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Abstract: Squalene synthase (SQS), a key downstream enzyme involved in the cholesterol biosynthetic
pathway, plays an important role in treating hyperlipidemia. Compared to statins, SQS inhibitors have
shown a very significant lipid-lowering effect and do not cause myotoxicity. Thus, the paper aims to
discover potential SQS inhibitors from Traditional Chinese Medicine (TCM) by the combination of
molecular modeling methods and biological assays. In this study, cynarin was selected as a potential
SQS inhibitor candidate compound based on its pharmacophoric properties, molecular docking
studies and molecular dynamics (MD) simulations. Cynarin could form hydrophobic interactions
with PHE54, LEU211, LEU183 and PRO292, which are regarded as important interactions for the
SQS inhibitors. In addition, the lipid-lowering effect of cynarin was tested in sodium oleate-induced
HepG2 cells by decreasing the lipidemic parameter triglyceride (TG) level by 22.50%. Finally. cynarin
was reversely screened against other anti-hyperlipidemia targets which existed in HepG2 cells and
cynarin was unable to map with the pharmacophore of these targets, which indicated that the
lipid-lowering effects of cynarin might be due to the inhibition of SQS. This study discovered cynarin
is a potential SQS inhibitor from TCM, which could be further clinically explored for the treatment
of hyperlipidemia.

Keywords: hyperlipidemia; squalene synthase (SQS); molecular modeling; drug discovery;
Traditional Chinese Medicine

1. Introduction

Hyperlipidemia, characterized by abnormally-elevated levels of cholesterol in the blood, is
one of the main risk factors for atherosclerosis and visceral obesity [1]. Reduction of cholesterol
can be achieved by inhibiting cholesterol biosynthesis [2]. To date, human HMG-CoA reductase
(hHMGR) inhibitors such as statins are the most effective medicines for reducing cholesterol levels.
However, these statins have potential adverse effects, such as myotoxicity, hepatotoxicity and even
rhabdomyolysis [3]. The major cause of these side effects is the inhibition of HMG-CoA reductase
that will interfere with the synthesis of many nonsteroidal isoprenoid molecules, which plays a
major role in diverse cellular functions [4]. Compared to HMG-CoA reductase, squalene synthase
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(SQS), a key downstream enzyme involved in the cholesterol biosynthetic pathway, is regarded as
an attractive target for anti-hyperlipidemia [5]. SQS is the first step of the steroid synthesis pathway,
which means the inhibition of SQS can prevent the cholesterol biosynthesis without interrupting
isoprenoid production [6]. Due to its strategic location in the pathway, inhibitors of SQS are promising
drugs for the treatment of hyperlipidemia.

At present, chemical synthesis [7] and genetic engineering methods [8] are utilized to discover SQS
inhibitors, which requires much time and money. Traditional Chinese Medicine (TCM) has been widely
used in the treatment of hyperlipidemia with low cost and minimal adverse effects. For example,
Fructus Crataegi and Salviae Miltiorrhizae are the most well-known used Chinese herbs for treating
hyperlipidemia [9,10]. Although TCM has played an important role in drug discovery for treating
hyperlipidemia for a long time due to its rich natural resources, there are few studies at present on
the discovery of SQS inhibitors from TCM. Thus, it is of great importance to discover potential SQS
inhibitors from TCM. In [11] the authors researched SQS inhibitors by using molecular docking and
virtual screening methods but the shortcoming of the study was the lack of biological assays to verify
the accuracy of the results.

In our study, we provide a reliable strategy to discover potential SQS inhibitors from TCM by the
combination of molecular modeling methods and biological assays. First, ten HipHop pharmacophore
models were generated based on known SQS inhibitors. The optimal pharmacophore model was
selected by four validation indices and used as a query to screen potential SQS inhibitors from the
Traditional Chinese Medicine Database (TCMD, Version 2009). Molecular docking was employed
to refine the pharmacophore model hits and analyze the protein-ligand binding modes. Then,
MD simulations were performed to validate the binding stability between the compounds and
the protein. The potential SQS inhibitors were selected based on the fitvalue, docking score, and
interactions formed between the ligands and SQS. In addition, the compounds were evaluated for
the lipid-lowering effect in sodium oleate-induced HepG2 cells. Finally, the active compounds were
utilized to reversely identify the other anti-hyperlipidemia targets existed in HepG2 cells to further
evaluate the lipid-lowering effect was due to the inhibition of SQS. This study aims to discover potential
SQS inhibitors from TCM, which also provide the candidate compounds for the clinical treatment
of hyperlipidemia.

2. Results

2.1. Pharmacophore Model Studies

Ten pharmacophore models were generated based on twenty-two SQS inhibitors by the HipHop
method within the Discovery Studio 4.0 (DS) from Accelrys (San Diego, CA, USA). All of the models
had high rank scores (154.43–157.40, Table 1), which indicated that compounds in the training set
mapped well with generated pharmacophore models. The test set was applied for evaluating the
generated ten pharmacophore models based on the three evaluation indices as follows: hit rate of
active compounds (HRA), identify effective index (IEI) and comprehensive appraisal index (CAI). HRA,
IEI and CAI are defined by Equations (1)–(3), where D represents the total number of compounds in
the test set and A represents the number of active compounds in the test set. Ht is the total number
of hit compounds from the test set and Ha represents the number of active hit compounds from the
test set. HRA represents the ability to identify active compounds from the test set. IEI, the index of
effective identification, is used to evaluate the ability of the models to identify active compounds from
the inactive compounds. CAI is the comprehensive evaluation of pharmacophore model [12]:

HRA =

(
Ha
A

)
× 100 (1)
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IEI =

(
Ha
Ht

)
A
D

(2)

CAI = HRA × IEI (3)

The evaluation results of the 10 pharmacophore models are shown in Table 1. The calculation of
the HRA index returned values greater than 80% for nine of 10 models, revealing the high accuracy of
the generated pharmacophore models. The rank score represents the total score of how the training set
fits the pharmacophore, and the best model has the highest rank [13]. Hypo1 had the highest rank
score of 157.40. Therefore, Hypo1 was selected as the optimal pharmacophore model. In general, scores
of HRA, IEI and CAI above the values of 80%, 2, and 2 are considered excellent. HRA, IEI and CAI of
Hypo1 were 94.16%, 2.26, and 2.12, respectively. As shown in Figure 1a, Hypo1 contained one hydrogen
bond acceptor (A), two hydrophobic features (H), one aromatic ring (R), and five excluded volumes
(Ev). In order to validate the veracity of the best pharmacophore model, the crystallographic ligand of
D99 and the positive SQS inhibitor of TAK-475 [14] were mapped with the optimal pharmacophore
model. Both compounds mapped well with all the features of Hypo 1, which are shown in Figure 1b,c.

Table 1. The Validation Results of the Pharmacophore Models.

Hypo Feature Rank D A Ha Ht HRA IEI CAI

1 RHHAEv5 157.40 616 154 145 256 94.16% 2.26 2.12
2 RHHAEv5 156.97 616 154 147 290 95.45% 2.03 1.93
3 RHHAEv5 156.45 616 154 138 271 89.61% 2.04 1.83
4 RHHAEv5 155.73 616 154 138 278 89.61% 1.99 1.78
5 RHHAEv5 155.62 616 154 147 265 95.45% 2.22 2.12
6 RHHAEv5 155.54 616 154 151 268 98.05% 2.25 2.21
7 RHHAEv5 154.89 616 154 106 247 68.83% 1.72 1.18
8 RHHAEv5 154.67 616 154 126 219 81.81% 2.30 1.88
9 RHHAEv5 154.43 616 154 144 267 93.50% 2.16 2.02
10 RHHAEv5 154.43 616 154 143 254 92.86% 2.25 2.09

Note: D is the total number of compounds in test set; A is the number of active compounds in the test set;
Ha is the hits number of active molecules mapped pharmacophores; Ht is the total hits number of molecules
mapped pharmacophores; HRA (hit rate of active compounds); IEI (identify effective index); CAI (comprehensive
appraisal index).
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Figure 1. (a) The optimal pharmacophore model Hypo1; Wherein, green features represent hydrogen
bond acceptor (A), light blue features represent hydrophobic features (H), orange features represent
ring aromatic (R) and gray features represent excluded volumes (Ev); (b) The mapping of the
crystallographic ligand with the optimal pharmacophore model Hypo1; (c) mapping of TAK-475
with the Hypo1.

According to the literature, researchers have constructed pharmacophore models of SQS [15,16].
We further compared our pharmacophore model to those of these researchers. First, the method used
for constructing the pharmacophore model was different. The pharmacophore models in the literature
were constructed by using the three-dimensional quantitative structure-activity relationship (3D-QSAR)
method, which belongs to the quantitative hypothesis models, while we built the pharmacophore
models by using HipHop method, which belongs to the qualitative hypothesis models. Second,
the structure of the training sets was different. The structures of the training set in the articles
were relatively simple, aimed at directing the structural modification of the potential compounds.
Our training set with structural diversity was used to screen active compounds with novel structures
from the database. Third, the purposes of the papers were different. The researchers used a training set
of ligands with activity values to derive 3D-QSAR pharmacophore models for prediction. Our HipHop
pharmacophore was built by using a training set of some active ligands to derive common feature
pharmacophores for lead identification. Fourth, the similarity analysis. The features of the 3D-QSAR
pharmacophore model and the HipHop pharmacophore such as hydrogen bond acceptor, hydrophobic
features, aromatic ring, and excluded volumes, were consistent, which indicated that our HipHop
pharmacophore was reliable and could be applicable to screen potential SQS inhibitors.

What is more, to further evaluate the reliability of the pharmacophore model, a 2D similarity
search was used to compare the similarity between the TAK-475 and the 22 ligands used in the
construction of the pharmacophore model based on 2D fingerprints [17]. During this process,
the positive SQS inhibitor of TAK-475 as the template molecule was chosen to search for similar
molecules in the 22 ligands, as the top-ranked molecules are likely to exhibit similar biological
activity [18]. The Tanimoto coefficient [19] was used to measure the similarity to find ligands that are
similar to TAK-475. In general, the range of Tanimoto coefficient values is from zero to one. A value
closer to one indicates a greater similarity between the ligand and TAK-475. There is no specific
standard for the threshold of Tanimoto coefficient to identify ligands, the Tanimoto coefficient value
of 0.3 was also set as threshold in some references to identify ligands [20]. From the results (Table 2),
the 22 ligands had Tanimoto coefficient values all higher than 0.45. In addition, the ligands with
Tanimoto coefficient values higher than 0.7 account for more than 60% of the 22 ligands. The result
indicated that these 22 ligands had similar structures compared to TAK-475, with similar biological
activity and could be used to construct the pharmacophore model.
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Table 2. Similarity search results of 22 ligands.

Tanimoto Coefficient a Number b Percent c

0 < T ≤ 0.4 0 0
0.4 < T ≤ 0.5 4 0.18%
0.5 < T ≤ 0.7 4 0.18%
0.7 < T ≤ 0.8 7 0.32%
0.8 < T < 0.9 5 0.23%
0.8 < T < 1.0 2 0.09%

a The Tanimoto coefficient is a similarity index. b Number is the number of ligands of the training set within in the
corresponding threshold value of the Tanimoto coefficient. c Percent is percentage of the number of ligands.

Then the Hypo 1 program was used to screen potential SQS inhibitors from the Traditional
Chinese Medicine Database (TCMD, Version 2009), before which the TCMD database was filtered
based upon the Lipinski’s rules, leaving 13,905 compounds. Then, a hit list of 1775 TCM compounds
were obtained for further docking studies.

2.2. Molecular Docking Studies

The binding pocket was defined with a default parameter of sphere radius of 9.16 Å around D99
of SQS. The D99 was re-docked into the active pocket by using two docking algorithms, LibDock and
CDOCKER, respectively. The RMSD values of D99 were 7.98 Å and 0.69 Å for the corresponding
two docking algorithms. The reason for such a high RMSD returned by LibDock, in comparison to
CDOCKER, may be ascribed to the differences between the two docking algorithms. LibDock is a kind
of semi-flexible docking method and CDOCKER is a flexible one. In addition, the LibDOCK algorithm
is a high-throughput algorithm for docking ligands into receptor binding sites [21]. The CDOCKER
algorithm uses a CHARMm-based molecular dynamics (MD) method to dock ligands into an active
receptor site [22]. The ligand can generate random conformations to form a favorable interaction
with the protein, which may cause a lower RMSD compared to LibDock. In general, an RMSD less
than 2.00 Å shows that the docking algorithm is fit for this protein-ligand binding mode. The closer
the RMSD is to zero, the better is the docking result [23]. Therefore, the CDOCKER algorithm is
appropriate and employed to perform molecular docking studies. The CDOCKER energy (kcal/mol)
and CDOCKER interaction energy (kcal/mol) of D99 were 51.30 and 61.78, respectively, which were
the scoring function of the CDOCKER algorithm. The CDOCKER energy indicated the energy of
the ligand-protein complexes, and the CDOCKER interaction energy represented the energy of the
ligands [24]. The interaction between the D99 and the protein was analyzed in detail, which is
shown in Figure 2a. D99 could form hydrogen bond interactions with PHE54, SER51, ARG52, SER53,
and generated hydrophobic interactions with PHE54, TYR73, VAL179, LEU183, LEU211, and PRO292.

TAK-475 was then successfully docked into the active pocket, which further indicated the docking
model was reasonable. The CDOCKER energy and CDOCKER interaction energy of TAK-475 were
55.34 and 74.39, which were both higher than the scores of D99. The interaction between TAK-475
and the active site was further analyzed. TAK-475 formed the hydrogen bond interactions with
GLN212, and formed the hydrophobic interactions with PHE54, ALA176, VAL179, LEU183, LEU211,
and PRO292 (shown in Figure 2b). D99 and TAK-475 both formed hydrophobic interactions with
PHE54, VAL179, LEU183, LEU211, and PRO292. Thus, these amino acids were regarded as key
residues, which is consistent with the literature [25,26].
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Figure 2. (a) the docking result of the crystallographic ligand with the crystal structure of SQS; (b)
the docking result of TAK-475; the pink dash line represented hydrophobic effect; the green dash line
represented hydrogen bond donor; the green amino acids represent hydrogen bond interactions; blue
amino acids represent hydrophobic interactions.

After that, the 22 ligands used in the construction of the pharmacophore model were docked into
the binding site of SQS for further demonstrating the key amino acids in receptor-ligand interaction.
By counting the frequency of hydrophobic amino acids formed by 22 compounds, the receptor-ligand
hydrophobic interactions column diagram shown in Figure 3 was generated. From the result, most of
the active compounds could form the hydrophobic interactions with LEU211, VAL179, LEU183,
ALA176, PHE54, PRO292, and MET207. This indicated that D99, TAK-475 and the 22 active compounds
all could form hydrophobic interactions with PHE54, VAL179, LEU183, LEU211, and PRO292,
which were considered to be important key amino acids and used as the reference for selecting
potential inhibitors.
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Figure 3. The frequency of hydrophobic amino acids formed by 22 compounds.

Then 1775 drug-like characteristic compounds which were filtered by the optimal pharmacophore
model and Lipinski’s rules were docked into the binding pocket of SQS. The threshold of the docking
score, which is mentioned in the material section of molecular docking, was used to select the potential
compounds, and then a hit list of 37 compounds was obtained. Among the 37 potential compounds,
cynarin, which got the high docking score and formed an important binding mode with SQS was
considered as the most promising candidate.
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More specifically, cynarin obtained a CDOCKER energy of 42.08 and CDOCKER interaction
energy of 52.92, and formed hydrogen bond interactions with PHE288, GLN212, ARG77, and CYS289,
and hydrophobic interactions with PHE54, LEU183, LEU211, and PRO292. The details are shown
in Figure 4. In addition, the docked pose of cynarin was screened with the pharmacophore model
to further ensure the docked pose fit the pharmacophore model. The result indicated that cynarin
was mapped with three features of the optimal pharmacophore model and the fitvalue was 0.66.
Moreover, one benzene ring A” of cynarin could form hydrophobic interactions with PHE54, LEU211,
and PRO292, which mapped with one H feature in the pharmacophore model. Another benzene ring
B” of cynarin formed hydrophobic interactions LEU183 and PRO292, and also mapped with another H
feature in the pharmacophore. Compared with D99 and TAK-475, cynarin formed similar hydrophobic
interactions with PHE54, LEU183, LEU211, and PRO292. Moreover, the features contained in the
pharmacophore model of Hypo1 and the specific hydrophobic interactions formed between cynarin
and SQS were consistent. The rationality of our pharmacophore model and molecular model were
also confirmed.
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2.3. MD Simulations

MD simulations were implemented to analyze the binding stability of SQS-cynarin, SQS-D99,
and SQS-TAK-475 under dynamic conditions. The RMSD of the protein backbone of each protein-ligand
complex were calculated to evaluate the stability of the system [27]. The RMSD trajectories of the
SQS-cynarin, SQS-D99 and SQS-TAK-475 complexes were equilibrated after 15 ns (shown in Figure 5a).
The root mean square fluctuation (RMSF) was further calculated to evaluate the flexibility of the
residues. The results were plotted using residue numbers at the simulation trajectory, which is shown
in Figure 5b. It can be observed that the SQS-cynarin complex exhibited a similar RMSF value in
comparison to the SQS-D99 and SQS-TAK475 complexes. The protein residues with lower RMSF value
are regarded as more stable [28]. Then, by analyzing the flexibility of the important hydrophobic
residues, including PHE54, LEU183, LEU211, and PRO292, these amino acids in the cynarin complex
had similar RMSF values as in the D99 and TAK-475 complexes (shown in Figure 5c), which were
regarded as important and stable hydrophobic interactions between cynarin and SQS.



Molecules 2018, 23, 1040 8 of 18

Molecules 2018, 23, x 7 of 17 

 

and hydrophobic interactions with PHE54, LEU183, LEU211, and PRO292. The details are shown in 
Figure 4. In addition, the docked pose of cynarin was screened with the pharmacophore model to 
further ensure the docked pose fit the pharmacophore model. The result indicated that cynarin was 
mapped with three features of the optimal pharmacophore model and the fitvalue was 0.66. 
Moreover, one benzene ring A’’ of cynarin could form hydrophobic interactions with PHE54, LEU211, 
and PRO292, which mapped with one H feature in the pharmacophore model. Another benzene ring 
B’’ of cynarin formed hydrophobic interactions LEU183 and PRO292, and also mapped with another 
H feature in the pharmacophore. Compared with D99 and TAK-475, cynarin formed similar 
hydrophobic interactions with PHE54, LEU183, LEU211, and PRO292. Moreover, the features 
contained in the pharmacophore model of Hypo1 and the specific hydrophobic interactions formed 
between cynarin and SQS were consistent. The rationality of our pharmacophore model and 
molecular model were also confirmed.  

 
(a) 

 
(b) 

 
(c) 

Figure 4. (a) The 2D structures of cynarin; (b) The mapping results of cynarin with Hypo1; (c) the 
docking result of cynarin with the crystal structure of SQS; the green amino acids represent hydrogen 
bond interactions; blue amino acids represent hydrophobic interactions. 

2.3. MD Simulations 

MD simulations were implemented to analyze the binding stability of SQS-cynarin, SQS-D99, 
and SQS-TAK-475 under dynamic conditions. The RMSD of the protein backbone of each protein-
ligand complex were calculated to evaluate the stability of the system [27]. The RMSD trajectories of 
the SQS-cynarin, SQS-D99 and SQS-TAK-475 complexes were equilibrated after 15 ns (shown in 
Figure 5a). The root mean square fluctuation (RMSF) was further calculated to evaluate the flexibility 
of the residues. The results were plotted using residue numbers at the simulation trajectory, which is 
shown in Figure 5b. It can be observed that the SQS-cynarin complex exhibited a similar RMSF value 
in comparison to the SQS-D99 and SQS-TAK475 complexes. The protein residues with lower RMSF 
value are regarded as more stable [28]. Then, by analyzing the flexibility of the important 
hydrophobic residues, including PHE54, LEU183, LEU211, and PRO292, these amino acids in the 
cynarin complex had similar RMSF values as in the D99 and TAK-475 complexes (shown in Figure 
5c), which were regarded as important and stable hydrophobic interactions between cynarin and SQS.  

 
(a) 

Molecules 2018, 23, x 8 of 17 

 

Figure 5. Cont. 

 
 

(b) (c) 

Figure 5. (a) The trajectory of MD simulations of three complexs: average protein RMSD; Blue, red 
and green bars represent for the data of D99, TAK-475 and cynarin, respectively; (b) Root mean square 
fluctuation (RMSF) corresponds to MD trajectory; (c) the analysis of hydrophobic residues implicated 
in docking. 

Then the binding free energy of the SQS-cynarin, SQS-D99, and SQS-TAK-475 complexes was 
calculated by the Molecular Mechanic-Poisson Boltzmann Surface Area (MM-PBSA) with 
GROMACS v5.0.2 [29], with the results listed in Table 3. The results indicated that SQS-cynarin, SQS-
D99, and SQS-TAK-475 complexes possessed a negative binding free energy of −210.39, −253.03 and 
−285.36 kJ/mol. Moreover, van der Waals, electrostatic interactions and non-polar solvation energy 
negatively contributed to the total interaction energy, while only polar solvation energy positively 
contributed to total free binding energy. Thus, the relative binding free energies of the SQS-cynarin, 
SQS-D99, and SQS-TAK-475 complexes indicated the strong binding in the dynamic system. To 
obtain a more detailed thermodynamic description of the residue contributions to the binding free 
energy, we decomposed the binding energy ΔGMM-GBSA on a per-residue level depicted in Table 4. The 
contribution of residue PHE54, LEU183, LEU211, and PRO292 to binding varies from −2.32 to −11.56 
kJ/mol, which could be identified as the key residues of SQS. Based on the consensus results among 
the pharmacophore based virtual screening and the docking/MD simulations, cynarin exhibited a 
key and stable interaction profile with SQS, being regarded as a potential SQS inhibitor.  

Table 3. The binding free energy (kJ/mol) of the three complexes. 

Complex Binding Energy Van der Waal 
Energy 

Electrostattic 
Energy 

Polar Solvation 
Energy 

SASA Energy 

SQS-cynarin −210.39 ± 11.00 −291.56 ± 10.01 −39.10 ± 1.36 144.01 ± 0.25 −23.83 ± 0.61 
SQS-D99 −253.03 ± 4.59 −310.59 ± 13.49 −36.47 ± 1.89 118.63 ± 6.81 −24.60 ± 0.20 

SQS-TAK-475 −285.36 ± 6.50 −374.76 ± 7.76 −32.18 ± 0.97 149.79 ± 1.23 −28.20 ± 0.95 

Table 4. The contribution of residues to binding free energy (kJ/mol). 

Complex PHE54 LEU183 LEU211 PRO292 
SQS-cynarin −10.56 ± 0.90 −2.32 ± 1.04 −11.55 ± 0.32 −5.40 ± 0.26 

SQS-D99 −11.56 ± 0.53 −5.04 ± 0.53 −10.15 ± 0.95 −9.44 ± 1.13 
SQS-TAK-475 −7.68 ± 0.49 −6.15 ± 0.10 −11.42 ± 1.39 −8.69 ± 0.96 

2.4. Experimental Result 

To test the lipid-lowering effect of cynarin (CAS number: 19870-46-3), sodium oleate-induced 
HepG2 cells were treated with various doses of cynarin (5, 10, 20, 40, and 80 μmol·L−1), and the 
positive compound pravastatin, respectively. The control group cells were cultured with only HepG2 
cells. The model control group cells were the hyperlipidemia cell model. The positive control group 
cells were cultured with pravastatin. Firstly, the MTT assay was utilized for the detection of cell 

Figure 5. (a) The trajectory of MD simulations of three complexs: average protein RMSD; Blue, red and
green bars represent for the data of D99, TAK-475 and cynarin, respectively; (b) Root mean square
fluctuation (RMSF) corresponds to MD trajectory; (c) the analysis of hydrophobic residues implicated
in docking.

Then the binding free energy of the SQS-cynarin, SQS-D99, and SQS-TAK-475 complexes
was calculated by the Molecular Mechanic-Poisson Boltzmann Surface Area (MM-PBSA) with
GROMACS v5.0.2 [29], with the results listed in Table 3. The results indicated that SQS-cynarin,
SQS-D99, and SQS-TAK-475 complexes possessed a negative binding free energy of −210.39,
−253.03 and −285.36 kJ/mol. Moreover, van der Waals, electrostatic interactions and non-polar
solvation energy negatively contributed to the total interaction energy, while only polar solvation
energy positively contributed to total free binding energy. Thus, the relative binding free energies of
the SQS-cynarin, SQS-D99, and SQS-TAK-475 complexes indicated the strong binding in the dynamic
system. To obtain a more detailed thermodynamic description of the residue contributions to the
binding free energy, we decomposed the binding energy ∆GMM-GBSA on a per-residue level depicted
in Table 4. The contribution of residue PHE54, LEU183, LEU211, and PRO292 to binding varies from
−2.32 to −11.56 kJ/mol, which could be identified as the key residues of SQS. Based on the consensus
results among the pharmacophore based virtual screening and the docking/MD simulations, cynarin
exhibited a key and stable interaction profile with SQS, being regarded as a potential SQS inhibitor.

Table 3. The binding free energy (kJ/mol) of the three complexes.

Complex Binding Energy Van der Waal
Energy

Electrostattic
Energy

Polar Solvation
Energy SASA Energy

SQS-cynarin −210.39 ± 11.00 −291.56 ± 10.01 −39.10 ± 1.36 144.01 ± 0.25 −23.83 ± 0.61
SQS-D99 −253.03 ± 4.59 −310.59 ± 13.49 −36.47 ± 1.89 118.63 ± 6.81 −24.60 ± 0.20

SQS-TAK-475 −285.36 ± 6.50 −374.76 ± 7.76 −32.18 ± 0.97 149.79 ± 1.23 −28.20 ± 0.95
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Table 4. The contribution of residues to binding free energy (kJ/mol).

Complex PHE54 LEU183 LEU211 PRO292

SQS-cynarin −10.56 ± 0.90 −2.32 ± 1.04 −11.55 ± 0.32 −5.40 ± 0.26
SQS-D99 −11.56 ± 0.53 −5.04 ± 0.53 −10.15 ± 0.95 −9.44 ± 1.13

SQS-TAK-475 −7.68 ± 0.49 −6.15 ± 0.10 −11.42 ± 1.39 −8.69 ± 0.96

2.4. Experimental Result

To test the lipid-lowering effect of cynarin (CAS number: 19870-46-3), sodium oleate-induced
HepG2 cells were treated with various doses of cynarin (5, 10, 20, 40, and 80 µmol·L−1), and the
positive compound pravastatin, respectively. The control group cells were cultured with only HepG2
cells. The model control group cells were the hyperlipidemia cell model. The positive control group
cells were cultured with pravastatin. Firstly, the MTT assay was utilized for the detection of cell
viability, with the result shown in Figure 6a. From the result, the five different concentrations of
cynarin were not cytotoxic to HepG2 cells compared to the control group (p > 0.05).

Then, the lipid-lowering effect of cynarin was evaluated in sodium oleate-induced HepG2 cells,
which is shown in Figure 6b. Compared to the control group, the plasma triglyceride (TG) level of the
model control group shows a significant difference with the control group (p < 0.001), which indicates
that the hyperlipidemia cell model could be used for evaluating the lipid-lowering activity of cynarin.
In addition, the pravastatin could decrease the TG level compared to the model group (p < 0.001),
which demonstrated the hyperlipidemia cell model was reliable. From the result, 20 µmol·L−1 cynarin
and 40 µmol·L−1 cynarin could both decrease the TG level, and there was no difference between
these two groups in statistics (p > 0.05). However, the result of 20 µmol·L−1 cynarin for reducing
the TG level was more reliable with a higher confidence interval (p < 0.01) compared to 40 µmol·L−1

cynarin (p < 0.05). Thus, the optimum concentration of cynarin was 20 µmol·L−1, which could decrease
the TG level by 22.50%. Cynarin was mildly cytotoxic to the sodium oleate-induced HepG2 cells at
80 µmol·L−1, so it may be speculated that the sodium oleate-induced HepG2 cells were more sensitive
compared to normal HepG2 cells. On the basis of the above analysis, cynarin could be a potential SQS
inhibitor for the treatment of hyperlipidemia.

Cynarin, also called 1,3-dicaffeoylquinic acid, was identified as a potential SQS inhibitor.
Cynarin is a common component of various TCM herbs such as Cynara scolymus, Cynara cardunculus,
and Senecio nemorensis. It was proved to have positive pharmacological choleretic, hepatoprotective,
anti-atherosclerotic, anti-oxidant, anti-cholinergic, antioxidative, anticarcinogenic effects and so on.
To be specific, for the anti-atherosclerotic effects, the researchers demonstrated that cynarin could
reduce the nitric oxide synthase (iNOS) activity and cynarin was the most effective with 3 µM [30].
For the hepatoprotective effects, the study with the rat hepatocytes indicated that 3 µM cynarin could
reduce tert-butylhydroperoxide (t-BPH)-induced malondialdehyde (MDA) production and EC50 value
of cynarin was 15.2 µg/mL [31]. For the anti-diabetic effects, the study demonstrated the potential
antiglycative effects of cynarin in the bovine serum albumin-glycose system, and cynarin could inhibit
the ability of advanced glycation end products (AGE) in a dose dependent manner (3 µM–40 µM) [32].
Meanwhile, consulting the literature, there are no reports about drug interactionz between cynarin
and other SQS inhibitors. Combining these results with our research, cynarin was proved to be a
potential SQS inhibitor, and in view of the extremely low toxicity of the cynarin, which provided a
new perspective for the treatment of hyperlipidemia.
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2.5. Anti-Hyperlipidemia Target Identification by Pharmacophore

To provide more evidence for the lipid-lowering effect of cynarin on SQS activity at the
molecular level, cynarin was utilized to reversely screen it against the pharmacophore models of
other anti-hyperlipidemia targets that exist in HepG2 cells. The fitvalue was used as an important
judgment index to represent the overlap degree between the compound and pharmacophore model [33].
According to the screening results, cynarin was unable to map with the pharmacophore models of
these commonly used targets, including 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) [34],
peroxisome proliferator-activated receptor-α (PPAR-α) [35], liver X receptor β (LXRβ) [36], cholesteryl
ester transfer protein (CETP) [37], and microsomal triglyceride transfer protein (MTP) [37], which is
shown in Figure S1. The result indicated that the lipid-lowering effects in HepG2 cells of cynarin might
due to the inhibition of SQS. In addition, based on the above results, cynarin is regarded as a promising
SQS inhibitor candidate and could be explored for the treatment of hyperlipidemia. The biological
activity of cynarin against other targets should also be studied in the future research.

3. Materials and Methods

3.1. HipHop Pharmacophore Hypotheses Generation

Among the library compounds 22 active compounds were selected as the training set and were
used to generate HipHop pharmacophore models by using DS 4.0 from Accelrys (San Diego, CA,
USA). The structure, ID numbers, and biological activity (IC50) values of the compounds are shown
in Figure 7. Then, 154 active compounds and 462 inactive compounds [38], which selected randomly
from the Binding Database, were regarded as the test set in order to validate the pharmacophore model.
The 3D structures of all the compounds were generated using the ‘Prepare Ligands’ module and
minimized in CHARMm force field [39]. The conformations of these compounds were created within
an energy threshold of 20 kcal/mol by using the BEST method. The maximum ligand conformations
were set to 255.

The HipHop pharmacophore models were constructed by extracting the common pharmacological
features from the 3D structure features of each compound in the training set [40]. The Principal and
MaxOmitFeat values are used to describe the activity of the compounds. The range of “Principle”
and “MaxOmitFeat” values are 0, 1 and 2. The “Principal” value is set to 2, representing the superior
activity of the compounds. The corresponding “MaxOmitFeat value is set to 0, which indicates that
no features that are allowed to be missed for each compound. Then, the “Principal” value is set to 0,
indicating the lower activity of the compounds.
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The corresponding “MaxOmitFeat value” is set to 2 to suggest that all features can be ignored
for these compounds [38]. The maximum excluded volumes (Ev) value was set to 5, and all the
other parameters were set at default values. The optimal pharmacophore model was selected based
on rank score, HRA, IEI, and CAI. Then, the crystallographic ligand and the positive SQS inhibitor
TAK-475 were used to map the optimal model to further evaluate the accuracy of the pharmacophore
model. In addition, in order to validate the reliability of the best pharmacophore model, based on 2D
fingerprints, similarity search method was utilized to compare the similarity between the 22 ligands
and the TAK-475.

The selected optimal pharmacophore model was then utilized to screen potential SQS inhibitors
from TCMD [41], before which the TCMD database was filtered based upon the Lipinski’s rules for
drug–likeness prediction [42]. The list of compounds with drug-like characteristics was regarded as
potential SQS inhibitors and were retained for molecular docking study.Molecules 2018, 23, x 11 of 17 
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3.2. Molecular Docking Studies

The crystal structure of the human SQS (PDB entry 3ASX, resolution 2.0 Å) was
obtained from the RCSB Protein Data Bank (PDB), which is complexed with an inhibitor,
(3R)-1-{4-[{4-chloro-2-[(S)-(2-chlorophenyl)(hydroxy)methyl]phenyl}(2,2-dimethylpropyl)amino]-4-
oxobutanoyl}piperidine- 3-carboxylic acid (D99) [43]. The protein was automatically cleaned up by
the Prepare Protein protocol for some common problems, such as incomplete residues, the lack of
hydrogens, the existence of crystallographic water and ligands [44]. The binding active pocket of
3ASX was determined around the crystallographic ligand using the Define and Edit Binding Site tools.
LibDock and CDOCKER, two common docking algorithms, were utilized to evaluate the applicability
for the docking studies. The crystallographic ligand D99 was extracted from the active pocket and
was then re-docked into the crystal structure by these two docking methods. The docking algorithm
with the smallest RMSD was used for the study. In addition, the positive SQS inhibitor TAK-475 was
docked into the active pocket of SQS, which further evaluated the rationality of the docking model.
Then the interactions between D99, TAK-475 and the active pocket of SQS were analyzed.

After that, the 22 ligands used in the construction of the pharmacophore model were docked into
the active binding pocket of SQS to further analyze the key amino acids. Then, the hit compounds
screened by the optimal pharmacophore model were docked into the binding site. Eighty percent
of the docking scores of D99 were regarded as the threshold value for identifying potential SQS
inhibitors from TCMD [45]. Finally, the compounds which got a high docking scores and formed
similar interactions to D99 and TAK-475 were obtained to evaluate the stability of the complex.

3.3. MD Simulations

A 30 ns MD simulation was employed to investigate the dynamic binding stability of the
complexes with GROMACS v5.0.2 using GROMOS96 43a1 force field [46]. Initially, the topology
parameters of SQS were obtained using the GROMACS program and the force field parameters
for the three ligands were derived from PRODRG server [47]. In each simulation, the complex was
solvated using simple point charge (SPC) water molecules [48] and five sodium ions were added by
replacing solvent molecules in order to neutralize the system. Each system consisted of ~22,800 waters
molecules and the solvent and ions around the protein were first equilibrated before collecting frames
for analysis. The energy minimizations were carried out using the steepest descent method with
5000 steps. The system was then subjected to two phases of equilibration for a period of 1500 ps at
300 K with position restraints on the protein and ligands (fc = 1000). A first 500 ps NVT equilibration
was performed using V-rescale thermostat coupling method [49] for temperature control in order to
relieve any bad contacts at the residues solvent interface [50]. Then a 1000 ps NPT equilibration was
conducted at 1.0 bar using Parrinello-Rahman barostat method [50] for pressure control. Upon the two
equilibration phases, the position restraints were released and MD simulations were produced.

By consulting the related literatures, for example, the researchers performed a relatively short
time (such as 10–30 ns) MD simulation to evaluate the binding stability during a dynamic environment
and analyze the key amino acids by a series of MD analysis tools such as RMSF, RMSD and the total
energy [51,52]. It makes sense and contributes to the whole paper for the discovery of the potential
compounds. Actually, 30 ns might still be a little short, but literatures have showed it could also give
key information for molecular modeling [53,54].

In addition, the MM-PBSA method has been widely utilized to study the receptor-ligand
interaction. For the three complexes including SQS-cynarin, SQS-D99, and SQS-TAK-475 system, free
energy calculations were performed for 10 snapshots extracted from the last 1 ns stable MD trajectory
using g_mmpbsa tool [55]. The MM-PBSA method can be summarized by the following equations.
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For each snapshot, the free energy was calculated for each molecular species (complex, protein
and ligand) and the binding free energy was computed by Equation (4). The free energy of each
component Gx in Equation (4) could be calculated taking in account three terms (Equations (5)–(8)):

∆Gbinding = Gcomplex − (Gprotein + Gligand) (4)

Gx = EMM + Gsolv − T∆S (5)

EMM = EvdW + Eele (6)

Gsolv = Gpolar + Gnonpolar (7)

Gnonpolar = γSASA + β (8)

GMM, the molecular mechanics energy, was calculated by the electrostatic and van der waals
interactions. Gsolv, the solvation free energy, was composed of the polar and the nonpolar contributions.
Polar solvation free energy could be obtained by solving the Poisson-Boltzmann equation for
MM/PBSA method, whereas nonpolar solvation free energy was determined using Solvent Accessible
Surface Area (SASA) model. T∆S represents the entropy term.

3.4. Experimental Validation

The lipid-lowering activity of the potential compound was evaluated by examining the inhibition
of the formation of lipid droplets in HepG2 cells in vitro. Bligh et al. [56] have reported an efficient
and rapid method of total lipid extraction and purification. Compared with this method, we used
sodium oleate-induced HepG2 cells to generate the lipid droplets [57]. The cells were grown at 37 ◦C
with 5% CO2 in DMEM solution containing 10% FBS and 1% penicillin/streptomycin.

Then cell viabilities were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) method [58]. In 96-well plates, HepG2 cells were seeded for 24 h at a density
2 × 104 cells/well, and then incubated at various concentrations of the compounds for another 24 h.
Then, each well was treated with 200 uL MTT working solution (5 mg·mL−1) and cultured for a
further 4 h. After removing the MTT, 150 uL dimethylsulphoxide (DMSO) was added to each well
for terminating response, and the plate was set to the table shaker for 5 min at a low speed. Then the
absorbance of cells was measured at 570 nm using microplate reader. The maximum concentration
of the compound that can be used for the assay was determined by the MTT cytotoxicity assay in
HepG2 cells.

To evaluate the lipid-lowering effect of the potential compounds, HepG2 cells were induced by
sodium oleate for establishing a model of hyperlipidemia [59]. The HepG2 cells were seeded in 6-well
plates at 20 × 104 cells/well for 24 h. Then, sodium oleate was added into the each well for producing
fat accumulation as model cells at 60 µg/mL concentration and incubated at another 24 h. The control
group cells were cultured without sodium oleate. It has been proved that SQS inhibitors could reduce
TG level through an LDL receptor-independent mechanism [60]. Tavridou et al. [61] demonstrated
that SQS inhibitors could significantly reduce the TG level in HepG2 cells. Moreover, other related
literature has indicated that SQS inhibitors can decrease the TG level in in vivo experiments [26,62].
To measure the lipidemic parameter triglyceride (TG) level, appropriate kits were utilized to analyze
the TG content in HepG2 cells.

3.5. Anti-Hyperlipidemia Target Profiling

Ligand profiler module is an important method to reversely identify the action targets for
candidate compound, and it is widely used for drug poly-pharmacology prediction of TCM [63].
In order to further illustrate the lipid-lowering effects of the active compound was caused by the
inhibition of SQS at the molecular level, a pharmacophore database of other anti-hyperlipidemia targets,
which exist in HepG2 cells, was built to assess the activity of the candidate. This anti-hyperlipidemia
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database contained five commonly used targets, including HMG-CoA, PPAR-α, LXRβ, CETP and
MTP. Initially, diverse conformations of the active compound were generated by BEST mode with
255 conformations, and the relative energy threshold was less than 20.0 kcal/mol. The generated
conformations were regarded as query to map with the anti-hyperlipidemia pharmacophore database
by flexible searching method.

4. Conclusions

The main purpose of this study was to screen potential SQS inhibitors from Chinese herbs using a
series of methods, including molecular modeling methods including pharmacophore model, molecular
docking, MD simulations, lipid-lowering experiments in HepG2 cells, and anti-hyperlipidemia target
profiling. From the result, cynarin, with high fitvalue, docking scores and predicted to form similar
and stable interactions with SQS (as suggested by the MD simulations) was selected as a potential
SQS inhibitor. Then, cynarin was investigated for its lipid-lowering effect on sodium oleate-induced
HepG2 cells, and it was shown to decrease the lipidemic parameter triglyceride (TG) level by 22.50%
using appropriate kits. Finally, to provide more evidence for the lipid-lowering effect of cynarin on
SQS activity, cynarin was utilized to reversely identify other anti-hyperlipidemia targets existing in
HepG2 cells, where it was unable to map with pharmacophores of these targets, which indicated that
lipid-lowering effect of cynarin was due to the inhibition of SQS to some extent.

By the combination of three different computational approaches and biological assays, cynarin
was selected as a potential SQS inhibitor and could be explored for the treatment of hyperlipidemia.
Furthermore, the established assay of sodium oleate-induced steatosis on HepG2 cells provided a rapid
method for evaluating the lipid-lowering effect of other compounds. According to the related literature,
it is very difficult and complex to obtain and purify the SQS protein. With the development of biological
experimental technique, the follow-up study can be a further validation that cynarin actually targets
SQS by western blotting. In conclusion, this study provided a promising SQS inhibitor candidate
compound for the treatment of hyperlipidemia. The combination of computational approaches and
biological assays contributed to the discovery of active compounds from TCM.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/23/5/1040/
s1, Figure S1.
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