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RNA Methylation: A New Regulator of Vascular Remodeling in
Pulmonary Hypertension

Pulmonary hypertension (PH) is a chronic and progressive vascular
disease characterized by a major constrictive remodeling of the distal
pulmonary vasculature leading to increase in pulmonary artery pressure,
resistance, and ultimately heart failure (1). Although there is a good
understanding of the cellular processes occurring during the
development of the disease, including endothelial cell dysfunction and
apoptosis and smooth muscle cell (SMC) proliferation, the therapeutic
options to limit or revert its progression are limited (2). This may be
explained by a lack of understanding and knowledge of the intracellular
mechanisms driving cellular dysfunction. Recent investigations have
pointed out the contribution of nuclear, transcriptional, and epigenetic
mechanisms in mediating PH-associated environmental changes into
cell phenotypic and functional perturbations (1, 3). In this issue of the
Journal, Hu and colleagues (pp. 1158–1172) identified a novel epigenetic
mechanism, namely RNA methylation, as a driver of vascular
remodeling and SMC proliferation in PH (4).

Epigenetics is an ensemble of mechanisms regulating genome
organization, stability, and gene expression without modification of
the DNA sequence. These mechanisms include DNA adenine and
cytosine modifications, posttranslational modifications of histone
residues, and expression of noncoding RNA. All these regulatory
systems play a role in regulating gene expression by acting on
chromatin conformation and gene accessibility to transcription
machinery, transcription factor binding, and mRNA stability and
degradation. More recently, mRNA base modifications have also
been described, among them N6 adenosine methylation or m6A.
Like other epigenetic systems, mRNA methylation dynamics and
functions require the participation of three types of proteins:
“writers” catalyzing N6 adenosine methylation, “erasers” reverting

these modifications, and “readers” recognizing and utilizing
methylated mRNA residues for the recruitment of translational
complexes (5). Importantly, the role of methylation on mRNA
highly depends on which “reader” is involved and may be
diametrically different. Although m6A “reader” YTHDF1 (YTH
domain–containing family protein 1) promotes mRNA translation,
YTHDF2 causes mRNA instability and degradation (6). This
reflects the complexity and versatility of mRNA methylation on
gene regulation and protein expression.

Hu and colleagues found a robust increase inmRNAmethylation
levels and m6A “reader” YTHDF1 expression in the pulmonary
vasculature of patients with PH as well as in animal and in vitro
models of PH (Figure 1). By performing global genetic deletion of
YTHDF1, they provide strong evidence that m6A-mediated YTHDF1
recruitment on a subset of transcripts contributes to detrimental
vascular remodeling in Sugen/hypoxia-treated mice. Mechanistically,
m6A and YTHDF1 exacerbate SMC proliferation, at least in part by
increasing the translation of MAGED1. MAGED1 transcript is
methylated by the methyltransferase METTL3 and targeted by
YTHDF1 in mice with PH. MAGED1 knockout phenocopies
YTHDF1 deletion and prevents PH development. These studies
are compelling in demonstrating a causal role of this central
epigenetic mechanism in the development of PH and draw an
interesting parallel with recent discoveries in other proliferative
disorders such as cancer, in which studies have already identified
alteration of mRNA methylation homeostasis as a driver of
tumoral cell proliferation. An elevated YTHDF1 expression has
been reported in multiple cancers, and functional studies have
demonstrated that YTHDF1 plays a detrimental role with respect
to tumor growth, metastasis, and antitumor immunity (7, 8). These
reports suggest a common YTHDF1-dependent pathway driving
hyperproliferative processes in cancer and PH, thus reinforcing the
cancer theory of PH (9). In contrast, MAGED1 appears to display
opposite roles in these diseases. In human and mouse models of PH,
MAGED1 is overexpressed due to an increase in translation
mediated by YTHDF1. Knockout and knockdown experiments
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provide supportive evidence that MAGED1 promotes detrimental
SMC proliferation and vascular remodeling. In cancer, MAGED1
expression is significantly reduced, whereas MAGED1 has a marked
antitumorigenesis effect by inhibiting cell proliferation (10). These
differences suggest that although RNA methylation and YTHDF1
promote development of both PH and cancer, the transcripts
targeted by this mechanism are likely cell-type and disease specific.

Although giving compelling loss-of-function, the work by Hu
and colleagues presents the inherent limitation of relying exclusively
on global knockouts of YTHDF1 and MAGED1, limiting our
understanding of the specific effect of these proteins in the main
cell types involved in PH development (e.g., endothelial cell vs.
SMC). The development of conditional and inducible knockout
mouse models would allow for a clear characterization of the
impact of alteration of the m6A/YTHDF1/MAGED1 axis in a cell-
specific manner, without the possible developmental and disease-
independent impact of noninducible global knockouts. Future
experiments should further investigate the full spectrum of
transcripts and their downstream pathways impacted by global and
cell-type–specific inhibition of m6A writer (METTL3) and reader
(YTHDF1) in vivo. Finally, the identification of several epigenetic
pathways involved in PH, namely, DNA methylation, chromatin
remodeling, and mRNA modifications, interrogates the
interrelationship and interdependence of these mechanisms (11, 12).

From a therapeutic perspective, the findings from Hu and
colleagues open a new therapeutic avenue for PH and beyond.
Although the findings are promising, several other steps will be
necessary prior to clinical translation, including the following (13): 1)
confirm the feasibility to exploit m6A reader modulators alone or in

combination with other therapies for treating PH, such as that recently
published for other epigenetic readers (BET [Bromodomain and
extraterminal motif]) (14); 2) identify and characterize appropriate
biomarkers to evaluate efficacy of RNA methylation–targeted
approaches in patients with PH; and 3) establish the impact beyond
the lungs, as PH is now recognized as a systemic disease (15). n
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Prospective Cohort Studies of Major Disorders Can Facilitate
Phenotyping for Sleep Apnea

A few decades ago, several prospective cohort studies were initiated
with the support of epidemiologists and often focused on a specific
disorder or risk factors (1). One example of such a cohort study is
MESA (Multi-Ethnic Study of Artherosclerosis), which was
designed to investigate risk factors for cardiovascular diseases (2).
Assessments of cardiovascular disease, including severity, risk
factors, and comorbidities, were carefully chosen according to the
methodology and physiological knowledge available 20 years ago.
The hypotheses in the studies begun decades ago are borne out by
the results that have been published more recently (3). However,
sleep recording was not part of the original methodology. Today,
however, this information can be added, as was done in the study
by Borker and colleagues (pp. 1173–1182) in this issue of the
Journal (4); this addition offers new insights on the meaning of
sleep apnea in medicine.

Today, it is increasingly recognized that sleep apnea is more
than a diagnostic entity; it has been found to be a contributor to
many cardiovascular, respiratory, and metabolic disorders (5). And
vice versa: sleep medicine also views cardiovascular, respiratory,
and metabolic disorders as contributors to sleep apnea. Respiratory

events during sleep such as obstructive, mixed, or central apneas
and obstructive and central hypopneas, or even less well-defined
events such as respiratory-related arousal or airflow flattening, are
carefully scored in sleep centers and then counted and used as
metrics for sleep apnea severity. It is now recognized that
apnea–hypopnea index is not an adequate measure of severity.
Counting oxygen desaturations and calculating the oxygen
desaturation index is not much better, but instead distracts from
the core problem of pathophysiological mechanisms.

Sleep apnea, as defined by apnea–hypopnea index (or oxygen
desaturation index), is heterogenous. Sleep apnea may be the cause
of cardiovascular, respiratory, or metabolic disorders, or it may
be the consequence of these. For an appropriate treatment,
this does not matter much. However, for an understanding of
pathophysiological pathways, and thus for prevention, this is
important. The assessment of sleep apnea can be regarded as being
similar to that used for high blood pressure. It is a sign, and a
finding, that a basic physiological regulation (of blood pressure or,
respectively, of respiratory stability during sleep) is losing its
physiological boundaries. Different parameters are used to
characterize the regulation. All these parameters are recorded by
polysomnography and can be analyzed by exploiting the recordings
more (6). Not only the number, but also the duration, of
respiratory events is important for phenotyping patients (7).
Analyzing subgroups related to event duration may provide
surprising results (8). Event duration may even allow a prediction
of mortality, as recently reported based on a sleep cohort study (9).

To change the perspective on sleep-disordered breathing and
change the view on the pathophysiology of sleep apnea, it is valuable
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