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ABSTRACT

Genomic meta-analysis to combine relevant and
homogeneous studies has been widely applied, but
the quality control (QC) and objective inclusion/ex-
clusion criteria have been largely overlooked.
Currently, the inclusion/exclusion criteria mostly
depend on ad-hoc expert opinion or naive threshold
by sample size or platform. There are pressing
needs to develop a systematic QC methodology as
the decision of study inclusion greatly impacts the
final meta-analysis outcome. In this article, we
propose six quantitative quality control measures,
covering internal homogeneity of coexpression
structure among studies, external consistency of
coexpression pattern with pathway database, and
accuracy and consistency of differentially ex-
pressed gene detection or enriched pathway identi-
fication. Each quality control index is defined as the
minus log transformed P values from formal hypoth-
esis testing. Principal component analysis biplots
and a standardized mean rank are applied to
assist visualization and decision. We applied the
proposed method to 4 Ilarge-scale examples,
combining 7 brain cancer, 9 prostate cancer, 8 idio-
pathic pulmonary fibrosis and 17 major depressive
disorder studies, respectively. The identified prob-
lematic studies were further scrutinized for potential
technical or biological causes of their lower quality
to determine their exclusion from meta-analysis.
The application and simulation results concluded a
systematic quality assessment framework for
genomic meta-analysis.

INTRODUCTION

Microarray gene-expression technology provides detailed
and parallel expression profiles of tens of thousands genes.
Since its introduction, it has led to tremendous amount
of data that are accumulated in the public repositories
such as NCBI Gene Expression Omnibus (1), EBI
ArrayExpress (2) and Stanford Microarray Database (3).
While investigators can retrieve individual datasets and
potentially compare their own results to related studies,
such analyses often seem to yield inconsistent results and
are hampered by variable technical quality, heterogeneous
cohorts, erroneous data annotation or problematic pre-
processing (4-7).

Meta-analysis, successfully applied in traditional epi-
demiological and medical research, has been proposed in
analysis of microarray data across studies. Meta-analysis
methods for detecting differentially expression genes
include Fisher’s method (8,9), Stouffer’s method (10),
LASSO (11), random effects model (12,13), Bayesian
methods (14,15), rank-based methods (16,17) and others
(18,19) have been implemented. In addition to differential-
ly expressed (DE) gene detection, a statistical framework
for microarray pathway meta-analysis was also proposed
(20). While these studies provided significant methodo-
logical insights they in general did not address the import-
ant question of dataset selection and in general subjective
expert opinions or ad hoc criteria were used (21-26).
One of the most important obstacles to successful meta-
analysis is dataset quality (27). Inclusion of a poor quality
or outlying study in the information integration can
greatly dilute information contained, weaken statistical
power or even distort final biological conclusions. To
alleviate such potential pitfalls in meta-analysis (27), it
is necessary to develop an objective inclusion/exclusion
evaluation approach.
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Table 1. Summary information and characteristics of six QC measures
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Types Evaluation Criteria External Pathway Clinical Outcome
Knowledge Needed? Needed?
1QC Homogeneity of coexpression structure across studies No No
EQC Consistency of coexpression information with pathway database Yes No
AQCg Accuracy of biomarker detection No Yes
AQCp Accuracy of enriched pathway detection Yes Yes
CQCg Consistency of DE gene ranking No Yes
CQCp Consistency of enriched pathway ranking Yes Yes

In this article, we propose quantitative measures to
assess the quality and consistency of microarray studies
for meta-analysis. Specifically, we introduce six quality
control (QC) measures (see Table 1 for a brief summary)
and utilize principal component analysis (PCA) biplots
and a standardized mean rank (SMR) summary score to
assist identification of problematic studies. We then apply
the proposed methods to four examples, each containing 7
brain cancer studies, 9 prostate cancer studies, 8§ idiopathic
pulmonary fibrosis (IPF) studies and 17 major depressive
disorder (MDD) studies. We assess the impacts and effect-
iveness of the proposed inclusion/exclusion evaluation on
the final meta-analysis results. Finally, we demonstrate the
robustness and effectiveness of the proposed method
by additional simulations. To our knowledge, this is the
first systematic and objective quality assessment tool de-
veloped to decide inclusion/exclusion criteria for genomic
meta-analysis.

MATERIALS AND METHODS
Objective quality control measures

Internal quality control index. In the first criterion, the
internal homogeneity of coexpression structure among
studies was evaluated as an internal quality control
(IQC) index. IQC compared pair-wise differences among
studies in an unsupervised manner (without any prior or
external information other than the expression profile
data) and the aim was to identify potentially inconsistent
or outlier studies from quantified coexpression dissimilar-
ity. We applied a concept of the correlation of correlations
that was previously reported in the context of reprodu-
cibility analysis of gene coexpression patterns across
studies, named as integrative correlation coeffi-
cients (32,33). We assumed K studies to be combined.
For a given study k, we defined pg; = cor(x;, xx;) as
the Pearson correlation coefficient of gene-expression
intensities between gene i and gene j in study k. The
similarity between two studies m and n was defined
as  I'mp = SPCO’”((szj/‘; 1 = lf] = G)> (pmfj; 1 =< lf/ = G)))
which was the Spearman’s rank correlation of the
pairwise correlation structure between study m and n
(G represents the total number of genes in the studies).
The dissimilarity (or distance) between study m and n
was defined as d,,, = (1-r,,,)/2. For a given study k, we
considered the set of distances from all other studies
to the study k (i.e. Df = {dm}<p<k:nzx) and the set

of all #palrwise distance that do not involve study k
(le D {dmn}l<m7ﬁn<[(m;ék n;ﬁk) When Study k was an
outlylng study that contained coexpression structure
very different from all other studies, the dlstances in D
were generally much greater than those in D We
assumed that the two sets of distances follow certaln
probability distributions: ~ F; and D# ~ F,. We
performed a formal hypothesm testing based on
Hy:F, =F, vs. H,:F>F, and applied one-sided
Wilcoxon rank-sum (a.k.a. Mann—Whitney U) test (34) to
generate a P-value, Pjoc(k). Figure 1A shows an ex-
ample that study 1 has a very different coexpression
structure from other three studies. When we compare

= (di2,di3,d1a) and  Dj(d,dos,dss) by Wilcoxon
rank sum test, we obtained a small P-value, P;o(1) that
rejects the null hypothesis.

The hypothesis testing described above gave a small
P-value when study k& was an outlying study. We applied
a reverse transformation g(p) on Ppc(k) such that small
P-values would be transformed to large pseudo P-values
and vice versa. Consequently, large transformed g(p) cor-
responded to an outlying study. The transformation
was necessary for IQC to be consistent with the remaining
five QC measures to be introduced later. We designed
g(p) as a monotone decreasing function and the statistic-
al significance threshold 0.05 an invariant point.
Specifically, we defined g as g(p)=1—-F Dz(]—'[)ll(p)),
where D ~ N(zgs,1) and Dy ~ N(—z9s,1) (Figure 1B).
For example, g(0.05)=0.05, g(0.5)=0.0005 and
g(0.01) = 0.17. Finally, the IQC measure of study k& was
defined as IQC(k) = —logi0g(Pioc(k)). We use log base 10
for all QC measures throughout this article. Small IQC
indicated that the study had heterogeneous coexpression
structure with other studies and was considered a candi-
date problematic study that should be excluded from
meta-analysis.

External quality control index. Compared to the unsuper-
vised approach in IQC, the external quality control (EQC)
criterion was supervised by external pathway information.
Pathway knowledge (i.e. functional or coregulated gene
sets) obtained from established databases (e.g. KEGG,
GO, Biocarta and MSigDB) was applied to evaluate
its consistency with a given study and subsequently to
determine the study quality. We used a similar gene-pair
correlation concept used in IQC and defined an
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Figure 1. Example of IQC calculation and reverse transformation of Pygc. (A) Three points (E2, E3 and E4) in the lower left represent homogeneous
studies, and a point (E1) in the upper right is a heterogeneous study which has larger pair-wise distance to others. A heterogeneous study should have
larger pair-wise distances with others. The IQC hypothesis setting compares (d,d13,d14) and (da3,dr4,d34) by Wilcoxon rank-sum test. (B) X- and
Y-axes are P-values before and after applying the reverse transformation g. As a result, small P-values will be transformed to large pseudo P-values

and vice versa.

association measure between study k and a given pathway
(gene set) w by

te = t({oihi<i j<iG,s W)
! !
D ik, jew | Pk D 1<izj=(Gy | Pxi]

1/ 1/
B <|w|'(|w|—1)/2) /<|Gk|~(|Gk|—1)/2>

where py; was the Pearson correlation coefficient of gene i
and gene j in study k as defined in IQC, the numerator was
the /-norm average of absolute pairwise correlation in
pathway w, the denominator was the corresponding
[-norm average in the background genome Gy, and |w|
and |G| were the number of genes in the pathway w
and study k. If pathway w was relevant to disease status
or experimental perturbation, we expected that the I-norm
average among the pathway in the numerator would be
much larger than that among genome background in the
denominator and ¢, should be significantly >1. In this
association measure, we disregarded the sign of correl-
ation coefficients and used /-norm to inflate differential
impact of high and low correlations in the measure. We
use / = 2 throughout the article to down-weight medium
to low correlation coefficients and to give higher relative
weight to large correlation coefficients (e.g. 0.8% = 0.64
and 0.3% = 0.09). We set up hypothesis testing Ho:t;, =1
vs. H, t,>1 and applied Monte-Carlo permutation
analysis to obtain the empirical null distribution of
the test statistic 7, (35,36). Specifically, we randomly
sampled from G, a random pathway w'® of equal size
(i.e. [w®| = |w]) in the b™ simulation, calculated the cor-
responding tﬁ(’ and repeated for B times (b =1,...,B).
The resulting P-value of the test was calculated as
Proc(e; w) = (X2 1Y > 1)+1)/(B+1), where ()
was an indicator function. We adopted a conservative pro-
cedure to add 1 to both denominator and numerator in
P-value calculation, considering the observed statistics

was one of the simulated cases (36). The EQC measure
was then defined as EQC(k;w) = —logPgoc(k;w). Similar
to IQC, small EQC(k;w) indicated that the study had low
association with pathway w in terms of gene pairwise
correlation structure and was thus considered a candidate
of problematic study.

We further extended the EQC measure above to a set
of pathways. We assumed that M pathways (W = {w,,
1 <m < M}) were available and a significant portion of
them had high association measure with study k. We
defined a Fisher’s score by S = —2 ZHALI logProdk; wp)
to aggregate the association measures of M pathways.
If the pathways were independent, the S score followed
a chi-squared distribution with degree of freedom 2M
under the null hypothesis. However, since the biological
pathways always have hierarchical structure and high
overlapping, we performed permutation analysis for B
times to obtain simulated S'”. The resulting P-values
was calculated as Proc(k; W):(Zf:1 I(5§(b)>Sk)+1)/(B+l)
and the EQC measure was similarly defined as EQC(k; W)
= —logProc(k;W).

Comparing IQC and EQC, we note that EQC relied on
a good selection of pathway set 1 and the evaluation of
one study was independent from other studies. IQC, on
the other hand, was a relative measure that depended on
other studies under consideration but did not require
external biological information.

Accuracy quality control (AQCg and AQCp) and
consistency  quality  control (CQCg and CQCp)
indexes. For the third and fourth criteria, we proposed
an accuracy quality control (AQC) and a consistency
quality control (CQC) criteria that were aimed at quan-
tifying the reproducibility (accuracy or consistency) of DE
genes (or pathways) detected in an individual study
compared to those detected by meta-analysis from all
other studies. For AQCg of study k, the identified DE
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gene list from meta-analysis excluding study & (using
Student’s t-test for each individual study and Fisher’s
method to combine with Benjamini-Hochberg correction
under FDR = %) was served as a gold standard. The DE
gene list detected by study k (using Student’s 7-test with
Benjamini-Hochberg procedure under FDR = r%) was
then compared to the gold standard to generate a 2 x 2
table. One-sided Fisher’s exact test was used to determine
the association (reproducibility) of DE gene list identified
by meta-analysis and that identified by study k (Hg: the
two gene lists have no association. versus H,: the two gene
lists have association). The P-value for study k& was
calculated from hypergeometric distribution:

TN ( Gy — 7O
mmu*'i’,:r“)( t )( A _t>

= (%)
T(—k)

where G, was the total number of genes in study k, 7"
was the number of DE genes detected by study k, TV was
the number of DE genes detected by meta-analysis
excluding study k and 7, was the number of DE genes
detected both by study k£ and by meta-analysis excluding
study k (see the 2 x 2 table in Table 2). The AQCg score
was defined as AQCg(k;r) = —logP 40c.(k;r). We normally
used FDR threshold r% = 5% but could relax it to 10 or
20 when the data had weak signal. Large AQCg measure
for a given study k indicated that DE genes produced by
study k were reproducible compared to DE genes detected
by meta-analysis excluding study k. We extended AQCg
to AQCp where DE genes in the AQCg definition were
replaced by enriched pathways. The pathway enrichment
could be obtained by simple Fisher’s exact test under
certain DE gene threshold or other methods in the litera-
ture [e.g. GSEA (37) or GSA (38)]. In this article, we used
Kolmogorov—Smirnov test under FDR = 5% threshold to
obtain enriched pathways.

In contrast to evaluating DE gene lists from a hard
threshold in AQCg, we also applied an alternative of
CQC measure by evaluating the consistency of differential
expression ranking from single study analysis and
meta-analysis. Specifically, ranks of differential expression
evidence of study k were first calculated by Student’s 7-test
and defined as RY for gene g and study k. From
meta-analysis (using Fisher’s method) excluding study
k, the ranks of differential expression evidences were
denoted as R({M. The Spearman rank correlation

Paoce(k; 1) =

Table 2. Contingency table for AQC inference

DE genes detected by meta-analysis sum
excluding study k

yes no

DE genes detected by study k

yes tr T — 1, ke
no T — ¢, G-T7M — 1M 44, Gi—T™
sum T(_l() Gk — T(_k/ Gk

PaGce4 or 14

between two rank vectors was defined as pr =spcor((R;
1<g<Gp), (R7M: 12g<G)=1-6- Y0 (R® — RCP)?
/Gi(G2—1). To test Hypr=0 vs. Hyp,>0, we
approximated that ¢ = p;-/G.—2/1-p followed a
Student’s t distribution with G,—2 degree of freedom
under null hypothesis (39). The resulting P-value was
caleulated  as  Pcqce(k) =1 — Fg,a(pox /Gi—2/1-72),
where Fg,_» represented the cumulative distribution
function (cdf) of Student’s ¢-distribution with G,—2
degree of freedom. The CQCg score was defined as
CQOCg(k) = —logPcpce(k). Having a large CQCg
measure for a given study k indicated that DE evidence
produced by study k& was consistent with DE evidence
generated by meta-analysis excluding study k. We similar-
ly extended CQCg to CQCp where DE evidence and gene
ranking in the CQCg definition were replaced by enriched
pathways.

Visualization and summarization to assist decision

We applied PCA biplots (40) to assist the visualization
and decision for inclusion or exclusion of studies in
meta-analysis. A PCA biplot is a popular technique to
show both observations and relative positions of variables
in two dimensions so that the performance of each obser-
vation can be interpreted by each variable intuitively. In
this article, each microarray study was projected from 6D
QC measures to a 2D PC subspace. The direction of each
quality control measure was juxtaposed on top of the 2D
subspace using arrows. Specifically, the coordinates of
each quality criterion were determined by its correlation
to the two driving PCs. The origin of the biplot was taken
as the statistical threshold with Bonferroni correction
[i.e. projected from —log(0.05/#studies) in each of the
QC measure dimensions], suggesting that studies located
in the opposite area of arrows were candidate outlier
studies. The scale of each QC measure was standardized
before PCA to avoid dominance of a particular QC
measure due to scale problem. In addition to biplot visu-
alization, we also defined a quantitative summary score
by calculating the ranks of each QC measure among
all studies and then computed a SMR of each study:
(mean rank of all QC measures/# of studies). By defin-
ition, 0 <SMR <1 and large SMR represented a likely
problematic study.

Note that our visualization and summarization tools
were not meant for an automated recommendation for in-
clusion/exclusion decision. In the examples we explored,
there were roughly three categories in the QC results:
definite exclusion cases with poor quality, definite
inclusion cases with good quality and borderline cases.
Definite exclusion cases were often on the opposite side
of arrows in the PCA biplots and had large SMR scores.
These studies were strongly suggested to be excluded from
meta-analysis. On the other hand, definite inclusion cases
were on the same side of arrows in the PCA biplots and
had small SMR scores. They were clearly of good quality
that should be included. Borderline studies happened to be
in between the two extreme cases. Although an automated
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Table 3. Summary information of studies used in four examples
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Author Year Platform Sample Size Source

Brain cancer studies
Freije et al. (44) 2004 HG-U133A,B 85 GSE4412
Phillips et al. (45) 2006 HG-U133A,B 100 GSE4271
Sun et al. (46) 2006 HG-U133 Plus 2 100 GSE4290
Yamanaka et al. (47) 2006 Agilent 29 GSE4381
Petalidis et al. (48) 2008 HG-UI133A 58 GSE1993
Gravendeel er al. (49) 2009 HG-U133 Plus 2 175 GSE16011
Paugh(50) 2010 HG-U133 Plus 2 42 GSE19578

Prostate cancer studies
Dhanasekaran ez al. (51) 2001 cDNA 28 www.pathology.med.umich.edu
Welsh et al. (52) 2001 HG-U95A 34 public.gnf.org/cancer/prostate/
Singh et al. (53) 2002 HG-U95Av2 102 www.broad.mit.edu/
Lapointe et al. (54) 2004 cDNA 103 GSE3933
Yu et al. (55) 2004 HG-U95Av2 146 GSE6919
Varambally et al. (56) 2005 HG-U133 Plus 2 13 GSE3325
Nanni et al. (57) 2006 HG-UI133A 30 GSE3868
Tomlins et al. (58) 2006 cDNA 57 GSE6099
Wallace et al. (59) 2008 HG-UI133A2 89 GSE6956

IPF Studies
Pardo et al. (60) 2005 Codelink 24 GSE2052
Yang et al. (61) 2007 Agilent 43K 29 GSES5774
Larsson et al. (62) 2008 HG-U133 Plus 2 12 GSEI11196
Vuga et al. (63) 2009 Codelink 7 GSE10921
Konishi ez al. (64) 2009 Agilent 4x44K 38 GSE10667
Emblom ez al. (65) 2010 cDNA 58 GSE17978
KangA 2011 Agilent 4x44K 63 Dr Kaminski
KangB 2011 Agilent 8x60K 96 Dr Kaminski

MDD studies
MDI1_AMY 2009 HG-U133 Plus 2 28 Dr Sibille
MD3_AMY 2009 HumanHT-12 42 Dr Sibille
MDI_ACC 2009 HG-U133 Plus 2 32 Dr Sibille
MD3_ACC 2009 HumanHT-12 44 Dr Sibille
MD2_ACC_M 2010 HG-U133 Plus 2 18 Dr Sibille
MD2_ACC_F 2010 HG-U133 Plus 2 26 Dr Sibille
MD2_DLPFC_M 2010 HG-U133 Plus 2 28 Dr Sibille
MD2_DLPFC_F 2010 HG-U133 Plus 2 32 Dr Sibille
NY_DLPFC_M 2004 HG-U133A 26 Dr Sibille
NY_oFC_M 2004 HG-UI133A 24 Dr Sibille
Feinberg - HG-U95Av2 27 www.stanleygenomics.org
KatoB 2004 HG-U95Av2 26 www.stanleygenomics.org
Kemether - HG-U133p 24 www.stanleygenomics.org
AlartC - HG-UI133A 22 www.stanleygenomics.org
SklarA - HG-U95AV2 23 www.stanleygenomics.org
SklarB - HG-U95Av2 23 www.stanleygenomics.org
Sokolov - HG-U95A 26 www.stanleygenomics.org

quantitative decision looks desirable, it is not practical in
general. One should seek additional qualitative evidences
(such as sample size, platform or other experimental con-
ditions) for the causes of poor quality in both definite
exclusion or borderline studies.

Application, implementation and simulation in real
datasets

We evaluated our proposed method in four examples:
brain cancer (seven studies), prostate cancer (nine
studies), IPF (eight studies) and MDD (17 studies).
Details of these studies were listed in Table 3. Most micro-
array data sets were collected from public repositories
such as NCBI Gene Expression Omnibus (1) and EBI
ArrayExpress (2), or web pages directed from the
original articles. Several non-published data sets were
obtained from labs of coauthors of this article

(Dr Kaminski and Dr Sibille). Most data sets were pre-
processed and normalized by original authors. When raw
data of Affymetrix platform were available, RMA (41)
was applied for preprocessing. To obtain a robust result,
we applied a gene filtering procedure in each study level,
which removed 40% of non-expressed genes based on
mean intensities and 40% of non-informative genes based
on variance. Gene matching across studies was done by
matching official gene symbols using Bioconductor
packages. When multiple probes matched to one gene
symbol, the probeset with the largest inter-quartile range
(IQR) was selected.

In EQC evaluation, external pathways were needed for
calculating EQC measures. We only considered pathways
that have at least five genes in each study. Conceptually,
using pathways relevant to the disease or experimental
perturbation would generate better EQC evaluation. For
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cancer studies, we chose to use GSEA Biocarta v3.0
pathways (37) since the pathways were cancer specific. A
total of 217 Biocarta pathways were used in the brain
cancer example. For prostate cancer studies, the over-
all data quality and information seemed to be weaker
than brain cancer studies and we chose only the top 50
pathways among the 217 pathways for better perform-
ance (top pathways were identified by combining P-
values using Fisher’s method). For MDD studies, 99
pathways were selected from GSEA MSigDB v3.0 by key-
word search using a list of MDD relevant terms:
GABA, INSULIN, DIABETES, IMMUNE,
THYROID, ESTROGEN, DEPRESSION, AGING,
ALZHEIMERS, PARKINSONS and HUNTINGTONS.
For IPF studies, we chose top 50 pathways out of all 6769
number of GSEA MSigDB v3.0 pathways (similar to
prostate cancer application, top pathways were identified
using Fisher’s method). For AQCp and CQCp measures,
pathway database was also needed to generate enriched
pathways before evaluation. Since exhaustive pathway en-
richment analysis is usually preferred, we used all
MSigDB ¢2 v3.0 pathways for both AQCp and CQCp
in all four examples.

We performed 100000 simulations in the permutation
analysis of Fisher scores in EQC measure and thus the
largest range of EQC measure is limited to 5 (that corres-
ponds to P = 1E-5). For AQC measures, we applied
two-sample Student’s z-test and Kolmogorov—Smirnov
test for AQCg and AQCp, respectively. All P-values
were adjusted by Benjamini—-Hochberg procedure (42) to
control FDR at the level of 0.05 unless otherwise specified.
Fisher’s method (sum of minus log-transformed P-values)
was used for meta-analysis in both AQC and CQC evalu-
ation when performing meta-analysis of all studies except
for the study k. In AQC measures, MDD was found a
weak signal example that generated only very few DE
genes or pathways that made AQC measure invalid or
unstable. We chose a more liberal cutoff (unadjusted
P <0.05) to avoid the issue.

To assess the validity and performance of our proposed
method, we performed downstream analysis to assess its
impact on DE gene and pathway detection. We also per-
formed simulation to assess the accuracy of detecting
problematic studies. All implementation was written by
R statistical language (43). An R package, ‘MetaQC’ is
publicly available online at CRAN (http://cran.r-project
-org/)

RESULTS
Quality assessment in four examples

Table 3 lists summary information of studies used in four
examples: 7 brain cancer studies, 9 prostate cancer studies,
8 IPF studies, and 17 MDD studies. The different QC
measures and SMR scores were obtained as described in
details in the Methods section and are summarized in
Table 4. Together with PCA biplots in Figure 2, studies
were categorized into three sets: definite exclusion cases
with poor quality, definite inclusion cases with good
quality and borderline cases (refer to ‘Materials and
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Methods’ section for details in PCA biplots). These rec-
ommendations were then verified by consulting Table 3
for potential causes or interpretations of the problematic
studies.

In the first brain cancer example, Dreyfuss et al. (21)
previously combined four studies for meta-analysis, of
which three were used in our evaluation. Figure 2A
shows PCA biplot of the brain cancer result and Table 4
shows the detailed QC measures and SMR scores. The
first two PCs in Figure 2A explained ~92% of total
variance, and all scores were highly correlated with the
first PC. The scores marked with asterisks in Table 4
indicated non-statistical significance (P> 0.05/# of
studies), meaning that these studies were candidate of
problematic studies, based on the specific QC measure,
and including them might have an adverse effect on
meta-analysis. The Yamanaka study (study 7 in Figure
2A) was clearly below statistical threshold and had low
values in all QC measures; it is viewed as a definite exclu-
sion case that should be excluded from the meta-analysis.
On the other hand, the top five studies in Table 4 per-
formed very well for all criteria, indicating that they are
definite inclusion cases for meta-analysis. The Paugh study
(study 6 in Figure 2A), was however a borderline case. The
QC measures were mostly low and just passed the statis-
tical significance. Interestingly, when scrutinizing the
causes of poor quality of Yamanaka and Paugh studies,
Yamanaka used a different platform (Agilent) and both
studies were of smaller sample size (n = 29 for Yamanaka
and n = 42 for Paugh). We thus recommend exclusion of
both studies from meta-analysis.

In the second example, we applied the QC assessment to
nine prostate cancer studies comparing normal and
primary cancer patients (see Table 3 for summary infor-
mation). QC results were shown in Figure 2B and Table 4.
Compared to brain cancer studies, these prostate cancer
studies were mostly performed in earlier years with older
array platforms. Although the first two PCs also captured
high percentage of variance (93%), the studies were more
scattered in the biplot and even good performing studies
had quite different performance when judged by different
QC criteria. For example, Varambally and Wallace had
better scores in IQC and EQC but not in CQC and AQC
while Welsh, Lapointe and Singh, had better performance
in CQC and AQC but not IQC and EQC. Yu had per-
formed the best in all criteria. In considering sample size,
array platform and QC measures, we regarded the bottom
three studies: Nanni, Tomlins and Dhanasekaran as
definite exclusion cases and marked Singh as a borderline
case. The worse performance of prostate cancer studies
compared to brain cancer shown here reflects the fact
that many prostate cancer studies were performed using
cDNA arrays or earlier platforms and that the cancer is a
heterogeneous disease (28). Here, the overall scatter of
SMR values suggests a limited potential for meta-analysis.

As a third example, we evaluated eight IPF studies
which identified signature genes of IPF patients
compared to normal. IPF is one of the most lethal
chronic lung disease, and its mean survival is only 3-5
years regardless of treatment (29). Table 3 shows data
summary, Figure 2C demonstrates the PCA biplot and
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Number Study 1QC EQC CQCg CQCp AQCg AQCp SMR
Brain cancer studies
1 Sun 4.96 5.00 307.65 251.33 152.83 108.37 1.58
2 Freije 5.42 5.00 239.31 158.73 118.06 81.62 2.75
3 Petalidis 4.11 3.16 274.25 171.48 111.27 101.10 3.33
4 Phillips 4.52 5.00 242.36 146.71 106.59 69.19 3.58
5 Gravendeel 6.64 4.70 98.37 107.06 47.67 63.89 4.33
6 Paugh 1.51* 5.00 5.00 3.60 2.31 9.84 5.42
7 Yamanaka 0.10* 0.78* 1.69* 2.26 1.58* 0.71* 7.00
Prostate cancer studies
1 Welsh 5.04 2.12% 68.59 101.31 26.46 54.66 2.00
2 Yu 7.74 3.23 52.43 64.14 19.95 38.30 2.17
3 Lapointe 4.06 2.28 26.36 59.42 7.00 33.90 3.50
4 Varambally 4.68 4.70 15.38 21.15 4.18 13.21 4.50
5 Singh 2.14* 2.05% 19.60 28.74 4.61 24.17 4.83
6 Wallace 7.95 4.22 0.00%* 28.70 0.00* 2.13%* 5.67
7 Nanni 1.92% 1.92% 2.22% 6.01 2.00%* 13.61 6.67
8 Tomlins 2.67 0.52%* 3.76 3.65 1.19% 6.12 7.17
9 Dhanasekaran 0.01* 0.63* 0.01* 0.23* 0.04* 0.10% 8.50
IPF studies
1 KangA 6.64 5.00 307.65 146.87 96.71 90.88 1.58
2 KangB 5.57 5.00 273.67 114.30 84.37 69.74 2.42
3 Konishi 6.89 5.00 58.19 42.70 25.50 57.20 2.92
4 Yang 4.34 5.00 41.70 56.35 14.20 29.43 3.92
5 Pardo 4.07 2.08%* 25.14 38.84 20.60 25.05 5.17
6 Vuga 2.28 5.00 1.37* 26.25 1.77* 18.01 5.58
7 Larsson 1.79* 5.00 0.59%* 1.88%* 0.52%* 3.21 6.58
8 Emblom 0.03* 1.12% 0.83%* 0.57* 0.43%* 1.98%* 7.83
MDD studies
1 MD2_ACC_F* 9.80 5.00 19.22 40.01 6.17 27.47 3.58
2 MD2_DLPFC_M* 3.22 5.00 56.70 41.02 9.37 33.27 3.58
3 MD2_DLPFC_F* 3.05 1.12% 52.05 62.94 14.32 46.79 5.17
4 MD2_ACC_M* 3.76 3.05 24.59 33.78 3.80 17.16 5.67
5 MDI_ACC?* 341 5.00 10.59 19.28 0.39* 10.21 6.92
6 NY_oFC_M* 11.56 3.74 0.12% 18.09 0.40* 13.32 7.67
7 Kemether® 8.01 1.91* 12.21 8.92 9.79 1.63%* 8.83
8 MD3_AMY* 0.96* 5.00 3.23 12.03 1.54% 7.05 8.92
9 NY_DLPFC_M* 4.05 5.00 1.63* 14.82 0.30* 6.61 8.92
10 MD3 ACC? 1.37%* 4.70 8.70 15.65 1.80* 4.06 9.17
11 MDI_AMY* 3.09 2.97 1.49%* 17.14 0.39* 16.76 9.33
12 KatoB® 11.54 5.00 0.00%* 1.46* 0.45%* 2.00%* 9.92
13 Sokolov® 4.07 0.30%* 0.46* 1.40%* 0.60%* 6.85 11.00
14 SklarB® 0.73* 5.00* 0.00%* 9.71 0.00* 8.80 11.58
15 Feinberg® 0.35% 5.00 0.32% 2.41%* 0.17* 0.77* 13.08
16 AltarC® 0.69%* 0.08%* 0.00%* 15.95 0.00%* 0.91* 14.67
17 SklarA® 1.20* 1.93* 0.00* L.or* 0.00* 2.41%* 15.00

“Data from Dr Etienne Sibille’s lab.

®Data from Stanley Foundation, suspected worse quality in the tissue collection and processing.
*p-value not significant after Bonferroni correction (i.e. p > 0.05/# of studies).

Table 4 lists the details of QC scores. Interestingly,
although these eight data sets are mostly from very differ-
ent microarray platforms, at least five of them performed
very well in quality assessment for meta-analysis. Of the
three worst QC studies, Emblom utilized a custom cDNA
array platform which might be the origin of the weaker
performance. Vuga and Larsson both have small sample
sizes (n = 7 for Vuga and n = 12 for Larsson) which might
be the reasons of low QC scores. The two top studies,
KangA and KangB, are unpublished data from
Dr Kaminski’s lab with large well-characterized cohorts
from the Lung Tissue Resource Consortium (LTRC;
www.ltrcpublic.com). In this case, it is adequate to
remove the three low quality studies and perform
meta-analysis of the remaining five.

In the final example, we applied QC evaluation to 17
MDD studies that compare normal and MDD patients.
These 17 studies were obtained from post-mortem brain
tissues of various brain regions. These datasets are hetero-
geneous and of small sample size, and are typically con-
sidered of weak disease signal, hence highlighting the need
for upfront meta-QC for inclusion in meta-analysis. The
details of each data set were in Table 3. The QC results
were shown in Figure 2D and Table 4. In Figure 2D, no-
ticeably many studies scattered near the origin because of
overall weak signal. From Table 4, the top five studies
were considered as definite inclusion studies and the
bottom five studies were definite exclusion studies. Other
studies were borderline cases with varying performance in
different QC measures. Most CQCg and AQCg scores
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Figure 2. PCA biplots of QC measures in four examples. Each circled number represents the overall rank by SMR score of a study. Smaller numbers
correspond to higher quality studies. (A) Seven brain cancer studies. (B) Nine prostate cancer studies. (C) Eight IPF studies. (D) Seventeen MDD

studies.

were significantly lower than other examples since each
individual MDD study contained weak signal and the
DE gene and pathway detections were relatively less re-
producible, which actually argued strong needs for
meta-analysis. We note that the bottom six studies in
Table 4 were all from Stanley Medical Research
Institute Tissue Bank. This separation is not reflecting dif-
ferences in subject cohorts, but rather lower quality as
reflected by overall low evaluation criteria in the latter
studies. This may reflect technical issues relating to
tissue collection and processing, such as uneven
postmortem interval of brain collection and low brain
pH in the Stanley Tissue Bank cohorts (30,31). These
results suggest that including the bottom low quality
studies in a meta-analysis may weaken overall results for
technical rather than biological reasons.

Impacts on DE gene and pathway detection

To evaluate the impact of our MetaQC evaluation on
the identification of biological effects, we investigated
the marginal impact of a meta-analysis on DE gene and
enriched pathway detection when we sequentially included
studies from high to low quality into meta-analysis, as
measured by SMR scores. We hypothesized that including
an additional informative study to the meta-analysis
would provide increased statistical power to detect more
DE genes and enriched pathways while adding a lower

quality study would deteriorate the performance, as mani-
fested by fewer or stable numbers of detected DE genes
(Figure 3) or biological pathways (Figure 4). Figures 3A
and 4A show the number of DE genes and enriched
pathways detected <0.5% FDR (false discovery rate; the
ratio of falsely rejected null hypotheses among all rejected
hypotheses in multiple testing), respectively, when seven
brain cancer studies were added sequentially in the
meta-analyses in the order of SMR score. Interestingly,
the number of detected DE genes and pathways dropped
significantly when including the two suspect problematic
studies: Paugh and Yamanaka. The result supported the
recommendation provided by MetaQC. This simple incre-
mental analysis also argues for the necessity of adequate
inclusion/exclusion criteria in meta-analysis.

The results for prostate cancer (Figures 3B and 4B) and
IPF examples (Figures 3C and 4C) demonstrated a slightly
different situation. The number of DE genes under
FDR = 0.1% (a very stringent FDR is used here as
both examples detect many DE genes) continued to
increase as more studies were added while the number of
detected pathways decreased when the fifth and the sixth
studies were added in prostate cancer and IPF,
respectively. In Supplementary Figure S1B, we found
that Wallace, Singh and Tomlins generally had stronger
DE evidence than other studies. The increased number of
detected DE genes in Figure 3B might have been caused
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Figure 3. Marginal impacts on meta-analysis for DE genes detection. X-axis represents each study included cumulatively to a series of meta-analyses.
The order of addition follows the SMR score in the Table 4. Y-axis represents the number of DE genes detected. (A) Brain cancer example under
FDR = 0.5% threshold. (B) Prostate cancer example under FDR = 0.1% threshold. (C) IPF example under FDR = 0.1% threshold. (D) MDD

example under P-value = 0.01 threshold.

by this bias although the pathway result in Figure 4B did
not show increased finding. The prostate cancer example
demonstrated a case that pure AQCg or CQCg method
focusing on commonality of DE gene detection was not
effective enough when studies were heterogeneous. In the
IPF example, similar observations were found. Inclusion
of Emblom greatly increased the number of DE genes
(Figure 3C) but decreased the number of detected
pathways (Figure 4C). This may be a result of the large
number of DE genes detected by Emblom (Supplementary
Figure S1C).

Figures 3D and 4D shows the biological impact evalu-
ation result of MDD. In contrast to previous examples,
MDD studies are characterized by weak overall signals.
We, therefore, applied a liberal DE gene detection criter-
ion at unadjusted P-value = 1%. The pathway identifica-
tion, however, had strong enough signal and we applied
usual FDR = 5% threshold. Despite the liberal threshold,
the numbers of detected DE genes were still smaller than
other examples. The number of detected DE genes
increased moderately as more studies were included, and
plateaued after inclusion of the low SMR score studies,
except for the Kemether and AltarC studies, in which
cases the DE genes increased significantly after their

inclusion (Figure 3D). We highlight here that the
Kemether and AltarC studies were considered problematic
studies from MetaQC (Table 4). Their inclusion actually
caused significant drop in the number of identified
pathways (Figure 4D), suggesting that the large increase
in DE genes may not be disease-related but instead may be
related to technical specificities of the latter two studies.
Again, Supplementary Figure S1D showed a large number
of DE genes in these two studies compared to others.
From the four examples in Figure 3A-D and Figure
4A-D, we conclude that the biological impact judged by
the number of detected DE genes can be misleading and
that the number of detected enriched pathways may rep-
resent a better assessment criterion.

Simulations

To further validate the QC result of our proposed method,
we investigated a simple yet insightful simulation scheme.
In each simulation of a given example, a study is randomly
selected from another example and added as a known
outlier for MetaQC re-evaluation. For example, a
prostate cancer study is randomly selected as a known
outlier and added to the seven brain cancer studies
(Figure 5A) and the MetaQC evaluation is performed.
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Figure 4. Marginal impacts on meta-analysis for enriched pathway detection. Similar to Figure 3, X-axis represents each study included cumulatively
to a series of meta-analyses. The order of addition follows the SMR score in the Table 4. Y-axis represents the number of pathways detected. All
examples are shown under FDR = 5% threshold. (A) Brain cancer example. (B) Prostate cancer example. (C) IPF example. (D) MDD example.

The simulations were repeated through all prostate cancer
studies and the changes of SMR scores were recorded and
compared. In Figure 5A, the scores of 1-SMR in seven
brain cancer studies were plotted in the first columns
(labeled as ‘NA’). In the following nine simulations, a
prostate cancer studies was added to the seven brain
cancer studies and the scores of 1-SMR were recalculated.
The added outlier study was plotted by an asterisk
symbol.

Interestingly, the result showed that the added prostate
cancer studies consistently generated small scores of
1-SMR similar to Yamanaka study and were always
detected as a definite exclusion case. Although prostate
cancer studies might share certain intrinsic biological
mechanisms with brain cancers, they seemed to served
well as control studies that further verified exclusion of
Yamanaka study. The addition of a random irrelevant
study as the ‘null’ study seems to provide an alternative
objective and practical threshold to decide the exclusion of
studies. The quality order of the brain cancers also did not
change in general by the added prostate cancers.

For the second simulation in Figure 5B, a brain cancer
was added as an outlier study to nine prostate cancer

studies in each simulation. The results showed that the
added brain cancer study had scores of I-SMR better
than Nanni, Tomlins and Dhanasekaran. In Figure 5C,
we added brain cancer studies as outliers into the eight
IPF studies. The result showed similar pattern that
argued to exclude Embolm and Larsson studies. Figure
SD showed the result that one of seven brain studies
were added to 17 MDD studies sequentially. The result
suggested that the top six studies had good quality (curves
always above the added outlier studies), the bottom 2-3
studies had problematic quality (curves always below the
added outlier studies), and the middle studies were the
borderline cases. These simulation results demonstrated
the effectiveness and robustness of the MetaQC assess-
ment to screen out outlier studies. The added outlier
studies can serve as an alternative baseline control to con-
fidently argue exclusion of problematic studies for
meta-analysis.

DISCUSSION

As more high-throughput genomic datasets are generated
and stored in public domain, the statistical and informatic
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Figure 5. Simulations showing effects of adding an irrelevant ‘spike-in’ study. Y-axis represents the value of 1-SMR. Greater Y-axis values corres-
pond to better quality studies judged by MetaQC. X-axis represents the addition of an irrelevant ‘spike-in” study. A set of irrelvant studies were
obtained from one of the other three examples. ‘NA’ represents the original quality result without the spike-in simulation which is the same result
as Table 4. A black asterisk represents the [-SMR of the added irrelevant study. (A) Brain cancer studies with a spiked-in prostate cancer study.
(B) Prostate cancer studies with a spiked-in brain cancer study. (C) IPF studies with a spiked-in brain cancer study. (D) MDD studies with a

spiked-in brain cancer study.

infrastructure to retrieve information in the huge amount
of data has become an essential component in biomedical
research. Meta-analysis to combine information across
multiple studies provides increased statistical power,
allows to distinguish artifacts from single studies from
true biological effects and thus generates more accurate
results. In the literature, many meta-analysis methods
have been developed and applied for genomic applica-
tions, but the quality control and objective inclusion/ex-
clusion criteria have been largely overlooked. Hence there
is a critical need for systematic quality assessment, as the
inclusion of studies with variable information content will
greatly affect the outcome of meta-analyses. In this article,
we proposed the MetaQC evaluation tool to provide
quantitative quality control and to assist selection of
studies into microarray meta-analysis. Six QC measures
were developed (Table 1). A PCA biplot and a SMR
score were used to recommend the final decision (Figure
2). In the evaluation, we examined the impact of DE gene
detection and pathway identification when studies were

sequentially added in the meta-analysis by SMR score
(Figures 3 and 4). Confirming our hypothesis, the result
showed general adverse effects of adding problematic
studies into meta-analysis. These adverse effects were
shown more clearly in pathway analysis than in DE gene
detection. Simulations by ‘spike-in” a known outlying
study into the meta-analysis found further validation of
the effectiveness of MetaQC (Figure 5). The ‘spiked-in’
studies generally serve well as good negative controls to
suggest filtering threshold. In conclusion, the proposed
MetaQC evaluation system provides excellent quality
evaluation for selecting studies into meta-analysis.

The ‘MetaQC’ package in R has been published in
CRAN library (http://cran.r-project.org/). By its nature
of dealing with multiple high-throughput experimental
datasets, demand of computing is extensive but is afford-
able in the current R package using a regular computing
machine (Intel Core 2 Duo Processor CPU and 4GB
memory). Computing of IQC, AQC and CQC generally
took 5-20min for all examples except that the larger
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MDD example needed 40 min to calculate IQC. EQC was
the most demanding task due to permutation analyses in
the algorithm. It took 3-7h for prostate, brain and IPF
examples and needed ~130h for the MDD example.
Rewriting the R code using more efficient C language or
adopting parallel computing will solve the computing
bottleneck if application to larger data sets is needed.

One has to note that MetaQC is not meant as a fully
automated decision tool. Any attempt of such automation
overlooks the complexity and heterogeneity involved in
the high-throughput experiments and is likely to fail.
The users are recommended to use the PCA biplot visual-
ization tool, SMR scores and spike-in thresholds to obtain
a first-step quality summary. Review of technical, clinical
and biological information of the studies (such as sample
size, platform, tissue collection, experimental protocols or
demographics) help validate and understand the causes of
problematic studies that should be excluded. In our evalu-
ations, we tested four examples that covered different situ-
ations one might encounter in a genomic meta-analysis.
The brain cancer example and IPF example are prototypes
of strong signal and generally homogeneous studies. On
the other hand, the prostate cancer example had strong
signal but heterogeneous studies. Finally, the MDD
example highlights the necessity of robust meta-QC for
studies with overall weak signal. Weak signals may come
from disease heterogeneity, complex biological disease
mechanisms and use of post-mortem brain tissues, and
will thus apply to other cases. Results from these different
examples are consistent and support the validity of the
MetaQC method.

The current MetaQC method is mainly developed for
microarray meta-analysis. One future direction is to
extend and tailor the QC measures and visualization and
summarization tools developed in this article to other
types of genomic meta-analysis, such as genome-wide as-
sociation studies (GWAS) or the increasingly popular
sequencing based data. In addition to meta-analysis of
one type of genomic data, integrative analysis to
combine information from multiple types of genomic
data (e.g. combining gene expression, genotyping, copy
number variation, methylation and miRNA for a given
cohort of patients) has drawn increasing attention. We
can foresee in the near future that multiple patient
cohorts recruited in different medical centers may all
be analyzed by the list of aforementioned high-throughput
techniques independently. Meta-analysis of multi-
dimensional data sets will bring new challenges and its
quality evaluation or heterogeneity assessment will be
another future research direction.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online:
Supplementary figure S1.
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