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The self-formation of retinal tissue from pluripotent stem cells generated a tremendous
promise for developing new therapies of retinal degenerative diseases, which previously
seemed unattainable. Together with use of induced pluripotent stem cells or/and
CRISPR-based recombineering the retinal organoid technology provided an avenue
for developing models of human retinal degenerative diseases “in a dish” for studying
the pathology, delineating the mechanisms and also establishing a platform for large-
scale drug screening. At the same time, retinal organoids, highly resembling developing
human fetal retinal tissue, are viewed as source of multipotential retinal progenitors,
young photoreceptors and just the whole retinal tissue, which may be transplanted
into the subretinal space with a goal of replacing patient’s degenerated retina with a
new retinal “patch.” Both approaches (transplantation and modeling/drug screening)
were projected when Yoshiki Sasai demonstrated the feasibility of deriving mammalian
retinal tissue from pluripotent stem cells, and generated a lot of excitement. With
further work and testing of both approaches in vitro and in vivo, a major implicit
limitation has become apparent pretty quickly: the absence of the uniform layer of
Retinal Pigment Epithelium (RPE) cells, which is normally present in mammalian retina,
surrounds photoreceptor layer and develops and matures first. The RPE layer polarize
into apical and basal sides during development and establish microvilli on the apical
side, interacting with photoreceptors, nurturing photoreceptor outer segments and
participating in the visual cycle by recycling 11-trans retinal (bleached pigment) back
to 11-cis retinal. Retinal organoids, however, either do not have RPE layer or carry
patches of RPE mostly on one side, thus directly exposing most photoreceptors in the
developing organoids to neural medium. Recreation of the critical retinal niche between
the apical RPE and photoreceptors, where many retinal disease mechanisms originate,
is so far unattainable, imposes clear limitations on both modeling/drug screening and
transplantation approaches and is a focus of investigation in many labs. Here we dissect
different retinal degenerative diseases and analyze how and where retinal organoid
technology can contribute the most to developing therapies even with a current limitation
and absence of long and functional outer segments, supported by RPE.

Keywords: retinal organoids, disease modeling, pluripotent stem cells, retinal degeneration, photoreceptors,
assembloids, drug screening, retinal pigment epithelium
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INTRODUCTION

Retina is a great model for developmental neuroscience and a
very attractive therapeutic target for biotech companies working
in the field of regenerative medicine. There are only several
types of retinal neurons (rod and cone photoreceptors, amacrine,
horizontal, rod & cone bipolar and retinal ganglion cells), one
type of glial cells (Muller glia) and a pigmented layer of supportive
cells (Retinal pigment epithelium), which form the retina and
help to carry out visual function (Wallace, 2011). On the contrary,
the cortical organization in the brain is much more complex
and has six layers of cortical neurons, each carrying different
cell types with different function (Molyneaux et al., 2007; Lodato
and Arlotta, 2015). This relative simplicity creates a promise
for ease of recapitulation of this process in a dish (compared
to brain), as well as (expected) relative ease of cell replacement
therapies (again, compared to the brain). This, in turn, is very
attractive to regenerative medicine and biotechnology, which aim
to convert the already “understood” and “worked out” knowledge
and concepts into robust technologies and therapies to transition
science from the bench to patients. Age related macular
degeneration (AMD), glaucoma and retinitis pigmentosa (RP)
are the major retinal degenerative diseases affecting people
worldwide. Understanding the causes and mechanisms of these
diseases (outlined below) is a key for developing organoid-
based in vitro models of these diseases for drug screening and
disease modeling.

According to eye health data and statistics, summarized on
NEI’s web site1 and in a recent study published by Varma
et al. (2016), the number of people with most common eye
diseases is going to double by 2050. AMD is a leading cause of
vision loss in United States and mainly affects the central vision.
According to statistics presented by Brightfocus foundation2

about 11 million of Americans have visual problem associated
with AMD symptoms, and this number is projected only to
increase and reach 22 million by 2050. The total number of
people with macular degeneration worldwide is projected to
be 196 million by now (2020) and 288 million by year 2040.
About 30% of people age 75 and above have vision problems
associated with AMD symptoms. Macular degeneration triggers
loss of central vision and death of photoreceptors in the macula
(maculae) (Molday, 1998; Molday and Moritz, 2015). The dry
form of AMD accounts for 85 to 90 percent of all AMD cases
(Klein et al., 1992; Bird et al., 1995; Vingerling et al., 1995). In
dry AMD disruption and death of RPE causes accrual of yellow
deposit (drusen) in the macula that contributes to accumulation
of complement component and acute phase proteins leading to
proinflammatory macrophage response (Ding et al., 2009) and
eventually photoreceptor cell death. Geographic atrophy (GA)
is devastating complication of dry AMD and is considered the
late stage of this disease affecting more than 5 million people
worldwide including nearly 1 million in the United States4

(Bird et al., 1995; Wong et al., 2014) (Friedman et al., 2004;

1https://www.nei.nih.gov/learn-about-eye-health/resources-for-health-
educators/eye-health-data-and-statistics
2https://www.brightfocus.org/macular/article/age-related-macular-facts-figures

Rudnicka et al., 2015.Geographic atrophy is a frequent cause
of legal blindness (42% of patients with GA) (Klein et al.,
1995) and severe (≥ 6 lines) vision loss (Sunness et al., 1999).
Transplantation of human pluripotent stem cell (hPSC) derived-
RPE into the subretinal space is one experimental therapy (in
clinical trials now), which may address this condition (Schwartz
et al., 2012, 2015, 2016; McGill et al., 2017; Cuzzani, 2018)
and is aimed to support photoreceptors and prevent their
cell death. In wet (also neovascular or exudative) AMD the
abnormal growth of blood vessels (also known as choroidal
neovascularization, CNV) beneath the macula causes separation
between photoreceptors and RPE (Yeo et al., 2019). This is
the only blinding disease, which has a robust treatment via
suppressing neovasculogenesis with anti-Vascular Endothelial
Growth Factor (VEGF) therapies (Meadows and Hurwitz, 2012)
such as antibodies (or antibody fragments) to (bevacizumab,
ranibizumab) (Rosenfeld et al., 2006; Raftery et al., 2007),
VEGF-A soluble decoy (aflibercept) (Sarwar et al., 2016) or/and
small molecules suppressing the tyrosine kinases induced by
VEGF binding (lapatinib, sunitinib, pazopanib and a few other
compounds). Glaucoma is another leading cause of irreversible
vision loss. From 2011 to 2050, the number of people in the
U.S. with glaucoma is expected to increase from 2.71 million
in year 2011 to 3.72 million in year 2020 to 7.32 million by
year 2050 (Vajaranant et al., 2012). Glaucoma affects retinal
ganglion cells, carrying the visual signals from retina to brain,
It is caused (mostly) by elevated intraocular pressure followed
by loss of retinal ganglion cells and their axons (Weinreb
et al., 2014) and impacts long-distance connectivity between the
retina and the visual centers in the brain (discussed earlier).
In retinitis pigmentosa, or rod-cone dystrophy (a group of
inherited, mostly recessive diseases characterized by the onset of
night blindness and gradual loss of peripheral vision, prevalence
∼1:3500 to 1:4,000) loss of rod photoreceptor cells triggers the
late stage degeneration of cone photoreceptors even though
specific mutation affects only rods but no cones (Kaplan et al.,
2017). Once the photoreceptors die it causes remodeling of inner
retinal neurons and followed by cell death of inner retinal cells
(Singh et al., 2014). In addition, cone-rod dystrophies (inherited
retinal dystrophies/maculopathies, prevalence 1:40,000) (Hamel,
2007) and Leber Congenital Amaurosis (very early-onset child
blindness, usually autosomal-recessive, prevalence 1-2:100,000,
source3,4) add to the number of devastating blinding diseases
affecting people and causing loss of life quality and partial loss
of independence.

At present, there is no effective treatment available for most
of these retinal disorders (except for wet AMD) despite most
of the studies done on animal (mostly rodent) models to find
new therapeutic options for retinal diseases. Rodent models can
mimic only certain aspect of human retinal pathophysiology.
They fail to reproduce the etiologic complexity of human RD
diseases, including and especially some critically important
characteristics of the primate retina like macula (Zeiss, 2010)
[rodents don’t have macula (Volland et al., 2015a); cats and

3https://rarediseases.org/rare-diseases/leber-congenital-amaurosis/
4https://ghr.nlm.nih.gov/condition/leber-congenital-amaurosis
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dogs have area centralis (Petersen-Jones, 1998; Mowat et al.,
2008)] or trichromacy important for visual acuity in patients
(Kostic and Arsenijevic, 2016), and do not always mimic the
retinal disease phenotype (Slijkerman et al., 2015). Nevertheless,
the neuroanatomical structure and connectivity of young retinal
organoids growing in a dish is very similar to the developing
human fetal retina, which is being explored as new way to study
early stages of human retinal development (Meyer et al., 2009).
However, all studies, where retinal organoids were cultured
for prolonged period of time (6 months or longer), note the
gradual changes in retinal organoids (specifically, gradual loss
of RGCs and thinning of INL) (Wahlin et al., 2017; DiStefano
et al., 2018; Brooks et al., 2019; Capowski et al., 2019; Nasonkin
et al., 2019), thus substantially reducing the ability to model
diseases and derive therapeutically meaningful results from
drug screening efforts. Human retinal tissue in a dish has a
real potential to be a great tool for drug screening, as well
as disease modeling and source of transplantable 3D retina
for RP and AMD after these critical shortcomings of retinal
organoid technology are addressed. Scientific retinal community
is keenly aware of the immense potential of human retinal
organoid technology and the urgency of addressing these critical
deficiencies in organoid technologies, preventing us to use it
to the fullest extent for basic and translational research and
regenerative medicine treatments. However, even now some
remarkable success has been achieved with modeling treatments
of some types of blindness (e.g., some ciliopathies) in retinal
organoids, highlighting precise disease mechanisms and new
potential therapies, which could be challenging to decipher
and discover in cultured cells and time-consuming in animals
(Schwarz et al., 2017).

In this review, we discuss the biology of retinal organoids
and similarities with human retinal development, translational
applications of retinal organoids in disease modeling (based
on today’s technology state), cell or tissue replacement and
discuss current major limitations of retinal organoid technology
and how to overcome it. We provide a brief summary for
each blinding disease (RP, AMD, glaucoma) to be aware of
the current limitations as well as opportunities of retinal
organoids as a tool for designing such models in a dish. We
also use this summary throughout the text to discuss the
key basic and translational research directions needed now
to improve the retinal organoid models and technologies to
enable faithful recapitulation of retinal biology, homeostasis and
diseases in a dish for developing new drugs, delineating disease
mechanisms and designing 3-Dimensional transplantable retina
for replacement therapies.

We pay special attention to highlighting similarities and
differences between human retinal organoids and human fetal
and mature retinal tissue, and the impact of these similarities
and differences on our ability to interrogate disease mechanisms,
screen for drugs and use organoids for cell and tissue
replacement therapies. Last, we present our opinion on how the
technology will be developing in the next 3–7 years to focus on
addressing the current limitations and urgent needs of biotech
sector for developing therapies (drugs, biologics) using retinal
organoids as a tool.

RETINAL ORGANOIDS FOR BASIC
BIOLOGY AND TRANSLATIONAL
STUDIES

Modeling Early Retinal Development
Early Cell Fate Decisions and Studying the Role of
Morphogens
Ongoing retinogenesis in 3D retinal tissue derived from
hPSCs (ES and iPS) recapitulate early stages of human retinal
development (Meyer et al., 2009; Volkner et al., 2016) (Figure 1).
A number of very informative and well-designed retinal cell
fate studies in young organoids were done by Gamm lab, which
uncovered the instructive signaling of WNT and FGFs and
decisions between NR and RPE fate (Capowski et al., 2016;
Gamm et al., 2019). Developing retinal organoids (even without
RPE) seem to be a good model for dissecting such major cell
fate decisions, cell cycle, number of progenitors of each cell type
and their initial organization in developing mammalian retina.
Nevertheless, one should be mindful of some differences such
as lack of RPE and lens and changes in the extrinsic factors
and morphogen gradients caused by these differences (Dakubo
et al., 2008; Smith et al., 2018). Though these signaling cues
have some major consequences for translational research (e.g.,
BMP/TGFb signaling from ocular surface ectoderm through
Smad4, also modulated HH signaling (Li et al., 2016), these are
very early developmental processes (NR vs RPE), typically related
to microphthalmia (Bharti et al., 2006; Manuel et al., 2008; Bharti
et al., 2012) and marginally related to RD diseases.

Retinal Ganglion Cell Development
Retinal ganglion cell development takes place early in
retinogenesis (Marquardt and Gruss, 2002), and young retinal
organoids (∼6–15 weeks) derived by various methods carry
RGCs (Singh et al., 2015), which are typically detected with
antibodies to BRN3A, BRN3B, ISL-1, sometimes SNCG, HuC/D,
neuronal-specific class III ß-Tubulin (TUJ-1 antibody) and/or
Thy-1 (Barnstable and Drager, 1984; Huang et al., 2006).
A number of labs pursuing RGC development successfully
study RGC development, early stages of axonogenesis and axon
guidance in retinal organoids (Fligor et al., 2018). In the absence
of their natural target (visual centers in the brain (Cruz-Martin
et al., 2014; Dhande and Huberman, 2014; Ray and Kay, 2015)
RGC axons may even traverse through the retinal tissue (Singh
et al., 2015) but eventually degenerate, together with RGC cell
bodies (Wahlin et al., 2017; Capowski et al., 2019; Nasonkin
et al., 2019). This is because RGCs need connectivity with the
brain to receive flow of neurotrophins; RGC axotomy models
and cases of anencephalic brain (both severing this vital to RGC
connection) indicate rapid degeneration of RGCs in human fetal
retina (Mo et al., 2002; Nakazawa et al., 2002; van Adel et al.,
2005; Hendrickson et al., 2006). With the conceptualization and
development of assembloid technologies co-culturing of retinal
and brain organoids became feasible (Gopalakrishnan, 2019;
Pacitti et al., 2019). This extends the developmental window for
RGC studies in retinal organoid model which can now include
studies interrogating mechanisms guiding RGC projections to
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FIGURE 1 | Comparing retinogenesis between human pluripotent stem cell derived retinal organoid growing in a dish and in human fetal retina. Both retinal
organoids and fetal retina develop neural retina (NR), but only fetal retina (not organoids) develop continuous layer of RPE surrounding NR (Stage1). Both fetal retina
and retinal organoids undergo lamination (Stage 2), and develop outer and inner neuroblast layers (ONBL, where progenitors, including photoreceptor progenitor and
young photoreceptors localize, and INBL, where RGCs and 2nd order neurons migrate). However, as tissue maturation proceeds in retinal organoids, the RGCs
gradually die (no connectivity) and then a layer of 2nd order neurons becomes progressively thinner. And, while cilia and inner segments in photoreceptors develop,
outer segments never elongate full-length, compared to that in mature mammalian retina (Stage 3). In fetal retina (2nd

−>3rd trimester) photoreceptor layer
undergoes maturation, cilia and inner segments are formed and elongation of outer segments takes place (which continues after birth). Organoids at stage3 preserve
the features of immature human retina (IPL-ONL-IS-cc region, shown). This diagram is designed based on the following data: https://embryology.med.unsw.edu.au/
embryology/index.php/Vision_-_Retina_Development, https://embryology.med.unsw.edu.au/embryology/index.php/Carnegie_Stage_Comparison, https://
embryology.med.unsw.edu.au/embryology/index.php/Carnegie_stage_table (O’Brien et al., 2004; Hendrickson et al., 2008; Jukic et al., 2013; Hendrickson, 2016;
Hoshino et al., 2017).

brain (Kurimoto et al., 2010; de Lima et al., 2012; Erskine and
Herrera, 2014; Crair and Mason, 2016; Benowitz et al., 2017;
Laha et al., 2017).

INL & Outer Plexiform Synaptic Layer
Several long-term in vitro and in vivo studies investigated
connectivity of second order neurons (rod bipolar neurons,
typically stained with anti-PKCα antibody) and photoreceptors
in human and mouse retinal organoids (Wahlin et al.,
2017; Capowski et al., 2019) and in vivo, between graft or
host-specific bipolar neurons and graft-specific photoreceptors
(Assawachananont et al., 2014; Gonzalez-Cordero et al., 2017;
Tu et al., 2018). The formation of CTBP2[+] horseshoe-
like ribbon synapses (Singh et al., 2014; Singh et al., 2017)
was documented by both IHC and electron microscopy in
organoids cultured for 5–6 months or longer by several teams.
In the in vivo studies, where the INL-specific organoid cells
(including the bipolar neurons) continue to be lost, graft-specific
photoreceptors were found in contact with (in some cases) graft-
specific and (in some other cases) host-specific bipolar neurons
(Assawachananont et al., 2014; Shirai et al., 2016; Tu et al.,
2018). Collectively, these studies demonstrate that connectivity
at the OPL level in organoids and in grafts is feasible, which
lays foundation for tissue replacement work using hESC-3D

retinal tissue from organoids as source of transplantable tissue.
In anticipation of improved 3D human retinal models with
functional RPE-photoreceptor niche and photoreceptor-second
order neuron connectivity, it becomes important to focus
on defining cone bipolar-photoreceptor connectivity and cone
bipolar cell markers. The classical cone bipolar marker Recoverin
(RCVRN) (Milam et al., 1993; Euler and Wassle, 1995) is also
strongly expressed in CRX[+] photoreceptor progenitors (Singh
et al., 2015) and α-RCVRN staining is the method of choice
for defining photoreceptor layer in retinal organoids. Because of
the major emphasis of translational retinal work on AMD (in
addition to glaucoma) for building models of human macula
and designing transplantable retina for patients with advanced
AMD, delineating new reliable markers of cone bipolar cells for
demonstrating cone bipolar-cone photoreceptor connectivity in
organoids and in subretinal grafts may be critical for moving such
modeling and transplantation work forward. Some excellent new
markers were recently described (Shekhar et al., 2016).

Photoreceptors (Rod and Cone)
Photoreceptors (rod and cone) in retinal organoids are the
key cell types in retinal organoids, which seem to remain
organized in a uniform layer in long-term organoid cultures
(Wahlin et al., 2017; Capowski et al., 2019; Nasonkin et al.,
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2019), and (in addition to RGCs) represent the primary drug-
screening target for Big Pharma companies. Pioneering work
has been done in human fetal retina by researchers like Drs.
Anita Hendrickson, Tom Reh, Anand Swaroop and others
to elucidated human retinal development with emphasis on
photoreceptors (Abramov et al., 1982; O’Brien et al., 2004;
Hendrickson et al., 2008; Hendrickson, 2016; Chao et al.,
2017). A layer of photoreceptors with NRL[+] rods (Swaroop
et al., 1992), OPN1SW[+] (S-cones) and TRß2[+] (Ng et al.,
2001) M-cones robustly forms in organoids derived by multiple
techniques, which highlights retinal organoids as a good model
of human photoreceptor genesis and maturation in a 3D tissue
in a dish. This enables to dissect the important of multiple small
molecules, morphogens and canonical signaling pathways such
as basic fibroblast growth factor (bFGF), docosahexaenoic acid,
bone morphogenic protein (BMP), taurine, Retinoic Acid (RA),
WNT (Wingless) (Murali et al., 2005; Pandit et al., 2015; Zhong
et al., 2014; Capowski et al., 2016, 2019; Brooks et al., 2019; Gamm
et al., 2019) important for photoreceptor development. Methods
outlining mostly cone photoreceptor development from CRX[+]
photoreceptor progenitors will be instrumental for modeling
human macula in a dish as well as for designing transplantable
3D retinal grafts for treating patients with advanced AMD
(Zhou et al., 2015).

SIGNALING PATHWAYS INVOLVED IN
HUMAN RETINAL DEVELOPMENT,
DERIVATION OF RETINAL ORGANOIDS
AND POSTMITOTIC MAINTENANCE OF
BOTH TISSUES

Human retinal organoids recapitulate stages of human
embryonic and early fetal retinal development (Meyer et al.,
2009; Volkner et al., 2016; Gonzalez-Cordero et al., 2017)
(Figure 1) and use the same pathways, active in developing
human embryonic and early fetal retina for retinogenesis
(Hoshino et al., 2017). The embryonic patterning and cell fate
decisions in embryogenesis in general are regulated by very
conserved developmental cues throughout the animal phyla
(Perrimon et al., 2012). Human retinal development is not an
exception and is shaped by the same cues and pathways (Heavner
and Pevny, 2012). Some of these pathways also participate
in maintaining retinal homeostasis. The importance of the
complex interplay of these pathways in formation and further
maturation of 3D human retinal tissue in a dish (organoids)
only recently became a subject of thorough investigation
(Hoshino et al., 2017). Understanding of this complexity will
help with developing better retinal tissue-in-a-dish models
with all retinal layers and functional RPE/photoreceptor niche
for biopharmaceutical companies for drug screening (; Aasen
and Vergara, 2020), and better retinal transplants for curing
advanced retinal degenerative diseases (Assawachananont et al.,
2014; Mandai et al., 2017a; McLelland et al., 2018; Shirai et al.,
2016; Singh et al., 2019). Retina develops from the anterior
portion of the neural tube through evagination of the optic

vesicles from diencephalon, followed by invagination of those
vesicles to form the optic cups carrying RPE and neural retina
(NR) layers (consisting of the multipotential retinal progenitors)
(collectively, “retina”) (Adler and Canto-Soler, 2007; Bharti
et al., 2006; Fuhrmann et al., 2014). Invagination of each optic
cup also leads to the formation of the optic stalk (the precursor
of the optic nerve), which then becomes the optic nerve after
the invagination of the stalk and closure of the choroid fissure
(Remington, 2012; Forrester et al., 2016). MITF[+] RPE layer
and CHX10 (same as VSX2[+]) NR layer carrying multipotential
retinal progenitorsgive rise to the retinaand are collectively
called “retina” (though some call NR “retina”, in contrast to
RPE). Following their formation, RPE consistently remains as a
single, layer, accumulates pigmentation and undergoes gradual
maturation (Bharti et al., 2006, 2012), while NR undergoes a
fascinating process of retinogenesis, where multipotential retinal
progenitors sequentially acquire cell fate and form different
types of retinal neurons and Muller glia (Livesey and Cepko,
2001; Marquardt and Gruss, 2002; Cayouette et al., 2006;
Matsushima et al., 2011; Bassett and Wallace, 2012). Rod and
cone photoreceptor cell fate acquisition and development is part
of this retinogenesis process, and leads to the formation of the
therapeutically valuable light-sensing outer nuclear layer (ONL)
consisting of rods and cones (Swaroop et al., 2010; Ng et al.,
2011). The default pathway in rod versus cone photoreceptor
cell fate acquisition is cone PRs (specifically short-wave cones,
S-cones) (Swaroop et al., 2010; Hunt and Peichl, 2014; Zhou
et al., 2015). This pathway is promoted by blocking Bone
Morphogenic Protein signaling (BMP), also WNT and TGFß
signaling in culture (Zhou et al., 2015), and mutations of NRL
or NR2E3 genes in vivo (enhanced S-cone syndrome) (Mears
et al., 2001; Sharon et al., 2003; Cheng et al., 2006; Littink et al.,
2018). The expression of transcription factor Neural Leucine
Zipper (NRL) at about week 10.5 of human fetal development
defines rod photoreceptor cell fate (Swaroop et al., 1992; Mears
et al., 2001; Hendrickson et al., 2008) and NR2E3 (activated by
NRL, at about week 11.7 in human fetal retinal development)
(O’Brien et al., 2004; Cheng et al., 2006) further strengthens rod
PR identity. Both of these transcription factors are expressed
prominently in rod PRs in retinal organoids. Waves of signaling
mediated by WNT, FGF, Hedgehog, BMP/TGFb NOTCH, Retinoic
acid (RA) and IGF-1 pathways through retina shape retinal
development from earlier stages toward the completion of
retinogenesis (Yaron et al., 2006; Liu et al., 2006; Das et al., 2008;
Fuhrmann, 2008; Fuhrmann, 2010; Fujimura, 2016; Mills and
Goldman, 2017). Signaling via diffusible ligands is also present
in postmitotic retina (Chen et al., 2015). These principles of
development neurobiology combined with pluripotent stem cell
technology are used for derivation of retinal organoids (good
summary was provided in Dr. Sally Temple’s review Zhao et al.,
2017). While some of these morphogen gradients seem to be
present in retinal organoids (e.g., WNT pathway, judged by
the presence of LGR5 and SFRP1 on the apical and basal side
(Figures 2, 3) some other key gradients may be completely or
partially absent due to lack of choroid, retinal vasculature and a
continuous layer of RPE around the organoids. Exploring these
signaling pathways in retinal organoids and comparing them to
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FIGURE 2 | Presence of LGR5 in retinal organoids. Immunostaining of human pluripotent stem cell derived retinal organoid with anti-LGR5 antibody.

signaling in developing and postmitotic mammalian retina will
improve the development of better 3D in vitro models of human
retina, which may be particularly critical for drug development.

WNT in Retina and Organoids
WNT is one of the most studied pathways in developing
mammalian retina (Liu et al., 2006; Fuhrmann, 2008; Liu et al.,
2010; Fujimura, 2016). Leucine rich repeat containing G protein-
coupled receptor 5 (LGR5), a member of the G protein-coupled,
7-transmembrane receptor (GPCR) superfamily, is a receptor
for R-spondins, and potentiates the canonical WNT signaling
(de Lau et al., 2014). LGR5 is highly expressed in developing
retinal organoids (300 fold) (Singh et al., 2015) and also present
in developing human fetal retina (Chen et al., 2015). Formation
of retinal organoids can be promoted by modulation of WNT
pathway (Takata et al., 2017; Luo et al., 2018). WNT signaling
remains important in postmitotic retina (Yao et al., 2016). WNT
and Notch pathways acting together are known to regulate stem
cell niches (birth, renewal and maintenance of multipotential
stem cells, in short, stemness (Androutsellis-Theotokis et al.,
2006; Clevers et al., 2014; Kessler et al., 2015) in tissues, including
in the organoids (Kessler et al., 2015). Modulating these pathways
in retinal organoids may be an interesting approach to study
retinal regeneration and stemness (Jiang et al., 2020) to replenish
cells lost in ageing, trauma or due to degenerative conditions.

Sonic Hedgehog (SHH)
Sonic Hedgehog (SHH) and members of the Hedgehog
(HH) family (Indian- and Desert Hedgehog, IHH and
DHH) are well studied in developing vertebrate retina
(Levine et al., 1997; Neumann and Nuesslein-Volhard, 2000;
Nguyen and Arnheiter, 2000; Vogel-Hopker et al., 2000; Zhang
and Yang, 2001a,b; Wang et al., 2002; Dakubo et al., 2003, 2008;
Spence et al., 2004; Locker et al., 2006; Yu et al., 2006), including

mammalian retina, more relevant to the biology of human retinal
organoids, and provide very important paracrine signaling
cues. There seem to be two major sources of HH signaling,
one coming from RGCs (Wang et al., 2002), and another from
choroid/RPE (from endothelial cells Dakubo et al., 2008, also
from RPE Nakayama et al., 1998; Perron et al., 2003) impacting
RPE (Zhang and Yang, 2001b; Burnett et al., 2017; May-Simera
et al., 2018) and likely photoreceptors (Levine et al., 1997).
HH signaling impacts retinal progenitor proliferation and cell
fate determination (Wang et al., 2002; Sakagami et al., 2009).
Cilia is needed for SHH signaling and is very important part of
both types of cells forming the subretinal niche (photoreceptors
Gilliam et al., 2012; Rachel et al., 2012a,b; Yildiz and Khanna,
2012; Wheway et al., 2014 and RPE May-Simera et al., 2018).
Problems with cilia development, structure and functions
result in ciliopathies, and many of them involve RD conditions
because of importance of primary cilia for visual transduction,
RPE-photoreceptor connectivity and outer segment function
(Chen H.Y. et al., 2019). RPE cilia length had a noticeable
change in Dnmt1 conditional mutants with short outer segment,
hypoplastic apical RPE and retinal degeneration (Nasonkin et al.,
2013). Pharmacological drugs were found, which promote apical
RPE maturation in hiPSC-RPE and promote cilia formation. In
relation to SHH, the integrity and shape of cilia impact SHH
signaling efficacy, dependent on cholesterol (derived from OS
membranes) (Myers et al., 2013; Bangs and Anderson, 2017;
Garcia et al., 2018; Kinnebrew et al., 2019; Kong et al., 2019). Cilia
is present in maturing hPSC-retinal organoids ∼5-6 month and
older (demonstrated by our lab (Nasonkin et al., 2019) and others
(Wahlin et al., 2017; Hallam et al., 2018; Capowski et al., 2019).
With cholesterol provided via FBS (Yang et al., 2014) (critically
needed for further growth of organoids) (Zhong et al., 2014) and
photoreceptor cilia present in organoids ∼5–6 month old and
older, SHH signaling is probably reconstituted in tissue culture.
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FIGURE 3 | Localization of SFRP1 in human fetal retina. Immunostaining of human fetal retina (wk10) with anti-SFRP1 and anti-BRN3B antibody shows SFRP1
presence in the apical side of ONBL and distal side of INBL. Anti BRN3B colocalized with SFRP1 in the INBL.

However, once the co-culture system between photoreceptor
sheet in retinal organoids and the RPE (or RPE/choroid) sheet
is created, this signaling will become closer to the one present in
mammalian subretinal niche.

FGF1 and 9
FGF1 and 9 are important for neural retina formation (less for
cell fate specification Cai et al., 2010 except for RGCs Chen
et al., 2013) and then for photoreceptor survival and maintenance
(Fontaine et al., 1998; Qin et al., 2011; Hochmann et al., 2012),
and were used to enhance NR cell fate in mouse models and
in vitro in hPSC- > retinal differentiation systems (2D and
3D) at the expense of RPE (Pittack et al., 1997; Zhao et al.,
2001; Horsford et al., 2005; Cai et al., 2010; Hambright et al.,
2012; Gamm et al., 2019). Separately, some lower (reduced)
level of basic fibroblast growth factor (bFGF) signaling (Moore
et al., 2004) but not the complete abrogation of FGF signaling
(Meyer et al., 2009) is needed for initial eye field specification.
FGF morphogens are potentially a great tool to enrich for
neural retina cell fate in organoids and 2D monolayer cultures.
However, in view of the importance for developing better
in vitro retinal models with RPE and NR growing together
for studying and treating RD diseases, it seems that keeping
the developmentally relevant balance of these factors, rather
than completely abrogating RPE cell fate in developing retinal
organoids, may be the right approach for developing better
3D retinal models. Nevertheless, investigating neuroprotective
abilities of FGFs for promoting photoreceptor survival (Fontaine
et al., 1998; Qin et al., 2011; Hochmann et al., 2012) seems a
doable and therapeutically relevant approach in 6-12 - month old
organoids, where the predominant surviving cell type is rod and
cone photoreceptors.

BMP and TGFβ Signaling
Contribution of BMP signaling is important in retinal
development for determination of NR identity (Murali et al.,
2005; Pandit et al., 2015) and originates from developing
lens (Pandit et al., 2015), ocular surface ectoderm (Li et al.,

2016) as well as retinal neurons (Close et al., 2005), RPE
and vasculature (summarized in Ma et al., 2019). Activin A
signaling through SMAD2/3 was found to increase number of
photoreceptor precursors during retinal differentiation in 2D
adherent monolayer (Lu et al., 2017). BMP/TGFb (and SHH)
pathways modulation were used for derivation of organoids
from human embryonic stem cells (hESCs) (Hallam et al., 2018;
Kuwahara et al., 2019). Constitutive TGFβ signaling is needed
in postmitotic retina (Ma et al., 2019). TGFβ (b1, b2, b3) are
expressed by multiple developing and postmitotic retinal cell
types including neurons, vasculature, RPE and microglia (Lutty
et al., 1991; Lutty et al., 1993; Siegert et al., 2012; Close et al.,
2005; Ma et al., 2019). Excessive TGFβ signaling causes epithelial
to mesenchymal transition (EMT) in RPE and proliferative
vitreoretinopathy (PVR) and fibrosis, while Cre-mediated
deletion of TGFβ in the whole eye and in vascular endothelium
(but not RPE) caused choroidal neovascularization (CNV)
(Schlecht et al., 2017). Both EMT- > PVR and CNV cause
secondary changes in retina causing photoreceptor degeneration.
These signaling are very relevant and important for developing
vision restoration therapies (Kobayashi et al., 2019). However,
in the absence of vasculature and subretinal niche in organoids
we are so far limited in the ability to study them in the 3D
retinal organoid model. A major source of BMPs and TGFs in
retinal organoid culture is clearly delivered exogenously, with
addition of 5–10% fetal bovine serum (FBS), and adding FBS
is critical for maturation and growth (but not formation) of
retinal organoids (Zhong et al., 2014). Modulating BMP-4 level
in developing retinal organoids may help generate NR with RPE
at the margin (ciliary margin-like zone, CMZ) (Kuwahara et al.,
2015), which is a step in the right direction toward generating
physiologically and therapeutically relevant 3D NR-RPE models
(the subretinal niche).

NOTCH pathway is frequently mentioned when discussing
retinal progenitor cell (RPC) proliferation/maintenance and
specification, asymmetric cell division via Numb (where one
RPC daughter acquires cell fate while another proceeds with
symmetric cell division) (Shen et al., 2002; Ha et al., 2017)
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as well as regenerative cues in retina supporting retinal tissue
regeneration (Mills and Goldman, 2017). Notch signaling in
retina (which involves 4 receptors) works via paracrine ligands
(Ha et al., 2017), with downstream signaling cascade involving
RBP-J transcription factor (Riesenberg et al., 2009; Zheng et al.,
2009) and Hes1/Hes5 (Yaron et al., 2006). Inactivation of RBP-
J and modulation of Notch pathway with inhibitors (DAPT
being the most well-known G-secretase/Notch pathway inhibitor)
impacts the formation of NR, retinal lamination and may impact
PR yield (Tomita et al., 1996; Yaron et al., 2006; Zheng et al.,
2009), as well as determination of other cell types (Furukawa
et al., 2000) depending on timing of Notch pathway inactivation
during retinogenesis. Retinal cell types are born sequentially
during retinogenesis (Livesey and Cepko, 2001; Marquardt and
Gruss, 2002). Notch pathway promotes cell cycle progression
in multipotential retinal progenitors (Yaron et al., 2006), while
Notch suppression causes premature exit from a cell cycle,
causing premature birth of later-developing cell types (Tomita
et al., 1996). Therefore, it is clear that when Notch pathway
is blocked earlier in retinal development (when e.g., cone PRs
are developing), such modulation may increase cone PR yield
(Yaron et al., 2006). This knowledge has been used productively
for modulating the number of different cell types in human and
mouse retinal organoids (Volkner et al., 2016). Because of the
involvement of Notch1 in regeneration and major differences
in species in the ability to regenerate retinal tissue we focused
this paragraph mostly on reports outlining the role of Notch
pathway in mammalian retina. Critically to retinal organoids
(which usually do not have a sheet of RPE cells around PRs
(Zhong et al., 2014). Notch signaling is active in RPE as well
(providing signaling cues to nearby RPCs (Ha et al., 2017; Liu
et al., 2013). Ablation of RPE in mouse development severely
impacts retinal layer organization (lamination) (Raymond and
Jackson, 1995). Likewise, lamination defects occur in two RBP-
J -knockout mouse models (Riesenberg et al., 2009; Zheng et al.,
2009) (summarized in Zheng et al., 2010), potentially pointing
to the need of active Notch signaling (via RPE or diffusible
Notch ligands) for organoid growth and contributing to retinal
lamination in organoids. It is likely that serum provides some
level of Notch ligands as it is needed for organoid growth (Zhong
et al., 2014) and RPE-free lamination in retinal organoids has
been reported (Capowski et al., 2019).

Insulin-Like Growth Factor 1 (IGF-1)
Insulin-like growth factor 1 (IGF-1)is one of the pathways,
which was instrumental for derivation of retinal progenitors
from hESCs in 2D adherent monolayers (Lamba et al.,
2006; Lamba et al., 2010; Hambright et al., 2012) and 3D
retinal organoids (Mellough et al., 2015; Singh et al., 2015).
IGF-1 is a very important extrinsic factor (morphogen) in
developing retina and was shown to promote proliferation
multipotential retinal progenitors (RPCs) via PI3K/Akt and
MAPK/Erk pathways (Wang et al., 2018) and rod photoreceptor
precursors in the fish (teleost) retina (Mack and Fernald,
1993). IGF-1 signaling in general regulates tissue growth and
development in embryogenesis by supporting cell survival and
cell cycle progression (Schlueter et al., 2007). The transition

of rod photoreceptor precursors to mature post-mitotic rod
photoreceptors is also promoted by IGF-1 (Yi et al., 2005;
Pinzon-Guzman et al., 2011) and is regulated (at least partially)
by phosphatidylinositide concentration and 3-phosphoinositide-
dependent protein kinase-1 (PDPK-1) (Xing et al., 2018). IGF-
1 receptor immunoreactivity is present in the ONBL (where
photoreceptor progenitors reside in developing retina and retinal
organoids) and in ONL of postmitotic mammalian retina
(Greenlee et al., 2006). Another report mapped IGF-1 receptor
(IGF-1R) as well as insulin receptor, IR, predominantly to
photoreceptors and blood vessels, with very low level in other
retinal cell types (Lofqvist et al., 2009). IGF-1 is also a component
of FBS (Singh and Armstrong, 1997), and, given the importance
of IGF-1 for photoreceptor maintenance [above and (Arroba
et al., 2009)] as well as RPE maintenance (Zheng et al., 2018) and
the need of growing organoids for serum (Zhong et al., 2014),
IGF-1 will likely be included in serum-free (“defined media”)
culturing methods of long-term organoid/RPE culture in the
next few years. In addition, data from Igf-1−/− mutant mice (a
model of human neurosensory syndromic deafness/blindness)
indicated the gradual loss of ERGs, retinal morphology and
significant loss of connectivity between photoreceptors and
their synaptic partners (loss of bassoon and synaptophysin)
while only small changes in the INL (Rodriguez-de la Rosa
et al., 2012), highlighting the importance of IHG-1 pathway
for photoreceptors and the need for IGF-1 in long-term
photoreceptor-RPE cultures.

Retinoic Acid (RA)
Retinoic Acid (RA) is one of the best studied signaling pathways,
active and important in many tissues during embryonic
patterning and organogenesis (Rhinn and Dolle, 2012). Retinoic
acid signaling is important at several stages of mammalian eye
development, including promoting retinogenesis (Osakada et al.,
2008, 2009; Cvekl and Wang, 2009; Lamba et al., 2010). Vitamin
A and RA are indispensable for eye development and participate
in several stages of eye and retina development (Matt et al.,
2005; Cvekl and Wang, 2009). Early in development, Raldh2
expression in the optic vesicle enables generation of RA signal
needed for invagination of retina to form an optic cup (Mic et al.,
2004). Retinoic Acid, a biologically active Vitamin A (retinol)
derivative, serves as a ligand for nuclear receptors regulating
gene expression (Duester, 2000; Duester, 2009) and regulates
the expression of the key rod photoreceptor cell fate gene NRL
(Khanna et al., 2006). However, the continuing presence of RA
negatively impacts photoreceptor maturation (Nakano et al.,
2012). Exposure to exogenous RA increased the number of rod
and green cone photoreceptors and decreased the number of
blue and UV cone opsin cells in zebrafish (Prabhudesai et al.,
2005), suggesting RA as an instrumental factor in retinal organoid
culture contributing to rod-cone photoreceptor development.
The enzyme involved in RA synthesis (RALDH2) has been
localized to RPE. Mimicking RA signaling in young retinal
organoids for promoting photoreceptor development is now part
of many protocols and can be done with addition of RA to
differentiation medium (Zhong et al., 2014; Wahlin et al., 2017;
Capowski et al., 2019). Retinol/RA was localized to photoreceptor
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outer segments in long-term retinal organoid cultures (Capowski
et al., 2019) and light-responsive (mature) retinal organoids
have been generated (Hallam et al., 2018). However, restoring
the chemistry of the retinoid (visual) cycle (Kiser et al., 2014)
and recycling of all-trans-retinol back to 11-cis retinal by RPE
(canonical pathway for chromophore recycling) (Saari, 2000;
Wang et al., 2009) for natural reintroduction into photoreceptor
outer segments seems unattainable until the establishment of
long-term co-culture between sheets of photoreceptors in retinal
organoids and RPE and rebuilding of functional photoreceptor-
RPE subretinal niche.

Pigment Epithelium Derived Factor
(PEDF, or SERPINF1)
Pigment epithelium derived factor (PEDF, or SERPINF1)
signaling is an important paracrine and autocrine pathway
in retina (Tombran-Tink et al., 1991; Malchiodi-Albedi et al.,
1998; Tombran-Tink and Barnstable, 2003) for maintaining
PR-RPE niche (Volpert et al., 2009; Akiyama et al., 2012),
photoreceptor maturation (Jablonski et al., 2000; Akhtar et al.,
2019) and survival (Comitato et al., 2018; Chen Y. et al.,
2019). PEDF expression is a hallmark of RPE maturation
and polarization (Strunnikova et al., 2010; Maruotti et al.,
2015; McGill et al., 2017). High level of PEDF expression is
produced by RPE differentiated from human pluripotent stem
cells (Kanemura et al., 2013; Maruotti et al., 2015; Geng et al.,
2017; McGill et al., 2017).

Pigment epithelium derived factor has a pleiotropic impact
on many pathways, is considered a neuroprotective factor
in retina and among other functions, may potentially have
immunomodulatory function (Dawson et al., 1999; Gregerson
et al., 2006; Ho et al., 2011; Chuderland et al., 2013; Nelius
et al., 2013; Idelson et al., 2018). In view of increasing
interest in co-culturing systems between photoreceptor sheets in
retinal organoids and RPE sheets for recreating the subretinal
niche, better 3D in vitro long-term retinal disease modeling
as well as designing transplantable retinal patches, PEDF may
become one of the important factors for establishing such
cultures and maintaining homeostasis in vitro between the
photoreceptors and RPE.

3D RETINAL TISSUE MODELS FOR
ELUCIDATING DISEASE MECHANISMS &
DRUG DISCOVERY

Though developmental biology questions were driving the
discovery of retinal organoids, most work quickly shifted toward
translational applications because of the unique ability to use
organoids as a tool to design human retinal diseases in a
dish (Figure 4). 3D-retinal organoids grown in a dish are
developmentally, anatomically and physiologically similar to
retinal tissue in vivo. Such ability has huge implication in disease
modeling with organoids (Lancaster and Huch, 2019) although
further improvements, particularly in formation of RPE and
photoreceptor interaction and scalability, are definitely needed

(Jin et al., 2011). Generation of human induced pluripotent stem
cells (hiPSCs) from patients with retinal disease and further
differentiating them to retinal organoid provide deep insight in
understanding retinal diseases.

A number of studies have recently used retinal organoid
for understanding retinal diseases (Jin et al., 2011), caused by
photoreceptor degeneration (RP, AMD). Because most RP diseases
are single-gene autosomal recessive, many RPs represent a very
attractive target for organoid technologies for modeling and
drug development.

Screening for small molecules ameliorating RD critically
depends on the quality of model (retina-in a dish). For
example, most RD diseases originate in the RPE-PR niche
(either in PRs or/and RPE) and not having RPE-PR interaction
in human retina-in-a-dish significantly impacts our ability to
model these diseases (and screening for drugs preventing these
RDs). Likewise, screening for drugs to ameliorate glaucoma
(number one blinding disease) is so far challenging because
RGCs degenerate in maturing retinal organoids (by ∼6 month
in culture) (Capowski et al., 2019) due to the absence of the
projection targets for RGCs (superior colliculus, lateral geniculate
nucleus). However, a number of diseases focused on diseases
originating at the level of photoreceptors can be studied and
modeled. As one example, retinitis pigmentosa-39 (RP39) is
caused by homozygous or compound mutations in USH2A
gene, which encodes protein Usherin, required for photoreceptor
(also hair cells in the cochlea) maintenance because of its
role in cilia formation and function (Liu et al., 2007). In
a study by Guo et al. the team reprogrammed cells from
RP39 patient carrying (c.8559-2A > G/c.9127_9129delTCC)
to iPSCs, generated mature retinal organoids from iPSC
line with USH2A mutation and found significant defects in
photoreceptor morphology with defective retinal progenitor cell
development and retinal layer formation compared to control
(Guo et al., 2019). Transcription profiling done on mutant retinal
organoid revealed increase in apoptotic genes and abnormal
gene expression compared to control. In another study iPSCs
lines generated from three RPGR mutant patients [RP3 (Rozet
et al., 2002), also RP15, cone-rod degeneration, X-linked (Mears
et al., 2000)] were used for differentiation to retinal organoids
(Deng et al., 2018). The team observed defects in photoreceptor
morphology and localization, changes in transcriptional profiling
and electrophysiological activity, in line with knowledge about
the disease mechanisms. Interestingly, shortened cilium was
found in patient iPSCs and RPE and photoreceptors in retinal
organoids, derived from those iPSCs. Similarly, Megaw et al.
(2017) showed that iPSCs-derived photoreceptors from RPGR
mutation patients exhibited increased actin polymerization
compared to the control, which was due to a disruption of cell
signaling pathways regulating actin turnover via disruption of
RPGR-Gelsolin interaction, which impacts Gelsolin activation
(Megaw et al., 2017). Therefore, this study uncovered a
disease mechanisms (loss of RPGR-mediated Gelsolin activation)
using patient’s iPSC- derived retinal organoids as a tool,
cheaper and faster than an animal model, and therefore
identified a druggable pathway, amenable for regulation with
small molecules.
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FIGURE 4 | Summary of generating three-dimensional retinal tissue from human pluripotent stem cells and its application in disease modeling, drug screening and
cell therapy or tissue replacement.

Study by Schwarz et al. (2017) identified interacting partners
(Kif7 and Kif17) of the RP2 protein [GTP-ase activating protein
(Veltel et al., 2008)] and observed reduced kinesin Kif7 (a
conserved regulator of HH signaling) and Kif17 staining at
photoreceptor cilia tips in iPSC-derived 3D optic cups from a
patient with the X-linked RP2 nonsense mutation c.519C > T (p.
R120X) compared to control mutation-free organoids (Schwarz
et al., 2017). The team was able to correct the PR2 defect by
using translational read-through drugs, collectively elucidating
the disease mechanism/etiology and highlighting the potential
therapeutic approach to treat the disease. Kif7 (together with
another ciliary protein Kif17) is reported to play a role in
stabilizing cilia tips yet prior to this study multiple other
studies done in various models including zebrafish, C. elegans
and mice failed to elucidate the precise mechanism of this
blinding ciliopathy disorder [reviewed in Schwarz et al. (2017)].
Interestingly, the study from another group done in mice
indicated that loss of RP2 protein is associated with cone but
not rod photoreceptor defects and leads to abnormal extension
of cone outer segments (Li et al., 2015).

In yet another study focused on iPSCs disease modeling of
RP Masayo Takahashi’s team derived iPSCs from a patient with
a RHO mutation, derived retinal organoids and demonstrated
that photoreceptors in organoids recapitulate the disease
phenotype and display signs of endoplasmic reticulum stress
(Jin et al., 2012), typical feature in RHO models of RD
(Kroeger et al., 2014).

What RD Diseases Caused by PR
Degeneration Can and Cannot Be
Modeled so Far
From these examples it is evident that modeling of diseases
originating within PR cell bodies (e.g., ER) and cilia may be
modeled successfully and are not dependent/less dependent on
the presence of RPE. The connecting cilium of photoreceptors

is a very specialized structure providing stability for fragile
and very compartmentalized photoreceptor OSs as well as
enabling protein trafficking across the ISs between photoreceptor
cell body and OSs (Pearring et al., 2013). Perturbing such
protein traffic triggers photoreceptor cell death in many
neurosensory ciliopathies, which involve not only vision but
also hearing (Rachel et al., 2012a,b; Chen H.Y. et al.,
2019). Photoreceptor disk formation is initiated at the level
of cilia via specialized recently described mechanism of
peripherin-dependent suppression of ciliary ectosome release
(Salinas et al., 2017). The capture of photons and initiation
of phototransduction takes place in the outer segments,
which critically dependent on well-developed microvilli of
apical RPE around them (Finnemann and Chang, 2008).
RPE microvilli wrap around the tips of outer segments
though do not reach the base of photoreceptor cilium
(Marmor, 2013).

Interaction of photoreceptor OSs with microvilli of apical
RPE is critical for phototransduction, retina-RPE adhesion,
stability/homeostasis of photoreceptors and their OSs, and
long-term sustaining of vision (Bazan, 2007; Goldberg et al.,
2016; Kevany and Palczewski, 2010; Molday and Moritz, 2015;
Palczewski, 2014; Wang and Kefalov, 2011). RPE supports
photoreceptor function directly (via receptor-ligand mechanism)
and indirectly (by secreting interphotoreceptor matrix, recycling
11-cis retinal for phototransduction etc.) (Bonilha et al., 2006;
Finnemann and Chang, 2008; Sparrow et al., 2010). And, while
models of photoransduction defects and perturbed OS renewal
(all causing RD) (Lolley et al., 1994; Molday, 1998; Molday and
Moritz, 2015; Petersen-Jones et al., 2018) clearly cannot be built
in vitro until such 3D long-term co-culture is recreated in a
dish, cilia formation and function seems to be recapitulated well
enough in retinal organoids likely because it is not dependent
directly on microvilli (Figure. . ..) (Marmor, 2013). Therefore,
when considering which RD diseases (discussed below) can be
studied and modeled with retinal organoids, (some) ciliopathies
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may be an interesting and very important class of RD diseases
(Chen H.Y. et al., 2019), which may be modeled even in the
absence of RPE microvilli.

Retinal Ganglion Cells
Retinal ganglion cells are primarily affected in Glaucoma and
other optic neuropathies and glaucoma, a leading cause of
irreversible blindness in the United States and the world5. The
main technological limitation of modeling glaucoma with retinal
organoids is clearly the lack of the connecting partners of RGC
neurons (visual centers in the brain). Yet, with the development
of assembloids (retina-brain organoid co-cultures) technologies,
this limitation seems to be only temporary.

The optic nerve originates in the retina and is formed
by the axons of retinal ganglion cells (RGCs), the only type
of retinal neurons, which requires long-distance connectivity
(compared to other cell types, which use short distance
connectivity: photoreceptor: bipolar neurons and INL neurons:
RGCs). Modeling of RGC biology and disease in retinal
organoids is challenged the need of RGCs to establish long-
distance connectivity with visual centers in the brain to
survive. RGC viability critically depends on their connectivity to
visual cortex neurons, and such nerve fibers carry supportive
(trophic) factors between RGCs and visual cortex neurons
(Johnson et al., 2009). Damage to the optic nerve (e.g., the
axotomy) can cause interruption or destruction of nerve cell
connections and therefore, disrupt the flow of trophic factors
leading to the gradual but steady loss of vision caused and RGC
death. Restoration of trophic support (even partial) leads to
preservation of RGCs (Mo et al., 2002; Nakazawa et al., 2002;
van Adel et al., 2005). RGC layer will survive for months to years
post injury as long as there is preservation of axonal connectivity
between the RGC nerve fibers (forming the optic nerve) and
the neurons of the visual cortex (Chang et al., 2006; Chang,
2013). One may find the retina in advanced degeneration stage
(no photoreceptors and thin/degenerated INL) but with almost a
normal RGC layer and optic nerve (Chang et al., 2002). However,
it is feasible to study RGC development, organization and initial
steps of axonal outgrowth to uncover factors promoting neurite
elongation, guidance and target selection (Fligor et al., 2018). In
the absence of their natural targets (visual centers in the brain)
the RGC axons may grow randomly and even traverse the retina
(Singh et al., 2015). With newly developed concept of retina-
brain (“assembloids”) co-culturing methods (Gopalakrishnan,
2019; Pacitti et al., 2019) retinal organoids are becoming a very
promising model of optic nerve regeneration, reconnection of
retina to brain (Kurimoto et al., 2010; de Lima et al., 2012;
Erskine and Herrera, 2014; Crair and Mason, 2016; Benowitz
et al., 2017; Laha et al., 2017) and potentially glaucoma [when
the chambers for ocular pressure mimicking may be designed for
recreating intraocular pressure homeostasis (Acott et al., 2014;
Wu et al., 2019)] .

Collectively, these studies demonstrate that retinal organoids
can be successfully differentiated from hiPSCs lines derived from
retinal disease patients and used for delineating and modeling

5www.glaucoma.org

complex disease mechanisms, closely recapitulating the featured
of RD diseases in patients. This in turn makes them reliable
models for drug discovery.

Cell and Tissue Replacement Therapies for Retinal
Degenerative Diseases
Before the arrival of retinal organoid technology, the aborted
human fetal tissue (Radtke et al., 2008; Seiler and Aramant,
2012) and retinal progenitors derived from hPSCs (Banin et al.,
2006; Lamba et al., 2006; Hambright et al., 2012) (embryonic and
induced) were the two cell sources for transplantation. Human
fetal tissue is a gift, with strong ethical restrictions and limited
supply (NCSL, 2008; NIH, 2009; Finklea et al., 2015; Gerrelli
et al., 2015; Wadman, 2015). A very promising and pioneering
work on fetal retinal tissue transplantation has been done by
Drs. Seiler, Aramant and Radtke (Radtke et al., 2002, 2004,
2008; Seiler et al., 2010; Lin et al., 2018). As discussed above,
retinal organoids provide unprecedented way of approaching
basic and translational aspects of human retinal biology for
disease modeling, drug screening and also as source of retinal
cells and retinal tissue for subretinal transplantation aimed at
treating blindness.

Age related macular degeneration and RP/LCA are very good
and tempting diseases for evaluating retinal sheet replacement
strategies with retinal organoids (Assawachananont et al., 2014;
Shirai et al., 2016; Mandai et al., 2017a; McLelland et al., 2018; Tu
et al., 2018). Though both types of diseases are good targets for
such therapy, AMD is not a purely genetic disease and etiology
is not completely elucidated, while most RPs are recessive and
can be avoided in the near future with advanced genetic testing
and genetic counseling. There are at least 15 million people in the
US affected by AMD, with at least 2 million having an advanced
AMD stage. Macular patch approach, depending on organoid-
derived photoreceptor sheet-RPE sheet coculture, is an attractive
approach to bring vision to central retina. The size of human
maculae is about 5mm in diameter (Kolb, 2005), and biological
retinal patch ∼4 × 4 or 5 × 5 millimeters (mm) on a flat sheet
of biomaterial carrier seems like a doable strategy (Ramsden
et al., 2013; Mandai et al., 2017b; Kashani et al., 2018). It can
be grafted to the back of patient’s eye to bring a layer of healthy
and functional retinal tissue to replace patient’s own retina (too
damaged/degenerated after the injury). This tissue is expected to
reconnect (based on studies in mice) (Seiler et al., 2010, 2017)
to patient’s RGCs and function as a bioprosthetic device similar
to completely electronic chips currently approved for clinic (e.g.,
Argus II Stronks and Dagnelie, 2014). However, due to biological
nature and much higher pixel density (which is expected to bring
better vision Mathieson et al., 2012), where each individual light-
capturing neuron [photoreceptor] of the patch is equal to a pixel,
the biological retinal patch approach is expected to eventually
supersede the electronic (neuroprosthetic) chip approach and to
generate bioprosthetic retina capable of permanent integration
into patient’s globe. A large piece of tissue from a hESC-derived
retinal organoid carrying a layer of PRs and second order neurons
provides the light sensors that can synaptically transmit visual
information to patient’s RGCs, which persist even after all PRs
are degenerated (Lin and Peng, 2013). Unlike electroprosthetic
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chips, a “bioprosthetic” implant based on hESC-derived retinal
organoids enables long-lasting synaptic integration, and can be
adjusted to carry more cones than rods (Mears et al., 2001)
if the goal is to repair the macula. These technologies will be
subject of intense studies in the next few years and will likely
result in symbiosis of 2 approaches (biological and electronic) and
neurobioprosthetic retinal implants, utilizing biomaterials and of
course retinal organoids. Surgical technologies are already here to
deliver such 3D constructs into the eye (Kashani et al., 2018).

CRISPR-Cas-9 gene correction in retinal organoids has been
tested successfully in several human RD models (Deng et al.,
2018; Huang et al., 2019; Lane et al., 2020) as well as in vivo in
mice (with up to 45% efficiency of repair of dominant-negative
Rho mutation to wild type allele in photoreceptors) (Li et al.,
2018). CRISPR-Cas-9-based repair may be especially productive
and needed for RP diseases, which are caused by dominant-
negative mutations, and may potentially work together with
retinal tissue replacement (discussed above).

CURRENT LIMITATIONS OF RETINAL
ORGANOID TECHNOLOGY

The current key limitations of retinal organoids for modeling
and treating RD diseases are the lack of vasculature, the lack
of continuous layer of RPE around the organoids, gradual
degeneration of RGC and then INL in mature organoid cultures,
lack of the connecting partners for RGC axonal elongation
(critical for glaucoma) and critically, lack of RPE-photoreceptor
interaction (critical for dry AMD, RP and LCA). Here we discuss
ongoing and future work needed to address these limitations.

Absence of Vasculogenesis in Retinal
Organoids
The retina is one of the most energy-demanding tissues, with
high need for oxygen and nutrients (Warburg, 1928; Ng et al.,
2015; Sun and Smith, 2018). Adult retina generates energy
via aerobic glycolysis, in addition to oxidative phosphorylation,
to compensate for such high demand (Ng et al., 2015)
similar to cancer cells (Warburg et al., 1927; Vander Heiden
et al., 2009). The oxygen and nutrient supply are delivered
either from the choroid side (thus, RPE and photoreceptor
layers are avascular and depend on choriocapillaris), or
central retinal artery (which brings oxygen to RGC and
INL; these 2 layers carry vascular capillaries). These energy
demands are caused by energy-demanding phototransduction
and related neurotransmitter demand caused by constant
depolarization/repolarization (collectively: hyperactive neuronal
activity) (Wong-Riley, 2010). However, the initial steps in retinal
development lack vasculature (Hughes et al., 2000; McLeod
et al., 2006; Hasegawa et al., 2008) (about week14), while the
nutrition and oxygenation are delivered from choroid (beneath
the RPE) and hyaloid (above the developing retina) (Ye et al.,
2010) (Figure 5). This can be easily recreated in tissue culture
incubator in smaller-size organoids, where penetration of oxygen
and metabolites are not yet impacted much by organoid size.
This indicates that initial stages of retinogenesis in a dish

may be not impacted by lack of vasculature in organoids (i.e.,
neurovascular niche is not relevant at this stage, additionally
confirming young organoids as a good model of early retinal
development (Meyer et al., 2009)). Indeed, human fetal retina
(∼Carnegie stage 23, day 56–60 and slightly older retina week
11–13) highly resemble human retinal organoids (∼week 10–
12), as CHX10[+] NR with multipotential retinal progenitors
is gradually separating into outer and inner neuroblast layers
(ONBL and INBL). There are differences in the dynamics of
retinal vasculature development in humans versus mice, though it
is not clear if this is relevant to retinal organoid culture. However,
in humans vascular development is complete before birth, while
in mice and rats vascular development takes place postnatally
[discussed in Sun and Smith (2018)]. There is ongoing productive
work to recreate choroid-RPE border in a dish, which is a step in
the right direction toward building a complete “retina in a dish”
model (Jha and Bharti, 2015; Song and Bharti, 2016) from retinal
organoids, RPE sheets and biomaterials. In general, organoid
vascularization is a very active research niche at the moment
(Grebenyuk and Ranga, 2019) since the initial stages (organoid
formation) has been worked out. However, because of the
clear differences between the laminated and heavily vascularized
structure of human inner retina and spheroid “closed” and
avascular structure of retinal organoids, where the oxygen and
nutrition supply have difficulty penetrating into the INL/RGC
layers (closer to the organoid core (Capowski et al., 2019)), it
seems so far impossible to maintain the long-term dynamics of
development in retinal organoids, shaped as a sphere. As a result,
a number of labs, including ours, noted the almost exclusive
survival of photoreceptors in the ONL and gradual demise of INL
and RGCs in the organoid core (Wahlin et al., 2017; Capowski
et al., 2019), highlighting older retinal organoids (maintained
with current level of technology) as a questionable models for
a number of RD conditions. Hypoxia inducible factor 1 (HIF-
1) plays an important role in response of retina to oxygen level
(hypoxic conditions), specifically alpha (HIF-1α) subunit, which
becomes stable and translocates to the nucleus only in hypoxic
conditions (Hughes et al., 2010). There is constitutive HIF-1a
signaling reported in the normal rat and human retina suggesting
an important physiological role (Hughes et al., 2010). The level
of HIF-1a is high in both developing human fetal retina and
young and mature (6-month-old) retinal organoids (based on
RNA-Seq data sets from various publications). Because hypoxic
conditions and active HIF-1a were reportedly noted as important
for tissue regeneration (Nauta et al., 2014; Zhang et al., 2015;
Heber-Katz, 2017; Lee et al., 2019), retinal organoids may be
an interesting model for exploring retinal tissue (specifically
photoreceptor) regeneration by modulating HIF-1a pathway,
active in organoids.

LACK OF RPE PHOTORECEPTOR
INTERACTION IN RETINAL ORGANOIDS

Retinal organoids do not have the continuous layer of RPE
around the organoids (Figure 6). Achieving photoreceptor-RPE
interaction and designing a functional subretinal niche in retinal
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FIGURE 5 | Anatomy of human eye and retinal circuits. (A) Schematic drawing of a cross-section through human eye. Light enters the eye through the cornea,
passes through the pupil, lens and strikes the retina. Retina is the light-sensitive tissue lining the inner surface of the eye. Visual information from retina transmits to
the brain through optic nerve fiber. In the middle of the retina small depression is called the fovea and is responsible for high resolution vision. Region surrounding the
fovea is called as macula and are rich in only cones. Retinal pigment epithelium (RPE) is a pigmented layer and separates the choroidal blood supply from the
photoreceptors. Choroid is a vascular layer of the eye. The sclera is a tough white sheath around the outside of the eyeball. (B) Schematic diagram of normal retina
circuits. Mammalian retina consists of six major types of neuronal cells – rod (RC) and cone (CC) photoreceptors also horizontal (HC), bipolar (BC), amacrine (AC) and
retinal ganglion cell (RGC). The Muller cell are the glial cells that span across the retina and their somata. RPE provides metabolic and transport functions essential
for homeostasis of the neural retina. Bruch’s membrane (BM) is a highly specialized and multi-laminar structure in our retinas that forms the basis for mediating
interactions between the retinal pigment epithelium and blood flow from the choroid. Choroidal capillaries (CC) are the blood capillaries present in choroid that supply
oxygen and nourishment to the outer layer of the retina. Retinal blood vessels are present in OPL, IPL and RGC layers.

organoids is an urgent goal critically needed for designing
better models of human retina for drug development and for
tissue replacement. As photoreceptors develop their specialized
structure adapted for phototransduction, they elongate the
inner and outer segments (ISs and OSs) into microvilli,
elongating in sync on the apical RPE side (Figure 7).
This elongation process takes place rapidly in developing
mouse eye between approximately postnatal day 9.5 and 14.5
(Nasonkin et al., 2013), while in human developing retina
the process starts in the 3rd trimester and continues into
infancy (Hendrickson et al., 2008). This indicates that to
achieve outer segment elongation in human retinal organoid
cultures one needs to wait approximately 24 weeks after the
formation of retinal organoid, and 32 weeks or more to have
OSs reach the maximum length, assuming that the organoid
culture faithfully recapitulates human retinal development,
and RPE-organoid co-culture system is established. Genetic
ablation of RPE leads to complete loss of photoreceptor OSs
(Longbottom et al., 2009), while hypoplastic changes in the
apical RPE prevent OS elongation (Nasonkin et al., 2013),
collectively pointing to the instructive and important role
of RPE in outer segment elongation and maintenance. The
interdigitation of OSs of photoreceptors and microvilli of apical
RPE creates a stable NR-RPE border and a very specialized
subretinal niche (absent or mostly absent in retinal organoids),

where critical first steps of phototransduction take place in
photoreceptor outer segments (Molday, 1998; Kefalov, 2012;
Wang et al., 2009).

Photoreceptors have very compartmentalized structure
adapted for phototransduction, which is supported by RPE
microvilli (Molday and Moritz, 2015) (Figure 7). A number
of extracellular (“interphotoreceptor”) cell matrix (ECM)
proteins important and some critical for phototransduction
and photoreceptor OS maintenance reside in the ECM matrix
surrounding photoreceptor OSs and apical RPE microvilli
(Bonilha et al., 2006; Ebrahimi et al., 2014; Ishikawa et al., 2015;
Kelley et al., 2015; Salido and Ramamurthy, 2019). One of them is
Interphotoreceptor Retinol-Binding Protein (IRBP), which plays
a very important role of shuttling 11-cis retinal from RPE cells
and bleached pigment (all-trans retinol) from photoreceptors
to RPE (Figure 7) (Jin et al., 2009). IRBP message is abundant
in human retinal organoids (based on published RNA-Seq
data from various labs). A number of other interphotoreceptor
proteins were highlighted in recent publications, some focused
on studying these proteins specifically in retinal organoids
(Felemban et al., 2018; Salido and Ramamurthy, 2019). There
is a lot of interest now in these proteins among the teams,
trying to use retinal organoids for modeling of retinal diseases
and for cell replacement therapies (Dorgau et al., 2019; Guo
et al., 2019). This interest is guided by the expectations that
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FIGURE 6 | Localization of PMEL17 in the retinal organoid. Immunostaining the retinal organoid (day 70) with pigmented RPE marker PMEL17 show patches of
retinal organoids were pigmented. HNu stains the human nuclei. The insets in panel a are high magnification of area marked with asterisk (*). DAPI counter stains
nuclei.

these “missing factors” (interphotoreceptor matrix proteins
being some of them (Salido and Ramamurthy, 2019)) may help
to build connectivity between RPE and photoreceptors in the
organoids co-cultured with RPE in vitro to improve long-term
culture of organoids and recapitulate the biology and structure
of RPE-photoreceptor OS niche for disease modeling, drug
screening and cell/tissue replacement therapies (Felemban et al.,
2018; Achberger et al., 2019).

Lack of Photoreceptor Disk
Morphogenesis, Outer Segment
Shedding, Phagocytosis in Retinal
Organoids
These processes are fundamental to photoreceptor biology and
phototransduction, and are critically missing in organoids (so
far), thus reducing our ability to model many retinal degenerative
diseases in a dish. Disk shedding occurs on the distal side of
OSs facing the RPE, and these disks are phagocytosed by RPE,
while disk morphogenesis takes place at the base of the OSs
(next to the cilium) (Kolb, 1995; Molday and Moritz, 2015;
Volland et al., 2015b). Up to 10% of OS discs are renewed daily
(Young, 1967). The stack of rod photoreceptor OSs consists
of over 1000 compact disk structures in adult retina (Molday
and Moritz, 2015). However, the maximum number of disks we

and others observed in the retinal organoids cultured for 6–
8 months is limited to several disks, and these are not typically
organized tightly in a stack (Wahlin et al., 2017; Nasonkin et al.,
2019). However, some in vivo results reveal better organization
of OSs and longer OSs in the long-term subretinal grafts (Shirai
et al., 2016), all pointing toward the lumen of rosette-like
photoreceptor aggregates in subretinal space (Shirai et al., 2016;
Nasonkin et al., 2019). Naturally, there is no ongoing renewal
and phagocytosis processes in long term retinal cell and retinal
organoid cultures, but it has been expected for a long while that
with developing photoreceptor-RPE co-culture systems faithfully
recapitulating structure and function of the subretinal niche, OS
elongation and photoreceptor-RPE biology can be reestablished
(German et al., 2008; Di Lauro et al., 2016; DiStefano et al., 2018;
Akhtar et al., 2019; Brooks et al., 2019; Capowski et al., 2019).
As work on retinal repair rapidly progresses (Holmes, 2018a,b;
Makin, 2019), these technologies will likely be developed in the
next 3–5 years as a cheaper and robust model for drug screening
and discovery, as well as platform for biomanufacturing 3D
retinal tissue transplants to repair vision in advanced RD patients.

The Visual Cycle
The visual cycle in mammalian retina (and lack of visual
cycle in retinal organoids) Photoreceptors convert lights into
an electrical signal that pass through the second and third
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FIGURE 7 | Schematic diagram showing important functions of RPE and its interaction with rod and cone photoreceptor outer segments. The RPE microvili interacts
with photoreceptor OS and RPE cells are involved in visual cycle, phagocytosis of outer segments disc, nutrient uptake and paracrine secretion of PEDF, VEGF.

layer of retinal neurons and conveys the information to the
brain. Defect in RPE cell or photoreceptor cell impairs the
visual function and causes retinal blinding diseases (Age
related macular degeneration, Retinitis pigmentosa, Leber
congenital amaurosis). The biochemistry of visual cycle
has been worked out in seminal work of many laboratories
(Hsu and Molday, 1993; Pugh and Lamb, 1993; Baehr and
Palczewski, 2007; Luo et al., 2008; Arshavsky and Burns,
2012; Palczewski, 2014). Clearly, no similar Ca(2 +) or cGMP
gradients (which are present in the subretinal niche) are
present in developing retinal organoids though increased
level of Na+, K+ and Ca2+ electric current are present
in developing organoids (Singh et al., 2015). This could
be one of many factors causing gradual degeneration of
photoreceptors in long-term organoid cultures. It is expected
that recreation of photoreceptor-RPE niche in a dish would
make it possible to substantially increase the viability of
photoreceptors in long-term in vitro cultures (Di Lauro
et al., 2016; Achberger et al., 2019; Akhtar et al., 2019;
Chen Y. et al., 2019), thus enabling disease modeling and
drug screening of diseases, where the integrity of subretinal
niche and photoreceptor-RPE structural and functional
connectivity is of paramount importance for maintaining
visual function.

11-cis Retinal
11-cis retinal is critical for visual process in the OSs and OSs
do not have it if we don’t have RPE. In the RPE65 mutant dogs
a lack of 11-cis retinal supply to the photoreceptors leads to
very reduced function of both rods and cones (Gearhart et al.,
2008) similar to that observed in RPE65-mutant mice (Redmond
et al., 1998). RPE is critically important for maintaining
visual function (Strauss, 2005; Bharti et al., 2006, 2011) and
recycles retinal between photoreceptors and RPE (11-cis -all-
trans retinal). Though 11-cis retinal (or, more stable for of
it, 9-cis form of retinal (Fan et al., 2003)) can be provided
in trans to enhance visual responses (Gearhart et al., 2010),
this will not substitute for OS homeostasis, turnover and
recycling in photoreceptor sheets from organoids and RPE
sheets (as discussed above) unless the subretinal niche with
close OS-microvilli interaction will be recreated in a dish.
After all, though hESC- and hiPSC-derived RPE sheets can
indeed phagocytose photoreceptor OSs (Carr et al., 2009; Idelson
et al., 2009; Bharti et al., 2011) (one of many functions of
RPE in subretinal niche (Mazzoni et al., 2014)), OSs start
degenerate pretty quickly after retinal detachment unless physical
reattachment takes place quickly, within a day or less (Fisher
and Lewis, 2010). Retinal detachment negatively impacts the
biological process of disk production and disk shedding. Though
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OS-specific proteins are synthesized, they start to localize to
locations other than OSs: Opsin accumulates in the plasma
membrane, Peripherin/rds appears in cytoplasmic vesicles. It
was reported that proteins specific to cone OSs are more
sensitive to OS damage, and after only one week of cone opsin
mislocatization the expression of cone opsins is downregulated.
It was noted that within 24 to 72 h after retinal detachment
almost all rod and cone OSs display signs of OS degeneration:
they are shorter, acquire abnormal morphology with disks not
positioned as stacks (Fisher and Lewis, 2006; Wickham et al.,
2013). These features of OS morphology are very similar to
those observed by our lab and others in long-term cultures of
human pluripotent stem cells (hPSC)-retinal organoids (Wahlin
et al., 2017; Capowski et al., 2019; Nasonkin et al., 2019).
severely shortened but yet visible OSs can persist for up to
several weeks after retinal detachment (Fisher and Lewis, 2006;
Wickham et al., 2013).

Variability in Size, Shape, Photoreceptor
Density, Lamination
Variability in size, shape, photoreceptor density, lamination
determined by cell line-specific and protocol-specific differences
(both derivation and maintenance) were described and
documented (Capowski et al., 2019; Cowan et al., 2019;
Mellough et al., 2019). However, it is feasible even with current
technologies to culture and maintain organoids for longer than
one year, as a proof-of-principle (Capowski et al., 2019). It
quickly became evident that once the self-formation of retinal
organoids is done (which can be achieved with a number
of protocols maintaining and promoting the propensity of
retina (the outpocketing of anterior neuroectoderm) to form,

further maturation and long-term maintenance of retina-in-
a-dish requires more sophisticated media providing more
salts, anti-oxidants, a milieu of supporting paracrine factors
(provided by serum or serum plus RPE conditioned medium),
etc. (Zhong et al., 2014; Bardy et al., 2015; Singh et al., 2015;
Di Lauro et al., 2016; Achberger et al., 2019; Akhtar et al., 2019;
Capowski et al., 2019). These issues are mostly technical, and
current biomanufacturing technologies allow generating large
number of aggregates of a defined size (e.g., for large-scale drug
discovery) if needed.

SUMMARY

Modeling early retinal development with hESC and hiPSC
approaches (from eye field determination and before
photoreceptor develop outer segments) seems the most
straightforward and very productive way of using retinal
organoids for basic and translational research (Meyer et al.,
2009). With arrival of methods of co-culturing between
brain and retinal organoids (assembloids (Gopalakrishnan,
2019)), engineering vascularization of organoids (Grebenyuk
and Ranga, 2019) and developing pressurized chambers
(for glaucoma studies, all discussed above) it will become
feasible, and very soon, to use human retinal organoids for
studying wet AMD and glaucoma and developing better
drugs tested in models faithfully representing pathophysiology
of these diseases.

Conceptual Efforts
Conceptual efforts should be centered on better understanding
of rebuilding PR-RPE niche with cells and layers of tissue

FIGURE 8 | Major challenges of human pluripotent stem cell derived retinal organoid approach growing in dish. In retinal organoid there islack of RPE interaction with
neural retina and lack of RPE interaction with choroid. Also, there is lack of retina brain connectivity. However, early retinal development can be studied using retinal
organoid (cell fate acquisition). Once the advanced systems of co-culturing will be established (retinal-brain organoids =assembloids, photoreceptor sheets in
organoids -RPE sheets, and vascularized organoids) one will be able to design better models of human retina for both drug screening and therapeutic applications.
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(e.g., PR layer and RPE sheet), building models of AMD
and glaucoma with functional PR-RPE niche, developing
techniques for designing cone photoreceptor-only sheets
with RPE for modeling of human macula, generating retina-
brain organoids co-culture methods for studying and treating
glaucoma, and (potentially) investigating vascularization
of hESC-retina in a dish. This will open the door for
multiple therapeutic/translational approaches (drug testing,
photoreceptor transplantation, 3D retinal tissue transplantation).
3D human retinal tissue model on a chip is still unattainable
but technologies are being developed to make this a reality
in the next 5–7 years (McUsic et al., 2012; Gu et al., 2018;
Achberger et al., 2019; Haderspeck et al., 2019; Masaeli et al.,
2020). Big Pharma companies need this tool to do large-
scale screening of drugs to suppress/ameliorate RD. This
screening is not possible with mouse models (not human,
expensive, cannot be scaled up) and not productive in
cultured retinal cells.Most cells in primary retinal culture
are represented by Muller glia after 2–3 several passages;
immortalized cell lines have multiple changes in signaling
pathways, lack of cell-cell connectivity and loss of many
feature of retinal biology, critically needed to faithfully
recapitulate pathology.

Among Current Limitations
Among current limitations one can list lack of functional
maturation of PRs caused by lack of PR-RPE niche,
premature degeneration, gradual loss of RGCs and second
order neurons (Figure 8) and lack of connecting targets
for RGCs to elongate and project. Difficulty for large-scale
isolation of “good” retinal organoids and standardization
of retinal organoid size and shape are also limitations
yet it is expected that progress in biomanufacturing
and biologic product development will soon be able to
solve these hurdles.

RPE-PR Interaction
RPE-PR interaction: (and lack of -in organoids) This hurdle
is clearly biology-driven but the general expectation is that
it could be circumvented with progress in technology, as
organoid-biomaterial work progresses. Interestingly, even
without RPE small stubby outer segments with rudimentary
stacks of disks still grow, and in some cases even elongate,
yet fail to develop organized stacks of outer segments,
likely due to the absence of RPE-photoreceptor interaction.
This interaction may be an inducing factor of elongation
and most likely a stabilizing factor for disk formation.
Equally interesting is the fact that there is hardly any data
demonstrating the interaction between RPE and photoreceptors
and elongation of outer segments in a dish, even in long-term
organoid cultures.

The RPE layer is normally expected to polarize into apical
and basal sides, and establish a network of microvilli on the
apical side, interacting with photoreceptors and nurturing
photoreceptor outer segments. Retinal organoids, however,
normally carry patches of RPE on one side, thus directly
exposing photoreceptors in the developing organoids to

neural medium. Recreation of the critical retinal niche on
the border between the apical RPE and photoreceptors,
where many retinal disease mechanisms originate, is so
far unattainable and is a focus of investigation in many
labs. Interestingly, even without RPE small stubby outer
segments with rudimentary stacks of disks still grow, and
in some cases even elongate, yet fail to develop organized
stacks of outer segments, likely due to the absence of RPE-
photoreceptor interaction. This interaction may be an inducing
factor of elongation and most likely a stabilizing factor for
disk formation. Equally interesting is the fact that there is
hardly any data demonstrating the interaction between RPE
and photoreceptors and elongation of outer segments in
a dish, even in long-term organoid cultures. Though the
expectations are that the translational research in the near
future may solve this hurdle (which is clearly biology-driven
but could be clearly improved as organoid-biomaterial work
progresses), so far the absence of this RPE-photoreceptor
niche imposes clear limitations on both modeling/drug
screening and transplantation approaches, especially for
AMD/human macula work. Here we dissected the different
retinal degenerative diseases and organoid technologies
and present our thinking how and where retinal organoid
technology can contribute the most to developing therapies
even with a current limitation and absence of outer segments,
elongating into the microvilli of RPE. Understanding how
PR and RPE come together to rebuild functional subretinal
niche is important not only for tissue transplantation and
modeling of long-term RD disease in a dish, but also
for promising cell therapy approaches, based on sorted
photoreceptor transplantation (Singh et al., 2013; Gagliardi
et al., 2018; Lakowski et al., 2018) (which is more feasible
technically that grafting tissue (Seiler and Aramant, 2012)
yet needs better understanding of biology to rebuild PR-
RPE border with inner and outer segments). Photoreceptor
(sorted CD73[+] cell suspension) transplantation so far
has to depend on approaches circumventing this biological
question like optogenetically engineered photoreceptors (Garita-
Hernandez et al., 2019), where functional OSs, where light it
converted to electricity are replaced by optogenetic constructs,
mimicking OS function.

Now it is very interesting time in translational biology
combining pluripotent stem cell technologies, biomaterials,
3D organoid and co-culture approaches in effort to model,
rebuild in a dish and transplant the complex 3-dimensional
tissue - the retina. This exciting time can be compared to
the time when scientists were searching for elusive ways to
dedifferentiate adult human cells back to pluripotent state.
Developing 3D co-culture technology faithfully recapitulating
the biology and physiology of the subretinal niche, together
with organoid vascularization strategies, will open the new
opportunities for designing better disease modeling in a dish
to study the “late-onset” retinal diseases, which impact visual
function at the lever of OS:RPE. In additional to biological
breakthrough, this will be an ethical breakthrough, enabling us
to avoid using animals excessively for studying development and
treating diseases.
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