequence brings a high

scored prediction. This bias causes false positives of all the

methods except the peak phastCons score window method, which

does not rely on this feature of CRMs for its prediction.

We sorted the CRMs by the summed scores of all ten methods

and excluded the CRMs having a 0 score by any method, and

then checked the properties of the CRMs commonly found by the

ten selected methods. These CRMs tend to be long sequences, but

not always very conserved. The correlation coefficient between the

predictions and the sequence lengths is high, while the same figure

for the average sequence conservation is low. For the same reason,

the false positive predictions from the short intron and the exon

datasets also tend to be long sequences, and the correlations

between the prediction and the sequence length are high. The

peak phastCons score window method is the one least biased from

these sequence features.

In summary, for most methods, long length and general

conservation of a short intron or exon sequence contribute the

most to both true and false positives. A continuous peak conserved

window is a more distinctive and unique feature of a CRM, and

can be used to identify the real CRMs as the success shown by the

peak phastCons score window method.

CRM properties affecting predictions
Among all the CRM sequences, 19 sequences are annotated

with known transcription factors, and their transcription factor

binding sites are experimentally validated and annotated by the

Drosophila DNase I footprint database FlyReg [57]. This provides

us a chance to further check how CRM properties affect the

prediction of each method, based on the known information so far.

We checked for how these methods are prone to the abundance

of transcription factor binding sites, the number of transcription

factors, and the composition of homotypical clustering, by

calculating the correlation between the CRM properties and the

prediction scores on the 19 annotated sequences (Figure 8).

Different CRM representations and search strategies rely on

different CRM properties. The predictions of the ClusterBuster,

CisPlusFinder with window size 200 bp setting and MSCAN are

significantly correlated with the total number of transcription

factor binding sites of a CRM. CisPlusFinder also shows a strong

correlation with the number of transcription factors a CRM

contains. Indeed, it predicts the CRMs with multiple transcription

factors only. The CRMs containing large homotypical clustering

of multiple transcription factor binding sites are more likely to be

found by ClusterBuster and MSCAN. For MultiModule, the

density of transcription factor binding site on a sequence is critical

for its prediction.

Some types of CRMs are easier to be predicted and some types

of CRMs do not have very distinctive features (Table S1). The

CRMs with multiple transcription factor binding sites of known

transcription factors are easier to be predicted, such as CRM

Ubx_basal_promoter containing 20 transcription factor binding sites

of seven known transcription factors including Ubx and zen. Most

methods score it high, especially ClusterBuster and CisPlusFinder

with window size 200 bp setting. On the contrary, short CRMs

with a few transcription factor binding sites are easily missed by

most prediction methods. For example, for the 227 bp long

ninaE_distal_enhancer with only two gl binding sites, ClusterBuster

with window size 200 bp setting scores it very low because of there

is not a profile of the gl transcription factor binding site supplied.

CisPlusFinder scores it 0 for another reason: this CRM is

composed of only one homotypical clustering. For the short

CRMs with few transcription factor binding sites, the peak window

phastCons score method will not miss it. For this particular CRM,

phastCons with window size 200 bp setting scores it high as 0.991.

The peak phastCons score method does not always pick up the

real CRMs. There are cases where the probabilistic modelling

methods predict correctly while the peak phastCons score method

does not. For example, CRM Dpp_BS1.0 contains five transcrip-

tion factor binding sites of transcription factor en within a 246 bp

distance. The peak phastCons score window method scores it

relatively low, while probabilistic modelling methods such

MorphMS score this sequence high. The reason leading to this

phenomenon could be the binding sites on this sequence are

conserved but the sequence between them are not. Therefore

there is not a continuous peak conserved window as the peak

phastCons score method requires. MorphMS is able to detect such

shifted conservation by aligning sequence by the location of

transcription factor binding sites.

Unexpectedly, there are also cases where CisPlusFinder misses

out genuine CRMs with multiple homotypical clusterings: such as

Ance_race_533, a 533 bp long CRM annotated with nine

Figure 8. Correlation coefficients between predictions and
CRM properties. A. Correlation between predictions and the total
number of TFBSs, with 95% bootstrap confidence interval. B. Correlation
between predictions and the total number of TFs, with 95% bootstrap
confidence interval. C. Correlation between predictions and the number
of TFBSs/number of TFs, with 95% bootstrap confidence interval. D.
Correlation between predictions and the number of TFBSs/sequence
length, with 95% bootstrap confidence interval.
doi:10.1371/journal.pcbi.1001020.g008
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transcription factor binding sites of three transcription factors

including Mad and zen. Both CisPlusFinder with 200 bp window

setting and with 500 bp window setting score this sequence as 0.

The perfect local ungapped sequences defined by CisPlusFinder

cannot always represent real binding sites accurately.

Evaluation on human ENCODE regions
The above success of using pure conservation scores to predict

CRMs suggests that searching for appropriately sized conserved

blocks is sufficient to distinguish true CRMs from the REDfly

database from short introns and exons. This may not be surprising

considering the Drosophila genome is relatively small and compact,

and its regulatory regions are closely packed together [58]. REDfly

is principally composed of developmental enhancers and these

elements are known to be generally very conserved [59,60].

However, the dramatic contrast of the performance of these

multiple alignment based methods depending on whether introns

or exons are used as representative negative sequences leads us to

question whether the level of conservation seen in the CRMs

collected by REDfly is representative of typical CRMs. To further

investigate this possibility and to check if these methods are

sensitive to the composition and structure of the genome, we

applied the optimal methods among the prediction on REDfly:

ClusterBuster, MorphMS and the peak phastCons score (http://

hgdownload.cse.ucsc.edu/goldenPath/hg18/phastCons17way/)

window method, plus the peak Regulatory Potential score

(http://hgdownload.cse.ucsc.edu/goldenPath/hg18/regPoten-

tial7X/) window method (see Materials and Methods) and the

prediction results of EEL (http://www.cs.helsinki.fi/u/kpalin/

EEL/), to human ENCODE regions. The human genome is

more diverse on its conservation degree of regulatory elements.

Specifically, 30 out of 44 ENCODE regions were picked by the

ENCODE consortium according to their non-exonic conser-

vation levels (1.1–6.2%, 6.3–10.2%, 10.7–18.6%.) and gene

densities (0–1.7%, 2.0–3.6%, 4.4%–10.6%) [61] (http://

genome.ucsc.edu/ENCODE/regions.html). We used these 30

ENCODE regions to make sure that the sequences are diverse

in their converstaion degrees and thus eliminate the possibility

of any bias caused by conservation.

Firstly we compared the conservation degree of transcription

factor binding sites, CRMs, and noncoding regions of both

Drosophila genome and human ENCODE regions (Figure 9). For

human ENCODE regions, we used ENCODE regulome DNase I

hypersensitive sites of human lymphoblastoid cells GM06990 [62]

(http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encode/database/

encodeRegulomeDnaseGM06990Sites.txt.gz) as the potential CRMs

which mark the chromatin regions having high accessibility to

transcription factors. We expect the CRMs are less conserved than

the transcription factor binding sites because CRMs contain less

constrained sequences between transcription factor binding sites.

The probability density shows that, for Drosophila, the REDfly

CRMs are more conserved than the transcription factor binding

sites. For human ENCODE regions, the transcription factor

binding sites are more conserved than the DNaseI hypersensitive

sites. This confirms that the REDfly CRMs are more conserved

than expected. Comparing between the two genomes, the entire

Drosophila genome and their regulatory regions are more conserved

than their equivalents on the human ENCODE regions.

Next, we applied the five selected methods on the ENCODE

regions, and their performances were evaluated by their overlaps

with the DNaseI hypersensitive sites. If a prediction overlapped –

even partially – with any DNaseI hypersensitive site, it was

counted as a true positive. A prediction not overlapping with any

DNaseI hypersensitive site was counted as a false positive. The

missed DNaseI hypersensitive sites were counted as false negatives.

Because these methods need to scan large ENCODE regions

therefore it is not sensible to define a fixed-sized true negatives. For

this reason, instead of specificity, positive prediction value was

calculated to show the methods performance. The results of these

methods were plotted in a pseudo ROC plot, where sensitivity is

plotted against positive prediction value (PPV): sensitivity = TP/

(TP+FN), indicating how many true CRMs are found among all

the DNaseI hypersensitive sites, and PPV = TP/(TP+FP), indicat-

ing the percentage of true CRMs among all the predictions

(Figure 10). Among all the methods, the peak Regulatory Potential

score window method significantly outperforms the rest of the

Figure 9. Comparison between the conservation degrees of
transcription factor binding sites, CRMs and noncoding
regions of Drosophila genome and human ENCODE regions.
The probability density shows that, for Drosophila, the REDfly CRMs are
more conserved than the transcription factor binding sites. For human
ENCODE regions, the transcription factor binding sites are more
conserved than the DNaseI hypersensitive sites.
doi:10.1371/journal.pcbi.1001020.g009

Figure 10. Predictions on ENCODE regions. The performance of
methods ranks them from top to bottom in this order: Regulatory
Potential, MorphMS, ClusterBuster, phastCons score, and EEL.
doi:10.1371/journal.pcbi.1001020.g010
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methods. This suggests that the information learnt from the known

regulatory regions is very helpful indeed. Unexpectedly, EEL does

not pick up any positive signals and is at the bottom of the chart.

This might be due to the public available prediction results of EEL

were produced with a high cut-off threshold, while the other

methods’ cut-off thresholds were deliberately set to be their lowest

in this assessment to allow the maximum number of predictions.

Overall, their performance ranks them from top to bottom in this

order: the peak Regulatory Potential score window method,

MorphMS, ClusterBuster, the peak phastCons score window

method, and EEL. This result shows a different prediction power

of some methods from their previous prediction performances of

the REDfly CRMs: the peak conservation phastCons score

approach does not outperform probabilistic modelling methods

in this case.

For the window size setting (Figure S1), both ClusterBuster and

MorphMS predictions with 500 bp window setting discovered

slightly more CRMs than their predictions with 200 bp window

setting, with a price paid by vastly increased computational time

for MorphMS. We also increased the window size of the peak

phastCons score window method and the peak Regulatory

Potential score window method from 100 bp to 200 bp, 500 bp,

1000 bp and 1500 bp. The increase of the window size universally

increased the performance of these two methods. Perhaps

understandably, the optimal window size setting of these methods

tuned for the human genome tend to be larger than the ones for

the Drosophila genome.

Upon summarizing the above results, it is clear that the

application of the prediction methods on the Drosophila genome

and the human genome need to be treated differently. Not only

are the composition [63] and the structure [64] of the Drosophila

and human genomes different, but the evolutionary distance

between the given alignment: Drosophila melanogaster and Drosophila

pseudoobscura, human and mouse, are different too. The nucleotide

conservation levels between the Drosophila melanogaster genome and

the Drosophila pseudoobscura genome are ,70% for coding

sequences, ,40% for introns [65]. The corresponding figures

between the human and the mouse genomes are: ,85% for

coding regions, ,35% for introns [66]. These might all contribute

to the different performances of the prediction methods.

Discussion

Pros and cons of the existing methods
The two most frequently used types of genome information

resources: conservation and transcription factor binding site

profiles, and the four families of search strategies, are applied in

numerous ways. Any subtle change in the combination or the

order may yield different results. Therefore the existing methods

can show a great variety of results given the same data. Although

there is not a universal optimal method suitable for all situations,

several key strategies applied in the existing methods do show their

values on improving predictions.

The advantage of MorphMS over StubbMS for predicting

REDfly CRMs supports the view that aligning multiple genomes

by locations of conserved transcription factor binding sites can

perform better than conventional alignment according to the

nucleotides. CisPlusFinder can complement several methods. This

brings our attention to neighbourhood relationships between

homotypical clusters of sites for multiple factors. The success of the

peak Regulatory Potential score window method shows the

importance of the information learnt from the known regulatory

elements, particularly, the novel strategy of considering the

alignment pattern: the first order dependent relationship between

the conserved columns within a transcription factor binding site.

However, there remain some clear problems with CRM

prediction. Firstly is the fundamental problem of modelling

functional CRMs: the majority of existing CRM prediction

methods target regions rich in clustered and conserved transcrip-

tion factor binding sites, and while this does work to a degree, it

remains a relatively poor proxy for identifying functional

regulatory elements (Figure 11). The fact is that the distance and

conservation features of a sequence are not sufficient to accurately

deduce its function. In addition, not all CRMs are tightly packed

or highly conserved. At the same time, a fragment of a CRM, or

overlapping regions shared by more than one CRMs, could be

predicted as one complete CRM. Clearly, the current CRM

prediction methods are only a first step towards accurately

predicting true CRMs.

Secondly, the general CRM properties are not universally

applicable. There are also exceptional cases where some real

regulatory functional sites are not more conserved than the

background sequences [67]. At the same time, not all the clustered

conserved elements are cis-regulatory elements - they can be

conserved non-functional noncoding regions [68], or other

conserved signals which have other functions other than being

an enhancer, e.g. microRNA. In addition, some transcription

factors, such as E2F1, do not require a canonical binding site [69];

while for some other cases, for a same consensus, several

transcription factors can compete each other on binding on it.

Further more, the interactions between DNA and transcription

factor, and the interactions between factors and factors form 3D

complexes; this makes identifying the members indirectly involved

even more difficult. Obviously, the information of binding affinity,

the distance and the conservation, are far from being enough to

identify a functional module.

Thirdly, the CRM prediction methods development and

evaluation lacks genome-scale standardization and benchmarking.

Most development and comparison on the CRM prediction

methods were based on either a small set of genes or REDfly. King

et al. [27] used HBB gene complex; Wang et al. [41] used the

mammalian genes expressed in read blood cells; or Aerts et al. [40]

and Sinha and He [18] used REDfly, which is the only

experimentally confirmed genome wide CRM database available.

A small set of co-expressed genes tends to have a limited number

Figure 11. The majority existing methods target regions rich of
cis-regulatory elements. Existing methods predict CRMs based on
their distance and conservation features. This fact limits their targets are
regions rich of closely located and highly conserved cis-regulatory
elements (green region) instead of real functional modular CRMs (pink
regions). Consequently, they will miss out: those CRMs composed of
elements not conserved in a same order, e.g. CRM 1; those CRMs not
conserved, e.g. CRM 2; or those CRMs composed of further apart
elements, e.g. CRM 3. At the same time, uncompleted regions within a
CRM, or overlapped regions shared by more than one CRMs, could be
predicted as a false positive, e.g. a false positive prediction composed of
CRM 2 and part of CRM 3.
doi:10.1371/journal.pcbi.1001020.g011
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of similar CRMs made of a few transcription factors, and we

showed that the CRMs in the REDfly database are very conserved

and therefore might not able to represent the general CRMs on

other genomes. A method tuned on the maximum performance on

these sequences can be biased toward the extreme properties of the

data itself and therefore is not suitable to be universally applied to

another set of sequences or another genome. The human

ENCODE regions have a wider range of sequence conservation

compared to the Drosophila, and the DNase I hypersensitive sites

are not biased toward developmental enhancers. These regions

have been heavily studied in the past few years so there are plenty

of annotations and there are going to be more. Our results show

how the performances of some methods change depending on the

composition and structure of genomes. This suggests that a

method developed for a general purpose, regardless the genome,

needs to be tested on multiple genomes to show its general

applicability.

Certainly this assessment and analysis are also only based on the

available annotations, such as the cell type dependant DNaseI

hypersensitive sites [70] we used as potential CRMs, which mark

the chromatin regions accessible to all types of proteins but not

only limited to transcription factors. There is no direct equivalent

CRM database to REDfly in mammals. In addition, the

parameter settings of the methods are their defaults, and might

not be the optimal settings for some methods to show their peak

performance.

Future directions
The major difficulty of modelling CRMs comes from the fact

that the majority of direct and indirect interaction relationships

between transcription factors remain unknown. These subtle but

critical transcriptional regulatory codes might only be decoded on

a smaller scale: such as using expression microarrays or RNA-seq

to identify the co-regulated genes then extracting the common

patterns from the upstream of these co-regulated genes, or

identifying the interaction relationship within a module through

a gene regulatory network analysis.

Even with the interaction relationships known, the dynamic

information at different conditions are needed to really understand

the regulation machinery. The transcriptional logic code is

sensitive to conditions. Depending on the context, cis-regulatory

elements can be active for function or not, and can perform

different roles too: either as transcription factor binding sites, or as

facilitated steps for CRM scanning along the sequence or looping

and tethering intervening DNA [71].

So far, among all the methods studied in this assessment, only

EEL takes DNA structure of a sequence into consideration.

Recently, other types of information have been used to assist the

CRM prediction, such as the DNA double helix structure profile

[72], chromatin structure and histone modification [73], and

chromatin immunoprecipitation followed by microarray analysis

(ChIP-chip) [74] or chromatin immunoprecipitation followed by

high-throughput sequencing (ChIP-seq) [75]. In anticipation of a

large-scale analysis, one of the most intriguing projects, ENCODE

Pilot Project, is scaled up to a production phase to annotate the

entire human genome. This ongoing project will systematically

and comprehensively identify transcription factor binding sites,

map the histone modifications, and mark the methylation status of

CpG-rich regions (http://www.genome.gov/10005107). In addi-

tion, the modENCODE project will identify these regulatory

elements on the Drosophila and worm genomes [76]. During this

process, the existing technologies including DNaseI hypersensitiv-

ity assays and chromatin immunoprecipitation followed by high-

throughput sequencing are applied, whereas more advanced high-

throughput computational and experimental methods are in great

demand. To answer this request, novel analysis strategies and

prediction methods that integrate sequence information and

chromatin signatures could be a major step forwards. For instance,

Won et al. [77] integrated strong Histone H3 Lys 4 methylations

(H3K4me1/2/3) signals together with sequence affinity for

transcription factor binding sites into one hidden Markov model

to characterize regulatory regions on mouse embryonic stem cells.

We believe with the assistance of new technologies, novel analysis

strategies, and more complete functional annotations, next

generation CRM prediction methods will aim to recreate a

dynamic picture of transcription regulation interactions in three-

dimensional space. Beyond identifying CRM locations, the future

focus will also turn to measuring and predicting spatio-temporal

cis-regulatory activity [74,78,79].

Guide for users
For the Drosophila genome, based on the results of the REDfly

database, which possibly promotes bias toward methods relying on

sequence conservation, MorphMS produces the most successful

and stable predictions when dealing with the non-exonic regions.

The peak phastCons score window method with 500 bp setting

can be a good choice too but users may need to double check to

confirm the predicted regions are indeed functional as CRMs.

Other methods can be used here to provide this information by

checking which transcription factors bind there. ClusterBuster is

the best choice for single genome, or MorphMS for multiple

genomes. However, users need to be aware that the predefined

motif library limits the performance of both ClusterBuster and

MorphMS. They cannot predict successfully on a region with

unknown transcription factor binding sites. Even for the known

transcription factor binding sites, there might be a disagreement

between the transcription factor binding site profile provided and

the genuine transcription factor binding sites on the sequence.

For those regions with unknown transcription factor binding

sites, CisPlusFinder appears to offer a solution, by searching for

multiple conserved, locally overrepresented sequences as potential

binding sites. Therefore there will not be any constraints due to

lack of prior knowledge of these binding sites. One condition for

CisPlusFinder to locate a potential CRM is the existence of

multiple homotypical clusters. This causes CisPlusFinder to miss

all CRMs interacting with only one transcription factor, or a single

binding site of every transcription factor it contains. Another issue

is that a real transcription factor binding site signal might not be

abundant in one particular CRM; therefore the perfect local

ungapped sequences might not be able to represent all the

transcription factor binding sites.

For this reason CisPlusFinder can be used combined with

ClusterBuster or MorphMS to discover every CRM candidate.

These two different families methods are not only complementary

to each other on searching for the unknown transcription factor

binding sites, but also on searching for different lengths CRMs: the

probabilistic modelling family methods tend to find short CRMs,

while CisPlusFinder tend to find long CRMs.

For the mammalian genome, the peak Regulatory Potential

score window method is the best way to locate CRM regions.

ClusterBuster and MorphMS can be used in addition to identify

which transcription factors bind there.

Materials and Methods

True positive CRM sequence set
REDfly version 2.0 is a curated collection of known Drosophila

transcriptional cis-regulatory modules and transcription factor
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binding sites. It contains all experimentally verified Drosophila

regulatory elements along with their DNA sequences, their

associated genes, and the expression patterns they direct. There

are in total 665 CRMs and 941 transcription factor binding sites

annotation. The first and the third quartile of the length of these

CRMs are 907 bp and 2967 bp, and the median is 1520 bp.

Because the boundaries of these CRMs are not certain, each CRM

region was extracted including its core sequence plus 200 bp

flanking regions on both upstream and downstream. Multiple

alignments of 12 Drosophila species were extracted for each REDfly

CRM region. These raw multiple alignments for comparative

analysis were produced by Colin Dewey in Lior Pachter’s group at

UC Berkeley by their multiple-sequence aligner – MAVID [47],

based on the first freeze of all the comparative assemblies of 12

Drosophila genomes in December 2005 and January 2006 [80].

To make the dataset compatible with all the selected methods

requirements, among the 665 CRM sequences, we chose 244 non-

redundant CRMs satisfying the following two requirements:

1. The length of the CRM sequence is greater or equal to 100bp.

2. The CRM sequence has alignments of all 12 Drosophila

genomes in MAVID.

True negative sequence sets from Drosophila
The four negative sequence datasets: short introns, exons,

medium lengh introns and intergenic regions, were extracted from

the Drosophila Melanogaster genome sequences, where no regulatory

elements are supposed to exist. These negative sequences would

differ from CRM sequences in their compositional contents,

conservation rates, GC content and other features.

The intron dataset was assembled from introns between 12 bp

to 81 bp in length. The exon dataset was assebmled from

randomly selected exons. For each short intron or exon sequence,

6 bp was removed from its 59 end and 39 end to avoid any

consensus splice donor sites (GTA/GAGT for intron and G/A for

exon) and any consensus splice acceptor sites (C/TAG for intron

and C/AAG for exon) [81]. The sequences of each type of source

were then randomly selected and randomly extracted, then were

concatenated into 244 sequences with the same lengths as the 244

CRMs.

The medium length intron dataset was assembled from introns

between 300 bp and 1 kb in length. For each sequence, 150 bp

was removed from its both 59 and 39 ends to minimize the risk of

contamination with any splice regulatory sequences. The integenic

dataset was assembled from those integenic regions between 2 kb

and 100 kb in length. For each intergenic sequence, 1kb was

removed from both its 59 end and its 39 end to avoid any promoter

sites and post-transcriptional modification sites.

For those methods based on multiple genomes, pairwise

alignment of Drosophila Melanogaster on Drosophila Pseudoobscura of

both positive and negative datasets were extracted from MAVID.

The alignments of human and mouse were downloaded from the

UCSC genome browser. It is from the December 2007 ENCODE

Multi-Species Sequence Analysis (MSA) sequence freeze, which

consists of orthologous sequences in mouse to the human

ENCODE regions

The peak score window method
The peak phastCons score window method and the peak

Regulatory Potential score window method follow the window size

settings and the threshold cut-off settings as described in [27]. For

phastCons score, a 100 bp window having an average score over

0.13 is counted as a positive; continuous overlapped positive

windows are counted as a regulatory region. Same process is

applied to Regulatory Potential score, with the cut-off threshold set

to be 0.

Conservation of transcription factor binding sites, CRMs,
and noncoding regions of Drosophila genome and
ENCODE regions

For the Drosophila genome, the conservation degrees were

checked for the ChIP-on-chip verified transcription factor binding

sites of four transcription factors (http://furlonglab.embl.de/data/

download): Mef2 [82], Twist [82], Bagpipe and Biniou [83]; the

REDfly CRMs; and the entire Drosophila Melanogaster non-coding

regions. For the ENCODE regions, the conservation degree were

checked for the ENCODE Yale/UC-Davis/Harvard TFBSs by

ChIP-seq of eight transcription factors (http://genome.cse.ucsc.

edu/cgi-bin/hgTrackUi?db=hg18&g=wgEncodeYaleChIPseq): c-

Fos, c-Jun, c-Myc, GATA-1, JunD, Max, NF-E2 and ZNF263 [84];

the ENCODE Regulome DNase I hypersensitive sites and the

entire ENCODE non-coding regions.

Supporting Information

Table S1 Prediction scores of the 19 annotated CRMs.

Found at: doi:10.1371/journal.pcbi.1001020.s001 (0.03 MB XLS)

Figure S1 Predictions on ENCODE regions with multiple

window size settings. The increase of the window size universally

increased the performance of the selected methods.

Found at: doi:10.1371/journal.pcbi.1001020.s002 (0.71 MB TIF)
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