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Introduction
The skin is composed of an epithelial (epidermis and hair folli-

cle [HF]) and a mesenchymal compartment (dermis, subcutis, 

and dermal papilla [DP]) joined and maintained together by a 

basement membrane (BM). The interfollicular epidermis con-

tains multiple layers of keratinocytes at different stages of dif-

ferentiation, from a basal layer of undifferentiated, proliferating 

keratinocytes attached to the BM, to terminally differentiated, 

cornifi ed cells (Fuchs and Raghavan, 2002). The HF is an epi-

dermal appendage, which arises as an epithelial cone from the 

fetal epidermis after a series of epithelial–mesenchymal cues. 

The mature HF epithelium consists of a central hair shaft (HS), 

surrounded by an inner and an outer root sheath (IRS and ORS, 

respectively). HS and IRS differentiation from the hair matrix 

(HM) is induced by mesenchymal cues from the connective 

 tissue sheath and the DP. The mature HF has the ability to invo-

lute and regenerate, with cyclically alternating periods of rapid 

growth (anagen), apoptosis-driven regression (catagen), and 

relative quiescence (telogen). During each growth period, the 

progeny (transient amplifying [TA] cells) of epithelial stem 

cells located in the bulge region of the ORS extends into the 

mesenchymal compartment and generates a new HM. Here, 

epithelial cells change migration direction and terminally 

differentiate into IRS or HS (Paus and Cotsarelis, 1999).

Basal keratinocytes express several integrins, including 

α2β1, α3β1, α9β1, αvβ5, and α6β4 integrins (Watt, 2002). 

The α6β4 integrin is the core component of hemidesmosomes 

anchoring keratin fi laments to the BM, whereas α3β1 and α9β1 

integrins link the actin cytoskeleton to the BM. The α2β1 is 

found around the entire basal keratinocytes, where it is thought 

to mediate cell–cell interactions. ORS cells express α2β1, 

α3β1, and α6β4 integrins at different levels according to the 

 region of the HF (Commo and Bernard, 1997). In vitro studies 

with keratinocytes and genetic manipulations in mice revealed 

that β1 integrins regulate adhesion and differentiation of epider-

mal cells and play an essential role for hair germ invagination, 

ORS cell migration, and sustained HM proliferation during HF 
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ntegrin-linked kinase (ILK) links integrins to the actin 

cyto skeleton and is believed to phosphorylate several 

 target proteins. We report that a keratinocyte-restricted 

deletion of the ILK gene leads to epidermal defects and 

hair loss. ILK-defi cient epidermal keratinocytes exhibited 

a pronounced integrin-mediated adhesion defect leading 

to epidermal detachment and blister formation, disruption 

of the epidermal–dermal basement membrane, and the 

translocation of proliferating, integrin-expressing keratino-

cytes to suprabasal epidermal cell layers.

The mutant hair follicles were capable of producing 

hair shaft and inner root sheath cells and contained stem 

cells and generated proliferating progenitor cells, which 

were impaired in their downward migration and hence 

accumulated in the outer root sheath and failed to replen-

ish the hair matrix. In vitro studies with primary ILK-

 defi cient keratinocytes attributed the migration defect to a 

reduced migration velocity and an impaired stabilization 

of the leading-edge lamellipodia, which compromised di-

rectional and persistent migration. We conclude that ILK 

plays important roles for epidermis and hair follicle mor-

phogenesis by modulating integrin-mediated adhesion, 

actin reorganization, and plasma membrane dynamics 

in keratinocytes.
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morphogenesis (Brakebusch et al., 2000; Raghavan et al., 2000; 

Watt, 2002; Grose et al., 2002). An important and still largely 

unanswered question is how integrins mediate these functions 

in skin and HFs. Because integrin cytoplasmic domains lack 

 actin binding sites and enzymatic activity, signaling is imple-

mented through accessory molecules such as talin, α-actinin, 

and integrin-linked kinase (ILK; Brakebusch and Fässler, 2003). 

ILK is composed of N-terminal ankyrin repeats, a pleckstrin 

homology–like domain and a putative, C-terminal kinase domain 

(Hannigan et al., 1996; Grashoff et al., 2004, Legate et al., 

2006). ILK was given its name based on the enzymatic activity 

of its kinase domain (Delcommenne et al., 1998; Novak et al., 

1998; Persad et al., 2000), which was shown to phosphorylate 

several target proteins, including protein kinase B (PKB)/Akt 

and glycogen synthase kinase (GSK) 3β. The signifi cance of 

the ILK activity, however, is controversial as in vitro and in vivo 

results in fl ies, worms, and mice point toward an adaptor rather 

than an enzymatic function of ILK (Lynch et al., 1999; Zervas 

et al., 2001; Mackinnon et al., 2002; Hill et al., 2002; Grashoff 

et al., 2003; Sakai et al., 2003). A recent report proposed that the 

ILK activity is biologically relevant for transformed epithelial 

cells but not normal cells (Troussard et al., 2006). Whether the 

controversy may indeed be ascribed to the different biological 

systems used in the past to investigate ILK function awaits fur-

ther studies. Another important function of ILK is its ability to 

link integrins to the actin cytoskeleton and to modulate actin 

 reorganization (Zervas et al., 2001; Mackinnon et al., 2002; 

Grashoff et al., 2003; Sakai et al., 2003). Almost all proteins 

that bind ILK bind and/or regulate actin dynamics. They include 

PINCH1 and PINCH2, which bind actin modulators and con-

nect ILK to growth factor receptors, the parvin family of F-actin 

binding proteins, and paxillin, which recruits actin binding and 

regulatory proteins, including vinculin, talin, α-actinin, and 

FAK (for reviews see Grashoff et al., 2004; Legate et al., 2006). 

HF development and cycling is crucially dependent on the in-

activation of GSK-3β in HM cells (Fuchs et al., 2001; Huelsken 

et al., 2001). Active, nonphosphorylated GSK-3β can phosphor-

ylate β-catenin bound to a protein complex, collectively called 

the β-catenin degradation complex. Phosphorylation of GSK-3β 

inactivates the kinase and leads to stabilization and trans-

location of β-catenin to the nucleus, where it associates with the 

Lef1/Tcf family of DNA binding proteins to activate the tran-

scription of target genes, such as cyclin D1, c-myc, homeobox 

containing transcription factors, Lef1, and hair-specifi c keratins 

(Zhou et al., 1995; for review see Logan and Nusse, 2004). ILK 

can modulate the stability of β-catenin either through phos-

phorylating GSK-3β (Delcommenne et al., 1998; Novak et al., 

1998) or through inhibiting the β-catenin degradation complex 

(Oloumi et al., 2006) and could therefore play a central role for 

HF morphogenesis.

To test the function of ILK during epidermis and HF de-

velopment, we deleted the ILK gene in keratinocytes. We found 

that loss of ILK compromises epidermal keratinocyte adhesion 

and disrupts HF formation, leading to progressive hair loss. The 

HF defect was not due to an abnormal β-catenin stability, HM 

differentiation, or stem cell maintenance. Instead, the accumu-

lation of proliferating ORS cells points to an impaired HF 

downward growth in vivo.

Results
Deletion of ILK in keratinocytes leads 
to progressive hair loss
To delete the ILK gene in keratinocytes, fl oxed ILK mice were 

intercrossed with animals carrying the keratin 5 (K5)–Cre trans-

gene (ILK-K5 mice). Littermates carrying heterozygous fl oxed 

Figure 1. Keratinocyte-restricted deletion of 
ILK causes progressive hair loss. (A) ILK protein 
level in epidermal lysates of ILK Co and ILK-K5 
mice. (B) Back skin of 2-wk-old ILK Co and ILK-
K5 animals stained for ILK and α6 integrin. ILK 
is expressed in basal keratinocytes of the epi-
dermis (E), ORS, HM, DP, arrector pili muscle 
(AP), and dermis (D). ILK-K5 skin retains ILK ex-
pression in DP and dermis but lacks ILK expres-
sion in epidermis, HM, and ORS. Bar, 25 μm. 
(C) Control and ILK-K5 animals at 8 wk of age.
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ILK gene and the K5-Cre transgene served as controls (ILK Co). 

K5-mediated Cre expression deleted the ILK gene in back 

skin at around embryonic day 15, decreased ILK levels in new-

born skin, and led to the loss of the ILK protein thereafter 

(Fig. S1 A, available at http://www.jcb.org/cgi/content/full/

jcb.200608125/DC1). Western blot analysis in back skin epider-

mis of 6-d-, 2-wk-, 4-wk-, and 10-wk-old mice confi rmed the 

sustained absence of ILK (Fig. 1 A). Immunostained sections of 

2-wk-old control mice revealed ILK in basal epidermal kerati-

nocytes, ORS, HM, DP, and the arrector pili muscle (Fig. 1 B). 

ILK was absent from epidermis and HF epithelium of ILK-K5 

skin but still present in DP (Fig. 1 B).

ILK-K5 animals were indistinguishable from control 

 littermates at birth. At 1–2 wk, when control animals developed 

their hair coat, ILK-K5 animals had scattered hair with partial 

alopecia. This appearance endured until around 4 wk of age and 

was followed by progressive hair loss, leading to persistent alo-

pecia by 6–8 wk (Fig. 1 C). A reticular pigmentation pattern de-

veloped on the back skin of 8-wk-old ILK-K5 mice (Fig. 1 C), 

whereas hair coat and hair cycle–dependent skin color changes 

occurred normally in control mice.

Loss of ILK causes severe epidermal 
and HF abnormalities
The epidermis of ILK-K5 mice was morphologically normal at 

birth and postnatal day (P) 2 but became progressively hyper-

plastic (at P7–9, four to fi ve cell layers, and at P28, six to seven 

cell layers; Fig. 2, A and B). Although basal keratinocytes were 

polarized and tightly attached to the BM in control skin, they 

appeared fl attened in the mutant epidermis and were often 

 detached along the dermal–epidermal junction (DEJ; Fig. 2, 

A and B, asterisks). The detachment became more severe with 

age (at P7, 5–10% of total epidermal length; at P14, 30–50%; 

and at P70, up to 70%) but did not result macroscopically in 

visible skin blisters.

The most striking phenotype was a severe impairment of 

HF development in ILK-K5 mice characterized by a progres-

sive growth retardation, which was fi rst visible at around P2 

(Fig. 2, A and D). By P14, control mice had completed HF mor-

phogenesis, with all hair bulbs residing deep in the subcutis. In 

contrast, ILK-K5 HFs diverged into two subpopulations. (1) 

Approximately 33% of the mutant HFs reached the fi nal stages 

of HF morphogenesis but were shortened and profoundly dis-

torted. They displayed substantial hyperplasia of the ORS with 

up to six cell layers and condensed DPs (Fig. 2, A, C, and D, ▲). 

(2) Approximately 66% of the mutant HFs were arrested in their 

development. They failed to reach down deeper than the reticu-

lar dermis and showed defective morphogenesis with distorted 

or absent HS formation and misshapen HM and DP (Fig. 2, A, 

C, and D, ■). A plausible explanation for the varying HF popu-

lations is the combination of an asynchronous HF morphogenesis 

(Paus et al., 1999) and the perinatal loss of ILK protein 

Figure 2. Keratinocyte-restricted deletion of ILK leads to epidermal hyperplasia and epidermolysis and perturbs HF development and growth. (A) Hematoxylin-
eosin staining of sections derived from back skin of control and ILK-K5 mice. ILK-K5 mice display stunted HF morphogenesis leading to two HF types 
(▲, fully developed; ■, shortened and prematurely arrested), progressive epidermal detachment (asterisks), and dermal pigment deposition (arrowheads). 
Bar, 100 μm. (B) Epidermis from 2-wk-old ILK-K5 mice is hyperplastic and detached from the underlying dermis (asterisks). ILK-K5 keratinocytes show a fl at-
tened morphology. Bar, 25 μm. (C) High magnifi cation of hematoxylin-eosin–stained HFs from 9-d-old back skin. ILK-K5 HFs have multilayered ORS (▲) or 
show premature growth arrest with loosely attached, malformed DP (arrow; ■). Bar, 50 μm. (D) ILK-K5 HF growth is perturbed during morphogenesis and 
cycling. HF lengths of a minimum of 100 HFs per time point are presented as histograms. PC, panniculus carnosum; E, epidermis; D, dermis.
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expression: fully developed HFs (Fig. 2, ▲) lost ILK late in 

morphogenesis, whereas arrested HFs (■) lost ILK early in 

morphogenesis. At P28, none of the ILK-K5 HFs was able to 

initiate anagen characterized by HF downgrowth into the sub-

cutis (Fig. 2, A and D). By 10 wk of age, the ILK-K5 HFs were 

resorbed (Fig. 2 A) and melanin condensates within the dermis 

gave rise to a reticular skin pigmentation (Fig. 1 C).

Loss of ILK compromises keratinocyte 
adhesion and BM maintenance
Cell detachment in ILK-K5 skin points to a compromised inte-

grin function that could be caused by altered expression, activ-

ity, localization, or weaker linkage to the actin cytoskeleton. 

Integrin function was tested with adhesion assays using fi bro-

nectin (FN), collagen I (Col I), collagen IV (Col IV), and lam-

inin 332 (LM332) as substrates. Although interaction with 

poly-l-lysine was similar between ILK-K5 and control ke-

ratinocytes, adhesion to the ECM substrates was signifi cantly 

 diminished in ILK-K5 keratinocytes (Fig. 3 A).

Integrin expression determined by FACS revealed strong 

β1 integrin expression and a comparable Mn2+-triggered activa-

tion of β1 integrins on freshly isolated control and ILK-K5 

 keratinocytes. However, a subpopulation of ILK-K5 cells expressed 

lower levels of β1 integrin (Fig. S1 B). The expression levels of 

the α6, β4, and αv integrin subunits were not changed on ILK-

K5 keratinocytes, whereas the α3 and α2 integrin chains were 

slightly up-regulated (Fig. S1 B). In situ immunostaining re-

vealed differences in integrin localization at the cellular level. In 

control skin, β1 integrin was expressed around the entire  surface 

of basal keratinocytes (Fig. 3 B) and β4 and α6 integrins along 

the DEJ (Fig. 3 B and Fig. 4). In ILK-K5 skin, the β1 integrin 

subunit was present on basal keratinocytes but also on many su-

prabasal cells (Fig. 3 B), which maintained K14 expression (Fig. 

3 B, middle). The localization of α6 and β4 integrins on ILK-K5 

basal keratinocytes was comparable to control skin, with the ex-

ception of a few areas lacking detectable α6 and β4 integrin and 

some suprabasal cells showing a strong staining for α6 and β4 

integrin (Fig. 3 B). The latter cell population likely expressed 

similar levels of α6β4 integrins as basal keratinocytes, as FACS 

analysis of freshly isolated keratinocytes did not distinguish two 

populations of α6β4-expressing keratinocytes (Fig. S1 B).

The decreased keratinocyte adhesion was associated with 

severe BM defects. Although control skin showed a linear stain-

ing of LM332 along the DEJ and around HFs, ILK-K5 skin dis-

played irregular deposits of LM332 at the DEJ with areas of 

massive LM332 (Fig. 3 B, asterisks) diffusion into the dermis 

and dotlike deposits adjacent to integrin-positive suprabasal 

 keratinocytes (Fig. 3 B, right, arrowhead). EM of a control skin 

revealed a regular BM structure at the DEJ, whereas mutant skin 

showed an abnormal BM with discontinuities in the lamina densa 

between hemidesmosomes (Fig. 3 C). The number of hemides-

mosomes was normal except in areas with detached epidermis, 

where the number was reduced. Collectively, these data demon-

strate that loss of ILK weakens integrin-mediated adhesion of 

basal keratinocytes to the BM and abrogates BM integrity.

ILK regulates proliferation and 
differentiation of epidermal keratinocytes
ILK-defi cient epidermis was hyperplastic (Fig. 2 A). Ki67 immuno-

staining revealed that P4 epidermis from control as well as 

Figure 3. ILK ablation impairs keratinocyte adhesion, inte-
grin expression, and BM integrity and alters proliferation 
in vivo. (A) Cell adhesion of ILK-K5 keratinocytes from 4-d-old 
mice on FN, Col I, Col IV, and LM332 is signifi cantly reduced 
compared with control keratinocytes. Adhesion to poly-L-lysine 
(PLL) is not different (mean + SD of three independent experi-
ments; ***, P < 0.001). (B) Integrin expression in epidermis 
from 2-wk-old mice. In control skin, β1 and β4 integrins are 
expressed in basal keratinocytes, whereas in ILK-K5 skin both 
integrins are also found on suprabasal keratinocytes (arrow-
heads). In ILK-K5 mice, β4 integrin shows discontinuous stain-
ing on basal keratinocytes, LM332 diffuses into the upper 
dermis (asterisks), and β1 integrin–expressing suprabasal 
cells retain K14 expression. Bars, 25 μm. (C) Electron micro-
graphs of back skin sections of 2-wk-old control and ILK-K5 
mice. Control skin exhibits a continuous lamina densa (aster-
isks) and hemidesmosomes (arrowhead), whereas ILK-K5 skin 
shows a discontinuous lamina densa, which is preserved at 
hemidesmosomes (arrowhead) but largely absent in between. 
Bar, 0.25 μm. (D) Ki67 staining revealed the presence of pro-
liferating cells in ILK-K5 suprabasal layers. Suprabasal BrdU+ 
cells express β4 integrin. Bars, 25 μm.
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ILK-K5 skin contained comparable numbers of proliferating 

cells almost exclusively in the basal layer. At P7, however, ILK-

K5 skin contained normal numbers of proliferating cells in the 

basal layers and, in addition, a signifi cant number of proliferat-

ing cells in the suprabasal layers (Fig. S2, A and B, available 

at http://www.jcb.org/cgi/content/full/jcb.200608125/DC1). The 

ectopic keratinocyte proliferation was also observed in Ki67-

immunostained skin (Fig. 3 D). It occurred in areas with aber-

rant and normal BM and was associated with β1 and β4 integrin 

expression (Fig. 3 D).

To test whether loss of ILK expression also affected pro-

liferation of primary keratinocytes in vitro, we performed BrdU 

incorporation assays. In three independent experiments, we 

found an increased incorporation of BrdU in ILK-K5 keratino-

cytes when compared with control cells (Fig. S2 C). Surpris-

ingly, however, the phosphorylation of known ILK targets 

involved in cell cycle control, such as Ser9 of GSK-3β and 

Ser473 of PKB/Akt, and the expression of D-type cyclins were 

not changed in ILK-K5 epidermal lysates (Fig. S2 D).

The defective keratinocyte adhesion could trigger a chronic 

wound healing response with infi ltrating infl ammatory cells, 

which in turn may induce the ectopic proliferation of suprabasal 

keratinocytes in vivo. To test this, we searched skin sections 

from control and ILK-K5 mice for the presence of granulocytes 

and macrophages. As expected, granulocyte and macrophage 

infi ltrates were absent from P7 as well as P14 control skin (Fig. 

S3, A and B, available at http://www.jcb.org/cgi/content/full/

jcb.200608125/DC1). ILK-K5 skin also lacked granulocyte 

and macrophage infi ltration at P7 (Fig. S3, A and B), when 

abundant proliferation of suprabasal keratinocyte was already 

evident (Fig. S2 B). At P14, however, macrophages accumulated 

around ILK-K5 HFs and granulocytes beneath the epidermis 

(Fig. S3, A and B).

The presence of proliferating, integrin-positive keratino-

cytes in suprabasal layers points to an aberrant differentiation 

and/or mislocalization of undifferentiated ILK-K5 keratinocyte. 

To investigate differentiation, we analyzed the expression of 

epidermal keratins. K14 was expressed in basal cells and weakly 

extended into the fi rst suprabasal layer of control epidermis 

(Fig. 4 A). In ILK-K5 skin, K14 was expressed suprabasally in 

up to fi ve cell layers (Fig. 4 A). Normal suprabasal cells switched 

off K14 and K5 expression and instead expressed K10 (Fig. 

4 A). In ILK-K5 epidermis, K10 was absent from basal cells but 

strongly expressed in the four to fi ve suprabasal cell layers. In 

addition, there were often patches of cells lacking K10 but ex-

pressing integrins (Fig. 4 A, asterisks) and high levels of K14 

(Fig. 4 A and Fig. 3 B). Furthermore, although loricrin was con-

fi ned to the stratum granulosum and appeared as a thin linear 

signal in control epidermis, in ILK-K5 epidermis, loricrin was 

found in two to three cell layers, which contained large and 

round keratinocytes with prominent nuclei (Fig. 4 A). These 

data suggest that loss of ILK sustains proliferation and expres-

sion of basal layer markers in suprabasal cell layers and delays 

keratinocyte differentiation.

ILK maintains polarity of 
epidermal keratinocytes
ILK-defi cient keratinocytes have a fl attened shape (Fig. 2 B), 

suggesting that their polarity was impaired. To investigate 

keratinocyte polarity in vivo, we compared F-actin and the dis-

tribution of cell–cell adhesion molecules between control and 

ILK-K5 epidermis. In control epidermis, F-actin distributed to 

the apical and lateral plasma membranes of basal keratinocytes, 

whereas in ILK-K5 epidermis, the F-actin was also present at 

the basal plasma membrane zone facing the BM, where it 

frequently colocalized with nidogen (Fig. 4 B). Similar F-actin 

 defects were also seen in mutant HFs (Fig. 4 C).

In normal skin, E-cadherin and its junctional adaptor 

protein β-catenin were found at the lateral and apical plasma 

membrane of basal keratinocytes (Fig. 4 B and not depicted). 

Figure 4. Loss of ILK retards differentiation 
and disturbs polarity of epidermal keratino-
cytes. (A) Double immunostaining for K14, 
K10, or loricrin (Lor) and α6 integrin on back 
skin of 2-wk-old control and ILK-K5 animals. 
ILK-K5 epidermis shows several cell layers ex-
pressing K14 and loricrin, respectively. Inte-
grin α6 expression is discontinuous in ILK-K5 
skin and present on suprabasal cells (aster-
isks). Bar 25 μm. (B) Immunostaining for F-actin, 
β-catenin, and plakoglobin in 2-wk-old mouse 
skin. In control epidermis, F-actin and β-catenin 
are absent from the basal side of basal ke-
ratinocytes. In ILK-K5 epidermis, F-actin and 
β-catenin are found basally adjacent to nido-
gen (arrowheads). Plakoglobin localizes to the 
lateral–apical sides of basal keratinocytes 
of both control and ILK-K5 mice. Bar, 25 μm. 
(C) F-actin overlaps with α6 integrin in the mutant 
HF (arrowheads). Bars, 50 μm. (D) Western 
blot analysis reveals similar expression levels 
of E-cadherin and β-catenin in control and ILK-
K5 epidermal lysates.
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In ILK-K5 skin, the E-cadherin and β-catenin staining was nor-

mally distributed in areas where the epidermis was attached to 

the dermis. In areas where the epidermis was detached from the 

BM, both E-cadherin and β-catenin were redistributed to the 

basal side of basal keratinocytes (Fig. 4 B and not depicted). In 

epidermal lysates, E-cadherin and β-catenin protein levels were 

indistinguishable between control and ILK-K5 samples (Fig. 

4 D). The expression and localization of desmosomal components 

such as plakoglobin and desmoplakin (Fig. 4 B and not de-

picted), as well as the ultrastructure of desmosomes (Fig. S3 C), 

were unaffected in all areas of the ILK-K5 epidermis. We con-

clude that ILK controls cell polarity by maintaining the inte-

grity of the actin cytoskeleton and BM and not by regulating 

E-cadherin expression or the formation of cell–cell junctions.

Loss of ILK permits normal 𝛃-catenin–Lef1 
signaling and HF differentiation
A possible role of ILK for hair epithelium differentiation stems 

from the observation that ILK controls β-catenin–Lef1–mediated 

gene transcription either by phosphorylating and inactivating 

GSK-3β (Delcommenne et al., 1998) or by stabilizing β-catenin 

(Oloumi et al., 2006). To test whether GSK-3β and the down-

stream β-catenin–Lef1 complex were affected by the loss of 

ILK, we performed a series of different experiments. Immuno-

blotting of lysates from freshly isolated keratinocytes revealed 

that the total levels of GSK-3β and the extent of phosphor-

ylation of Ser9 did not differ between control and ILK-K5 

samples (Fig. S2 D). Immunostaining revealed that Lef1 and 

nuclear β-catenin were present in the precortical HM and HS 

cortex of control as well as fully developed ILK-K5 HFs (Fig. 5, 

A and B, ▲). Moreover, both proteins could clearly be de-

tected in the Ki67-positive HM cells of prematurely growth-

 arrested ILK-K5 HFs (Fig. 5, A and B, ■). To determine the 

activity of the nuclear β-catenin–Lef1 transcription factor com-

plex, ILK-K5 mice were intercrossed with reporter mice, in which 

β-galactosidase expression is controlled by nuclear β-catenin–

Lef1 (Maretto et al., 2003). The expression of β-galactosidase 

was clearly visible in the HS of control and fully developed 

ILK-K5 HFs (Fig. 5 C, ▲) and in cells of growth-retarded 

ILK-K5 HFs (Fig. 5 C, ■). Normal activity of the β-catenin–

Lef1 complex was further confirmed by determining the 

β-catenin–Lef1–dependent expression of IRS-specifi c keratins. 

The IRS keratin K6irs1 (Fig. 5 D) and K6irs2-4 (not depicted) 

were normally expressed in ILK-K5 HFs. Similarly, the expres-

sion of ORS keratins and several HS-specifi c markers (e.g., hHa1) 

was also normal in both populations of ILK-K5 HF (even 

though the localization of the K6irs1-positive cells in the short-

ened mutant HF was abnormal; Fig. 5 D). Altogether, these 

fi ndings demonstrate that ILK regulates neither the phosphory-

lation of GSK-3β and the stability and activity of β-catenin in 

HFs nor the differentiation of HM into the IRS or HS.

ILK loss leads to accumulation and 
premature proliferation of ORS cells
Loss of β1 integrin expression leads to reduced proliferation of 

epidermal keratinocytes and HF matrix cells (Brakebusch et al., 

2000; Raghavan et al., 2000). To assess whether altered prolif-

eration of the ILK-K5 HM accounts for the abnormal hair 

Figure 5. ILK-K5 HFs show normal 𝛃-catenin stability and hair-specifi c differentiation. (A) Control and mutant 2-wk skin sections stained for Ki67 and Lef1 
show an increased number of Ki67+ cells in the ORS (arrowheads), yet retained Lef1 expression in the HM and DP of ILK-K5 HFs. (B) Control and mutant 
2-wk skin sections stained for β-catenin revealed nuclear β-catenin (arrowheads) in precortical HM and proximal HS cortex in both control and long (▲) 
and short (■) ILK-K5 HFs. (C) BatGal reporter mice were intercrossed with ILK-K5 and control animals. LacZ activity is present in precortical HM and HS 
cortex of both control and ILK-K5 HFs. (D) Immunostaining of K14 for the ORS, of keratin K6irs1 for the IRS, and of keratin hHa1 for HS cortex and α6 inte-
grin. ILK-K5 HFs revealed the presence of a multilayered K14+ ORS. K6irs1 and hHa1 were expressed but mislocalized in short ILK-K5 HFs (arrowheads). 
Bars, 50 μm.
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development, we performed BrdU incorporation assays and de-

termined Ki67 expression. At P7, both fully developed ILK-K5 

HFs (Fig. 6 A, ▲) as well as growth-retarded HFs (Fig. 6 A, ■) 

showed an elevated number of proliferating cells in the ORS. 

To quantify the number of proliferating cells, we counted their 

numbers on fully developed ILK-K5 HFs (Fig. 6 A, ▲), thereby 

ensuring comparison of identical HF developmental stages. 

Counting of proliferating cells in P7 ILK-K5 HFs revealed that 

the increased number of proliferating ORS cells was associated 

with a slight but not signifi cantly lower amount of proliferating 

cells in the HM (Fig. 6, B–D). At P14, however, the number of 

proliferating cells signifi cantly diminished in the HM and 

further increased in the ORS (Fig. 6, B–D), suggesting that 

ILK-defi cient, rapidly proliferating TA cells are capable of 

proliferating but accumulate in the ORS. Moreover, neither 

TUNEL assays nor immunostaining for activated caspase-3 re-

vealed an elevation in apoptotic cell numbers, indicating that cell 

survival was unaffected in the ILK-K5 HFs (unpublished data).

The ORS cells originate from the CD34-positive stem cell 

population that is located in the hair bulge (Blanpain and Fuchs, 

2006). To determine whether ILK loss led to the elimination of 

CD34-positive cells, we immunostained P24 skin sections. Both 

control and ILK-K5 HFs contained CD34-positive cells in their 

hair bulges (Fig. 6 E). The formation of secondary hair germs is 

driven by the proliferation of hair bulge-derived TA cells trig-

gered by the inductive activity of the DP. At P24, normal HFs 

are at the onset of anagen, and Ki67+ TA cells appeared adja-

cent to the DP (Fig. 6 F, left). Ki67 staining of ILK-K5 skin 

 revealed the presence of two types of HFs: 	65% contained 

proliferating cells, suggesting that ILK-K5 HFs were princi-

pally capable of entering early stages of anagen (Fig. 6 F, middle). 

The remaining ILK-K5 HFs lacked proliferating cells (Fig. 

6 F, right), likely because they were detached from the DP (Fig. 

6 E, right) or connected to a malformed DP (Fig. 2 C) and, 

hence, did not receive the inductive signals. Collectively, these 

data suggest that ILK-K5 HFs contain CD34-positive stem cells 

that give rise to TA cells, which require ILK to migrate down to 

the HM or to trigger the downward growth of hair germs.

ILK is required for directional migration 
of keratinocytes
In ILK-K5 HFs, rapidly proliferating TA cells accumulate in the 

ORS, suggesting that ILK regulates their migration along the 

LM332-containing BM lining the HF. To test this assumption, 

we isolated keratinocytes from control and ILK-K5 mice and 

compared their migration behavior using different assays.

We fi rst performed transwell migration assays and observed 

that migration of primary ILK-K5 keratinocytes on LM332, 

as well as their invasion through laminin-rich matrigel, was 

signifi cantly impaired (Fig. 7 A). Next, we scratched mono-

layers of primary keratinocytes and observed the closure of 

the scratch over 12 h using time-lapse video microscopy. 

Figure 6. ILK-defi cient HFs accumulate proliferating cells in 
the ORS. (A) Fully developed ILK-K5 HFs display a hyperplastic 
ORS (++). Both types of ILK-K5 HFs (▲, ■) show an elevated 
number of Ki67-positive ORS cells. Auber’s line (green line; 
Auber, 1952) demarks the border between the proliferative 
and nonproliferative zones of the HM. Bar, 50 μm. (B) Quanti-
fi cation of BrdU+ cells in ILK Co and ILK-K5 HFs as a percent-
age of total cells in the ORS. The number of proliferating cells 
in the ORS is signifi cantly increased in mutant HFs. (C) The 
percentage of proliferating cells in the HM is normal in 7-d 
HFs but signifi cantly reduced in 14-d ILK-K5 HFs. (D) The 
overall number of cells is signifi cantly reduced in the HM of 
7- and 14-d ILK-K5 HFs. A minimum of 25 HFs were evaluated 
for B, C, and D at each time point (error bars indicate 95% 
confi dence interval of mean values; *, P < 0.05; ***, P < 
0.001). (E) Double immunostaining of CD34 and LM332 on 
skin sections of 24-d-old animals reveals the presence of a 
CD34+ bulge region (arrowheads) in ILK Co as well as ILK-
K5 HFs. Note that ILK-K5 HFs display a severely abnormal 
morphology at this stage sometimes with detached DP 
(bracket). Bar, 25 μm. (F) Double immunostaining of Ki67 
and LM332 on skin sections of 24-d-old animals. Proliferating 
hair germ is formed in HFs with DP and absent in ILK-K5 HFs 
without DP. HG, hair germ. Bar, 25 μm.
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After scratching, control keratinocytes displayed directional migra-

tion and invaded the denuded area (Fig. 7, B and D) with a mean 

wound closure speed of 42.3 μm/h, leading to the closure of the 

scratch within 12 h (Fig. 7 C). In contrast, ILK-K5 keratinocytes 

often stopped and migrated back- and sideward (Fig. 7 D), with 

a reduced wound closure speed of 9.7 μm/h (Fig. 7, B and C). 

Furthermore, single-cell tracking at the migration front revealed 

a migration velocity of 0.7 ± 012 μm/min by ILK-K5 keratino-

cytes versus 0.9 ± 016 μm/min by control cells (P < 0.01).

To more closely evaluate the migration defect, we per-

formed time-lapse microscopy of single keratinocytes. Control 

keratinocytes formed broad, usually single and stable leading 

edge lamella with a mean persistence of 985 ± 339 s that 

 allowed single cells to directionally migrate (Fig. 8, A and B; 

and Video 1, available at http://www.jcb.org/cgi/content/full/

jcb.200608125/DC1). In sharp contrast, ILK-K5 lamellae were 

instable and collapsed within 618 ± 332 s (Fig. 8 B). Further-

more, the mutant cells constantly extended new lamellae toward 

different directions simultaneously, which gave rise to frequent 

changes of the migration direction and consequently prohibited 

directional movement (Fig. 8 A and Video 2).

To precisely characterize lamellipodia behavior, we moni-

tored and quantifi ed the plasma membrane extension rates of 

migrating cells using kymography (Hinz et al., 1999) over a pe-

riod of 20 min. The lamellipodia of ILK-K5 keratinocytes per-

sisted for a signifi cantly shorter time (Fig. 8 C) and protruded 

more frequently than those of control keratinocytes (Fig. 8 D). 

Collectively, these data indicate that ILK is important for the 

stability and dynamics of the lamellae/lamellipodia and hence 

for directional migration of keratinocytes.

Loss of ILK leads to reduced 
spreading, focal adhesion (FA) formation, 
and FAK activation
The reduced adhesion of ILK-K5 keratinocytes to the ECM 

(Fig. 2 B and Fig. 3 A) can diminish the fi xation of plasma 

membrane protrusions to the ECM, impair cytoskeletal re-

organizations, and compromise integrin-triggered signaling, which 

in turn can cause the abnormal formation of leading-edge lamelli-

podia and impaired directional migration.

To test whether ILK is critical for the formation of 

 integrin adhesion sites and integrin signaling, we isolated 

 control and ILK-K5 keratinocytes. Both cultured cell types had 

comparable integrin profi les, β1 integrin activity, and α6β4-

containing migration track patterns at the rear of the cell (Fig. 

S4, A and B, available at http://www.jcb.org/cgi/content/full/

jcb.200608125/DC1). The size of ILK-K5 cells was smaller, 

reaching a threefold smaller spreading area 40 h after plating 

on a mixture of Col I and FN (Fig. S4 C). Talin staining of 

 adherent cells revealed that ILK-K5 keratinocytes formed fewer 

Figure 7. Loss of ILK impairs migration. (A) 
Freshly isolated keratinocytes were subjected 
to migration on LM332 and invasion through 
Matrigel. ILK-K5 keratinocytes show impaired 
migration and invasion (mean + SD of three 
independent experiments; ***, P < 0.001). 
(B) Time-lapse microscopy of a scratch assay. ILK-
K5 keratinocyte exhibit delayed wound closure. 
Bar, 100 μm. (C) Quantifi cation of the wound 
closure in the scratch assay. ILK-K5 wound clo-
sure is retarded (error bars indicate 95% confi -
dence interval of mean values). (D) Reduced 
directionality of single ILK-K5 keratinocytes in 
the leading front of keratinocytes after scratch 
induction (fi ve representative cells selected out 
of 40 analyzed for each genotype).

Figure 8. ILK-K5 keratinocytes exhibit reduced lamellipodia stability. 
(A) Time-lapse microscopy of single control and ILK-K5 keratinocytes. ILK-K5 
keratinocytes formed instable lamellipodia, leading to a constant change 
of direction (green arrows indicate the protrusion and red arrows the 
retraction of the cell). Single frames chosen from Videos 1 and 2 (available 
at http://www.jcb.org/cgi/content/full/jcb.200608125/DC1). Bar, 
10 μm. (B) Quantifi cation of lamella stability. ILK-K5 keratinocytes exhibit 
signifi cantly reduced lamella stability. (C and D) Quantifi cation of lamelli-
podia persistence (C) and lamellipodia frequency (D). Compared with 
control keratinocytes, ILK-K5 lamellipodia protrusions are signifi cantly less 
stable and occur more frequently. Error bars in indicate 95% confi dence 
interval of mean values. ***, P < 0.001.
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focal complexes (FCs) in the leading-edge lamellipodia (Fig. 

9 A). Additional immunostaining for paxillin and FAK showed 

that only 30% of the cells contained mature FAs (Fig. 9, B and D) 

whose number per cell and size were signifi cantly reduced 

(Fig. 9 C). The number of FAs in relation to the cell contact 

area, however, was not altered between ILK Co and ILK-K5 

keratinocytes. In line with the severe spreading defect, ILK-

K5 keratinocytes contained fewer stress fi bers than control cells 

(Fig. 9, A, B, and D).

ILK can associate with several FA components, which in 

turn can modulate the activity of adaptor and signaling proteins, 

including FAK and Rac1 (Legate et al., 2006). Therefore, we 

tested whether their function is affected in ILK-K5 cells. Al-

though total FAK levels were normal in ILK-K5 keratinocytes, 

the auto-activated form of FAK (pY397-FAK), as well as other 

tyrosine residues, such as Y861, were reduced (Fig. 9 E).

To test whether Rac-1 can be activated upon cell adhesion, 

we determined the levels of GTP-loaded Rac1 before and after 

cell seeding on LM322. Both ILK-K5 and control keratinocytes 

activated Rac1 to a similar extent (Fig. 9 F), indicating that the 

absence of ILK does not impair Rac1 activation in keratino-

cytes. Moreover, growth factor–induced activation of Rac1 

became similarly increased in control and ILK-K5 keratinocytes 

(unpublished data).

Discussion
In the present paper, we report that a keratinocyte-restricted 

deletion of the ILK gene in mice leads to abnormal HF morpho-

genesis and epidermal defects with blisters, ectopic keratinocyte 

proliferation in suprabasal cell layers, and abnormal keratino-

cyte differentiation. Mutant HFs produced proliferating pro-

genitor cells, which accumulated in the ORS and failed to 

replenish the HM. In vitro experiments revealed that ILK-

defi cient keratinocytes were unable to fi rmly stabilize lamelli-

podia, leading to impaired directional migration and providing 

a potential explanation for the accumulation of progenitor cells 

in the ORS.

Epidermal morphogenesis
The most prominent defects of the ILK-defi cient epidermis 

were detachment from the dermal–epidermal BM and hyper-

thickening. The hyperthickened epidermis contained a normal 

number of proliferating keratinocytes in the basal layer and, 

surprisingly, also proliferating keratinocytes ectopically in the 

suprabasal layers. The cycling cells in the suprabasal layers ex-

pressed markers of basal keratinocytes, including K5 and K14; 

β1, α6, and β4 integrins; and LM332, and were unevenly dis-

tributed. They were detected in areas where the epidermis was 

fi rmly attached to the BM but also in epidermal stretches above 

microblisters. A similar hyperplastic epidermis was previously 

observed in transgenic mice ectopically expressing β1 integrin 

in the stratum granulosum (Carroll et al., 1995). The β1 trans-

genic keratinocytes were hyperproliferative, which was thought 

to be triggered by an excessive cytokine release from infi ltrat-

ing infl ammatory cells. Because we did not observe a chronic 

wounding response with an obvious infl ammatory infi ltrate 

(likely because the blistering was mild) at P7, when suprabasal 

proliferation was already evident, the proliferation and hyper-

plasia of the ILK-K5 epidermis must be triggered by a different 

Figure 9. Impaired formation of FAs but 
 normal Rac1 activation in ILK-K5 keratinocytes. 
(A, left) Immunostaining of primary control and 
ILK-K5 keratinocytes for talin and F-actin. Con-
trol and ILK-K5 keratinocytes contain talin in 
FAs. ILK-K5 cells are enlarged twofold com-
pared with control cells. Bars, 10 μm. (right) A 
close up demonstrates talin in FCs at the lead-
ing edge of control cells (arrowheads). ILK-K5 
keratinocytes have fewer talin-positive FCs at 
the leading edge (arrowheads). Bars, 2.5 μm. 
(B) Immunostaining of control and ILK-K5 kera-
tinocytes for paxillin, F-actin, and DAPI. Bars, 
10 μm. (C) Quantifi cation of paxillin-contain-
ing FAs. ILK-K5 keratinocytes exhibit reduced 
size and amount of paxillin containing FAs 
compared with control keratinocytes. Error 
bars indicate 95% confi dence interval of mean 
values. *, P < 0.05; ***, P < 0.001. (D) Immuno-
staining of primary control and ILK-K5 kerati-
nocytes for FAK, F-actin, and DAPI. Note that 
mutant keratinocytes form fewer FAs that are 
poorly linked to thin and disorganized actin 
fi bers. Bars, 10 μm. (E) Western blot analysis 
of protein lysates from primary keratinocytes 
showing reduced FAK phosphorylation levels 
in the absence of ILK. (F) Western blot analysis 
of a GTPase pull-down assay showing normal 
activation of Rac1 in primary ILK-K5 keratino-
cytes after 30 min of adhesion on a LM322-
rich matrix.
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mechanism. A possible explanation is that the proliferating 

basal keratinocytes detach because of an impaired adhesion 

strength, which leads to their ectopic location and marked thick-

ening of the epidermis. It could also be that an accelerated 

 proliferation rate contributes to the ectopic distribution of 

 proliferating keratinocytes. Such a notion is supported by the 

elevated proliferation rate of primary keratinocytes in vitro. 

However, it is currently unclear why ILK-K5 keratinocytes 

would proliferate better than their normal control counterparts. 

Finally, delayed terminal differentiation of suprabasal keratino-

cytes may additionally contribute to the epidermal hyperplasia. 

In ILK-K5 epidermis, the K5- and K14-positive keratinocyte 

zone extended into several layers of the K10-positive stratum 

granulosum. Also the loricrin-positive cell compartment was 

increased. Interestingly, epidermal thickening and delay in ke-

ratinocyte differentiation was also observed in the β1 integrin–

defi cient epidermis (Brakebusch et al., 2000). In contrast to the 

ILK-K5 skin, however, the hyperthickened, β1 integrin–null 

epidermis contained fewer proliferating basal keratinocytes 

(Brakebusch et al., 2000; Raghavan et al., 2000), suggesting 

that β1 integrins accomplish keratinocyte differentiation 

through ILK and keratinocyte proliferation through an ILK-

independent mechanism.

The diminished integrin-mediated attachment of keratino-

cytes to the BM resulted in blister formation, deterioration of the 

BM, and abnormal distribution of E-cadherin and β-catenin above 

blisters. In attached epidermis, E-cadherin and β-catenin were 

normally distributed, suggesting that ILK affects E-cadherin–

based cell–cell adhesion structures rather indirectly. This is in 

contrast to previous reports showing that ILK regulates E-cadherin 

expression (Tan et al., 2001) and assembly of E-cadherin–based 

cell–cell adhesions (Vespa et al., 2005).

HF development and cycling
The most impressive phenotype of ILK-K5 mice is their pro-

gressive hair loss, which is completed at the age of 6–8 wk. 

Upon completion of morphogenesis, ILK-K5 skin revealed two 

types of abnormal HFs: long HFs with multilayered ORS and 

short, immature HFs that were stuck in the dermis. The exis-

tence of two types of HFs is most easily explained by the asyn-

chronous development of HFs over a period of several days. 

The depletion of the ILK protein around birth is consequently 

hitting HFs later (long HFs; Figs. 2, 5, and 6, ▲) or earlier (short 

HFs; Figs. 2, 5, and 6, ■) in their development. In both types 

of HFs, although much more pronounced in long HFs, we ob-

served an accumulation of proliferating cells in the hyperthick-

ened ORS. The concomitant reduction of proliferating cells in 

the HM and the presence of CD34-postive stem cells in the hair 

bulge suggest that TA cells are generated but fail to migrate 

down to and replenish the HM, arresting HF development and 

maintenance. It is conceivable that hyperproliferation, like in 

the epidermis, may additionally contribute to the hyperthicken-

ing of the ORS.

We also observed abnormal localization of DPs during 

HF morphogenesis and detachment of the DP from 	35% 

ILK-K5 HFs in P24 mice. Because the DP is releasing signals 

that are required for HF development and maintenance 

(Panteleyev et al., 1998), such abnormalities are likely to con-

tribute to the hair loss. Interestingly, ILK-K5 HFs still connec-

ted to the DP could respond to the inductive signals and trigger 

sustained proliferation. In spite of the successful induction of 

anaphase, however, downward migration of the mutant HF 

epithelium was never observed.

What could be the underlying mechanism for the defec-

tive migration? Our analysis of primary keratinocytes revealed 

that loss of ILK alters the formation of mature FAs and prevents 

persistent, directional migration. Single-cell imaging demon-

strated that ILK-K5 keratinocytes are perfectly able to form 

membrane protrusions but are unable to stabilize them over a 

prolonged period of time. As a consequence, lamellipodia are 

short-lived and frequently collapse. Interestingly, ILK-K5 kera-

tinocytes swiftly respond with the formation of new lamelli-

podia, often simultaneously at multiple sites of the cell. In vivo 

such a high turnover rate of lamellipodia would force migrating 

ILK-K5 ORS cells to continuously change the direction of 

movement, which, along with the reduced migration velocity, 

could explain their accumulation in the ORS and their handicap 

to arrive in the HM.

Molecularly, we found several defects that could account 

for the impaired directional persistence and migration speed. 

First, ILK-K5 keratinocytes showed weakened integrin adhe-

sion, which could compromise the fi xation of lamellipodia. 

Second, the defective formation of integrin adhesion sites could 

lessen integrin-signaling pathways crucial for cell migration, 

such as the activation of FAK. Third, diminished integrin sig-

naling could, in turn, lead to an impaired spatiotemporal activa-

tion of small Rho-like GTPases. The stabilization of lamellipodia 

and directional migration of keratinocytes critically depends on 

the optimal activation of the small GTPase Rac1 (Nobes and 

Hall, 1999; Ridley et al., 2003). In vitro studies with human 

 keratinocytes revealed that high Rac1 activity can lead to in-

effi cient migration with low lamellipodia persistence (Borm 

et al., 2005). Likewise, reduced Rac1 activity in α3β1 integrin–

defi cient keratinocytes can also result in directional migration 

defects and short-lived leading-edge lamellipodia (Choma et al., 

2004). The ILK-K5 keratinocytes show a normal Rac1 activa-

tion after seeding on a LM322-enriched ECM, indicating that 

either ILK is not required for modulating Rac1 activity in 

 keratinocytes or we were unable to detect small but critical 

differences in Rac1 activation between control and ILK-K5 

keratinocytes. Thus, we anticipate that loss of ILK is suffi cient 

to compromise the dynamics of lamellipodia and FAs and, con-

sequently, results in altered cell migration.

An abnormal proliferation rate of HM cells could also 

 potentially contribute to hair loss in ILK-K5 mice. Loss of β1 

integrins impairs ORS cell migration and proliferation of HM 

cells (Brakebusch et al., 2000; Raghavan et al., 2000). In sharp 

contrast, we found robust proliferation in the HM of short 

 ILK-K5 HFs. In fully developed ILK-K5 HFs, the number of 

proliferating HM cells diminished with the accumulation 

of proliferating cells in the ORS. These fi ndings, along with the 

increased proliferation rate of primary ILK-K5 keratinocytes 

in vitro, suggest that HM cell proliferation can be sustained 

in the absence of ILK.
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ILK does not regulate GSK-3𝛃 activity 
in HFs
The inactivation of GSK-3β and the subsequent stability and 

nuclear translocation of β-catenin and formation of a Lef1–Tcf–

β-catenin complex plays a fundamental role for the differentia-

tion of the HM cells into the precortical HM and HS (DasGupta 

and Fuchs, 1999; Huelsken et al., 2001). The inactivation of 

GSK-3β and stabilization of β-catenin is achieved by Wnt sig-

nals (Logan and Nusse, 2004) or by ILK-dependent phosphory-

lation of GSK-3β (Delcommenne et al., 1998) and/or inhibition 

of the β-catenin destruction complex (Oloumi et al., 2006). De-

spite the high expression of ILK throughout the entire HM, we 

found no evidence for reduced GSK-3β phosphorylation in 

ILK-K5 keratinocytes, decreased β-catenin levels, diminished 

Lef1–Tcf–β-catenin activity (both in prematurely arrested as 

well as fully developed HFs), or impaired differentiation of HM 

keratinocytes into trichocytes. These fi ndings indicate that, con-

trary to what has been reported for intestinal and mammary epi-

thelial cells (Novak et al., 1998) and for HEK293 and L2 cells, 

ILK is not required to stabilize β-catenin in the HF epithelium 

to induce expression of HS keratins. These fi ndings, along with 

recent observations in mice with other organ-specifi c ILK dele-

tions (Grashoff et al., 2003; Niewmierzycka et al., 2005), sug-

gest that the ILK activity, at least toward GSK-3β and PKB/Akt, 

may not be required under physiological conditions in vivo.

Materials and methods
Mouse strains
To obtain mice with a keratinocyte-restricted deletion of the ILK gene, trans-
genic mice expressing Cre under the control of the keratin-5 promoter 
(Brakebusch et al., 2000) were crossed with fl oxed ILK mice (Grashoff 
et al., 2003; Sakai et al., 2003). Offspring were genotyped as described 
previously (Grashoff et al., 2003). BatGal transgenic mice carry Lef1/Tcf 
binding sites in front of a minimal promoter and the lacZ gene (Maretto 
et al., 2003) and were intercrossed with the ILK mutant mice.

Keratinocyte, epidermal lysate, and GTPase pull-down assay
Primary keratinocytes were cultured in keratinocyte growth medium con-
taining 8% FCS and low Ca2+ (45 μM) on cell culture dishes coated with 
a mixture of Col I (Cohesion) and FN (Invitrogen) to subconfl uence as de-
scribed previously (Romero et al., 1999). Protein lysates from keratinocytes 
or epidermis were separated by SDS gel electrophoresis, blotted, and 
 incubated with the indicated antibodies.

For GTPase pull-down assays, keratinocytes were cultivated to 70% 
confl uence. Cells were then serum starved overnight and detached by Tryp-
sin/EDTA treatment (Invitrogen). Detached cells were resuspended in 
 serum-free keratinocyte growth medium and kept for 30 min in suspension. 
For adhesion-induced GTPase activation, cells were plated on a LM332-
rich matrix produced by Rac-11P/SD squamous cell carcinoma cells for 
30 min (Sonnenberg et al., 1993). Cells were washed twice with PBS 
and then lysed in lysis buffer (50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 
1% Nonidet P-40, 10% glycerol, 2 mM MgCl2, 1 mM NaF, and 1 mM 
Na3VO4; all from Sigma-Aldrich) supplemented with protease inhibitor 
cocktail tablets (Complete Mini, EDTA-free; Roche) and containing biotinyl-
ated PAK-CRIB peptide (a gift from J. Collard, Netherlands Cancer Institute, 
Amsterdam, Netherlands). Lysates were centrifuged at 20,000 g for 10 
min at 4°C, and the supernatant was subsequently incubated for 45 min at 
4°C. Next, lysates were incubated with streptavidin-conjugated agarose 
beads (GE Healthcare) for 30 min at 4°C. Beads were washed three times 
with lysis buffer, resuspended in 2× SDS sample buffer, and boiled for 
5 min at 95°C. The supernatant was subjected to SDS gel electrophoresis, 
Western blotting, and immunodetection by the indicated antibodies. The 
following antibodies were used for Western blot analysis: mouse mAb 
against ILK (clone 3; BD Biosciences); rat mAb against α-tubulin (Kilmartin 
et al., 1982); rabbit pAb against PKB/Akt and phospho-PKB/Akt (Ser473; 

Cell Signaling Technology); mouse mAb against GSK-3β (BD Biosciences); 
rabbit pAb against phospho–GSK-3β (Ser9; Biosource International); 
mouse mAb against cyclin D1/2 (Upstate Biotechnology); rabbit pAb 
against cyclin A (Santa Cruz Biotechnology, Inc.); rabbit pAb against 
p42/44 MAPK (Cell Signaling Technology); mouse mAb against phospho-
p42/44 MAPK Thr202/204 (New England Biolabs, Inc.); rat mAb against 
E-cadherin (Zymed Laboratories); rabbit pAb against β-catenin (Sigma-
 Aldrich); rabbit pAbs against FAK (Upstate Biotechnology) and pFAK 
(Tyr397and Tyr861; Biosource International); mouse mAb against Rac1 
(BD Biosciences); and goat anti–rat HRP, goat anti–mouse HRP, and goat 
anti–rabbit HRP (Bio-Rad Laboratories).

Histology and immunohistochemistry
Skin samples were fi xed in 4% PFA in PBS, pH 7.2, overnight, dehydrated 
in a graded alcohol series, and embedded in paraffi n (Paraplast X-tra; 
Sigma-Aldrich) or frozen unfi xed in OCT (Thermo Shandon). Immuno-
histochemistry of skin sections was performed as described previously 
(Brakebusch et al., 2000). For cellular immunostainings, keratinocytes were 
seeded on chamber slides (Nunc) coated with 5 μg/ml of purifi ed LM332 
or 30 μg/ml Col I and 10 μg/ml FN and allowed to spread for 40 h. Cells 
were washed in PBS, fi xed in 4% PFA, and incubated with the indicated 
antibodies. To determine BrdU incorporation, mice were injected with 
BrdU (100 μg/g body weight) 2 h before killing. Assessment of prolifera-
tion of cultured keratinocytes was performed with the Cell Proliferation 
ELISA according to the manufacturer’s protocol (Roche). The following anti-
bodies were used for immunohistology: rabbit pAb against ILK (Cell Signal-
ing Technology); FITC-conjugated mAb against integrin α6 (BD Biosciences); 
rat mAb against β1 integrin (Chemicon); rat mAb against β4 integrin (BD 
Biosciences); rabbit pAb against laminin-5 (Brakebusch et al., 2000); rab-
bit pAbs against keratins 6, 10, and 14 and loricrin (Covance); rat mAb 
against E-cadherin; rabbit pAb against β-catenin; rabbit pAb β-catenin 
(Huelsken et al., 2000); rat mAb against nidogen (Chemicon); rabbit pAb 
against desmoplakin (Research Diagnostics); rabbit pAb against plakoglo-
bin (Santa Cruz Biotechnology, Inc.); rabbit pAb against Lef1 (obtained 
from R. Grosschedl, Max Planck Institute of Immunobiology, Freiburg, Ger-
many); rat Ki67 (Dianova); guinea pig pAbs against HF keratins (K6hf, 
K6irs1, K6irs2, K6irs3, K6irs4, hHa4, hHa5, hHb2, hHb5, CK5, and 
CK14; made by L. Langbein, German Cancer Research Center, Heidel-
berg, Germany); rat mAb against CD34 (clone RAM34; eBioscience); 
FITC-conjugated mouse mAb and POD-conjugated mAb against BrdU 
(Roche); rabbit pAb against cleaved caspase-3 (Asp175; Cell Signaling 
Technology); mouse mAb against paxillin (BD Biosciences); rabbit pAbs 
against FAK (Upstate Biotechnology) and phospho-FAK (Tyr397 and 
Tyr861; Biosource International); mouse mAb against Talin (Sigma-
 Aldrich); phalloidin Alexa488 (Invitrogen); goat anti–mouse Cy3, goat 
anti–rat Cy3, goat anti–rabbit FITC, and donkey anti–rabbit Cy3 (Jackson 
ImmunoResearch Laboratories); goat anti–rabbit Alexa488 (Sigma-Aldrich); 
and goat anti–rat Alexa488 (Invitrogen). Images were collected at room 
temperature by confocal microscopy (DMIRE2; Leica) using the Leica Con-
focal Software (version 2.5 Build 1227) with 63× NA 1.4 or 100× NA 
1.4 oil objectives or by bright fi eld microscopy (Axioskop; Carl Zeiss 
 MicroImaging, Inc.) with 10× NA 0.3, 20× NA 0.5, or 40× NA 0.75 
objectives, a camera (DC500; Leica), and IM50 software.

FACS analysis
Flow cytometry was performed as described by Brakebusch et al. (2000). 
Antibodies used for FACS analysis are as follows: FITC-conjugated hamster 
mAb against integrin β1; rat mAb against integrin β1 9EG7; FITC-conjugated 
rat mAb against integrin α6; biotinylated rat mAb against integrin αV; rat 
mAb against integrin β4; FITC-conjugated hamster mAb against integrin 
α2; biotinylated rat mAb against integrin α5 (all obtained from BD Bio-
sciences); mouse mAb against integrin α3 (BD Biosciences); Streptavidin-
Cy5 (BD Biosciences); mouse mAb anti–rat FITC (BD Biosciences); and 
goat anti–mouse FITC (Jackson ImmunoResearch Laboratories).

Adhesion and transwell assays
Adhesion of epidermal keratinocytes to ECM proteins (poly-L-lysine [Sigma-
Aldrich], Col I, Col IV [a gift from R. Timpl, Max Planck Institute of Biochem-
istry, Martinsried, Germany], FN, and LM332) was measured as described 
previously (Fässler et al., 1995). Transwell migration and matrigel invasion 
assays of primary keratinocytes were performed as described by Thomas 
et al. (2001).

Cell-wounding assay
Monolayers were treated with 4 μg/ml Mitomycin C (Sigma-Aldrich) for 
4 h before scratching with a 200-μl plastic micropipette to obtain wound 
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widths of 500–600 μm. Live-cell recordings were performed immediately 
after wounding for 12 h at 37°C and 5% CO2 using a microscope (Axio-
vert; Carl Zeiss MicroImaging, Inc.) equipped with 10× NA 0.3, 20× NA 
0.4, 40× NA 0.6, and 100× NA 1.3 objectives, motorized scanning 
 table (Märzhäuser) and a stage incubator (EMBL Precision Engineering). 
Images were captured every 10 min with a cooled charge-coupled device 
camera (MicroMAX; Roper Scientifi c) using the MetaMorph software (Uni-
versal Imaging Corp.) for microscope control and data acquisition. Wound 
closure was quantifi ed by measuring the distance between both leading 
edges moving toward the wound in 20 randomly chosen regions. At least 
four independent scratch-wound experiments were used for calculations. 
Migration velocity was determined by calculating the slope of a linear re-
gression line. Single-cell tracking of cells within the leading edge was per-
formed using MetaMorph software, choosing 15 cells each in at least three 
independent experiments.

Cell spreading
Cells were seeded on Col I/FN-coated dishes (MatTek Corporation) and 
allowed to spread for the indicated time. Four images were taken by the 
live-cell recording unit for each time point, and cell area was assessed 
 using MetaMorph software.

Kymograph analysis
Lamellipodia dynamics and lamella stability was analyzed using kymogra-
phy (Hinz et al., 1999). We monitored at least 10 migrating cells over a 
period of 20 min with a frame rate of 4 s using the live-cell imaging unit 
(100× NA 1.3 objective). Subsequently, eight areas of interest across the 
cell lamella with a 1-pixel width were defi ned. The 1-pixel-wide images 
were pasted side-by-side to generate a composite image of membrane dy-
namic at a single point along the cell lamella. As described by Hinz et al. 
(1999), slopes of these lines were used to calculate the velocities, and 
 projections of these lines along the x axis (time) were used to calculate the 
persistence of protrusions.

Transmission EM
Transmission EM was performed as described previously (Grose et al., 2002).

Statistical analysis
Statistical evaluation was performed with SPSS software (SPSS, Inc). Statistical 
signifi cance between data groups was determined by Whitney U test and 
subdivided into three groups (*, P < 0.05; **, P < 0.01; ***, P < 0.001).

Online supplemental material
Fig. S1 shows the ILK expression on newborn and 2-d-old skin sections 
and the integrin-expression pattern on freshly isolated control and ILK-K5 
keratinocytes. Fig. S2 shows the numbers of proliferating cells in basal 
and suprabasal layers of control and ILK-K5 epidermis, in vitro prolifera-
tion of primary control and ILK-K5 keratinocytes, and the phosphorylation 
levels of GSK-3β and PKB/Akt. Fig. S3 shows immunostaining for Mac1 
and Gr1 on skin sections of 7-d- and 2-wk-old mice and transmission EM 
of desmosomal contacts in the epidermis. Fig. S4 shows the integrin-
 expression pattern and immunostaining for integrins on cultured primary 
control and ILK-K5 keratinocytes and spreading kinetics of freshly isolated 
keratinocyte. Video 1 shows time-lapse video microscopy of control 
keratinocytes. Video 2 shows time-lapse video microscopy of ILK-K5 keratino-
cytes. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.200608125/DC1.
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