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Abstract

In this study, we investigated temporal changes in galanin receptor type 2 (GalR2) expres-

sion in NF200-, galanin-, neuropeptide Y (NPY)-, and neuronal nitric oxide synthase

(nNOS)-like immunoreactive (LI) dorsal root ganglion (DRG) neurons after median nerve

chronic constriction injury (CCI), and the effects of GalR2 on c-Fos expression in the cune-

ate nucleus (CN). Double immunofluorescence labeling methods were used to appraise

changes in GalR2 expression in NF200-LI, galanin-LI, NPY-LI, and nNOS-LI DRG neurons

after CCI. The von Frey assay was used to assess the efficiency of intraplantar administra-

tion of saline, M871 (a GalR2 antagonist), or AR-M1896 (a GalR2 agonist) on neuropathic

signs of rats with CCI. The effects of alterations in c-Fos expression were assessed in all

treatments. The percentage of GalR2-LI neurons in lesioned DRGs increased and peaked

at 1 week after CCI. We further detected that percentages of GalR2-LI neurons labeled for

NF200, galanin, NPY, and nNOS significantly increased following CCI. Furthermore, M871

remarkably attenuated tactile allodynia, but the sensation was slightly aggravated by AR-

M1896 after CCI. Consequentially, after electrical stimulation of the CCI-treated median

nerve, the number of c-Fos-LI neurons in the cuneate nucleus (CN) was significantly

reduced in the M871 group, whereas it increased in the AR-M1896 group. These results

suggest that activation of GalR2, probably through NPY or nitric oxide, induces c-Fos

expression in the CN and transmits mechanical allodynia sensations to the thalamus.

Introduction

The cuneate nucleus (CN) receives innocuous tactile and proprioceptive signals from forelimb

areas through primary Aβ afferent fibers and relays the information to the contralateral thala-

mus [1–5]. Following median nerve injury, the CN also plays a role in transmission of neuro-

pathic pain signaling, which is partly mediated by changes in neuropeptide expression [1, 6–
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9]. Previous studies showed that median nerve injury leads to significant increase in neuropep-

tide Y (NPY) and neuronal nitric oxide synthase (nNOS) in the lesioned side of the CN and

cervical dorsal root ganglion (DRG) neurons [6, 8, 10]. Results of pharmacological and mor-

phological studies revealed that synthesis of nitric oxide potentiated NPY release from injured

median nerve terminals and subsequently evoked c-Fos expression in the CN [7, 10, 11]. The

expressions of the proto-oncogene c-fos and its protein product c-Fos have been widely used as

a neuronal marker of pain following noxious stimulation [12, 13]. Furthermore, microinjec-

tion of NPY receptor antagonist ameliorated median nerve injury-induced tactile hypersensi-

tivity and decreased c-Fos expression in the CN [7]. In addition, a previous study showed that

galanin is dramatically induced in the injured side of the CN following median nerve injury

[8]; however, detailed information about galanin immunolabeling in cervical DRG neurons

after median nerve injury is not available.

Galanin, a 29–30 amino acid neuropeptide, is widely distributed throughout the nervous

system. It affects pain threshold and has developmental and trophic effects [14, 15]. Galanin is

thought to play only a minor role in nociception under normal conditions. However, it may

have a critical role in modulation of nociception in neuropathic states [16–18]. In normal cir-

cumstances, galanin is expressed at low levels in rat lumbar DRG neurons, which are predomi-

nantly small-diameter C fibers [19–21]. Following sciatic nerve injury, galanin is upregulated

in lumbar DRG neurons [19, 22–24]. Both pro- and anti-nociceptive effects have been attrib-

uted to galanin, probably related to the activation of different receptors [25, 26]. In fact, three

galanin receptors (GalR) have been cloned so far: GalR1, GalR2, and GalR3 [23]. A pharmaco-

logical study demonstrated that GalR1 and/or GalR3 activation induced an anti-nociceptive

effect, while activation of GalR2 plays a pro-nociceptive role [27]. Although it is evident that

galanin and its receptors are involved in nociceptive and neuropathic pain, the impact of

median nerve injury on alterations in GalR2-like immunoreactive (GalR2-LI) neurons in the

DRG and their associations with NPY and nNOS expressions remain to be determined.

Therefore, in this report, we first assessed temporal changes in the amounts of galanin- and

GalR2-LI neurons in the DRG following median nerve chronic constriction injury (CCI). We

focused on characterizing whether GalR2-LI neurons are also associated with galanin, NPY, or

nNOS following CCI. To further assess the role of GalR2 in median nerve CCI-induced neuro-

pathic pain, we inspected neuropathic behavior signs and electrical stimulation-induced c-Fos

expression in the CN following intraplantar administration of the GalR2 antagonist, M871, or

the agonist, AR-M1896.

Materials and methods

Animal preparations

All animal experimental protocols were carried out in accordance with the UK Animals (Sci-

entific Procedures) Act, 1986, and were scrutinized and approved by the National Science

Council Committee as well as the Animal Center Committee, College of Medicine, National

Taiwan University, Taiwan (IACUCA approval no. 20120407). The use of animals followed

ethical guidelines from the International Association for the Study of Pain [28]. Male, Spra-

gue-Dawley rats weighing 200–250 g were used in this study and were housed in separate

cages at a temperature- (24 ± 1˚C) and humidity-controlled (50%-60%) room with a 12:12-h

light/dark cycle. The animals had access to food and water ad libitum.

Surgery

Anesthesia was induced by an intraperitoneal (i.p.) injection of a mixture of 25 mg/kg Zoletil

and 10 mg/kg xylazine. Under a dissecting microscope, the median nerve was surgically
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cleaned of its surrounding tissues at the level of the elbow just proximal to its entering between

the two heads of the pronator teres muscle. The nerve was constricted. In the CCI group, four

loose ligatures (4.0 chromic gut) were tied around the nerve, and the wound was sutured [7,

29, 30]. Animals were divided into a control group (naïve, n = 6) and a CCI group for 1

(n = 6), 2 (n = 4), 3 (n = 4), and 4 weeks (n = 4). In addition, in the median nerve transection

(MNT) group, the nerve was ligated with silk (5.0 silk), and about a 2-mm segment of its distal

end was removed [31], and survived for 1 week (n = 5).

Immunocytochemistry for morphological examination

The above-described animals were re-anesthetized with a mixture of Zoletil/xylazine (25/10

mg/kg, i.p.) and perfused with 150 ml of Ringer’s solution (containing 1% sodium citrate and

sodium nitrite at 4˚C) via the ascending aorta, followed by Bouin fixative (acetic acid: formal-

dehyde: picric acid = 1:5:15 at 22˚C). After that the C6 DRGs were dissected and post-fixed in

the same fixatives overnight, and then embedded in paraffin mixtures. Serial sections were cut

at a 7-μm thickness with a Reichert-Jung histomicrotome 820 (Buffalo, NY, USA), mounted

on glass slides, and dried on a hot plate (37˚C). Slides containing sections were deparaffinized

in xylene, and rehydrated in decreasing ethanol concentrations to distilled water before anti-

gen retrieval (RHS-1, Milestone, Sorisole-Bergamo, Italy, 100˚C) in 0.01 M sodium citrate

buffer (pH 6). The retrieved sections were treated with 0.5% H2O2 for quenching endogenous

peroxidase activity, and then blocked with 5% normal horse serum (NHS, GibcoBRL, Grand

Island, NY, USA) in phosphate-buffered saline (PBS) for 1 h. After rinsing with PBS, the sec-

tions were incubated in a rabbit anti-galanin antibody (1:1000, Millipore, Billerica, MA, USA)

or goat anti-GalR2 antibody (1:400, Santa Cruz, Dallas, TX, USA) for 48 h at 4˚C. The primary

antibody was diluted in 0.1 M Tris-buffered saline (TBS, pH 7.4), containing 0.2% Tween-20

and 0.1% bovine serum albumin (BSA, Sigma-Aldrich, St. Louis, MO, USA). After sections

were rinsed with PBS, they were incubated in Cy3-conjugated anti-rabbit immunoglobulin G

(IgG; 1:200, Jackson ImmunoResearch, West Grove, PA, USA) or FITC-conjugated anti-goat

IgG (1:200, Jackson) for 2 h at room temperature. Sections were mounted with Fluoro-Gel

(EMS, Hatfield, PA, USA) and evaluated with a Leica TCS SP5-laser scanning confocal micro-

scope (Wetzlar, Hesse, Germany).

For fluorescence double-labeling, DRG sections of control and CCI1W rats were collected

and treated with 0.5% H2O2, blocked with 5% normal donkey serum (NDS, GibcoBRL) in

phosphate buffer (PB) for 1 h, and incubated in goat anti-GalR2 (1:200, Santa Cruz), mouse

anti-NF200 (1:1600, Sigma-Aldrich), rabbit anti-galanin (1:200, Alomone, Jerusalem, Israel),

anti-NPY (1:200, Peninsula, San Carlos, CA, USA), or anti-nNOS (1:300, Sigma-Aldrich) anti-

bodies for 48 h at 4˚C. The primary antibodies were diluted in 0.1 M PB (pH 7.4) containing

0.2% Triton X-100 and 5% NDS. After rinsing in PBS, sections were incubated in FITC- or

Cy3-conjugated anti-goat IgG (1:100, Jackson), FITC-conjugated anti-mouse or Cy3-conju-

gated anti-rabbit IgG (1:200, Jackson) for 2 h at room temperature. Sections were mounted

and evaluated with a Leica TCS SP5-laser scanning confocal microscope. This evaluation

included the selection of a laser gain setting used to image GalR2 + NF200, GalR2 + galanin,

GalR2 + NPY, and GalR2 + nNOS double-labeling. Individual fluorescence images of Cy3 and

FITC were captured and merged using Leica LAS AF software for further quantification.

GalR2 agonist and antagonist on behavioral signs

One week before the median nerve CCI, rats were acclimatized and drilled for 3 days on all

behavioral tests, followed by a baseline measurement of the tests at 1 day before CCI. Behav-

ioral tests were repeated once every 2 days for 1 week following CCI. Five days after the CCI,

Galanin receptor type 2 and mechanical hypersensitivity
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rats displayed mechanical hypersensitivity, and were further given an intraplantar injection of

30 μl saline, M871 (Tocris Bioscience, Bristol, UK, 0.1 μM/paw) (1.2x10-8 mmol/kg), or

AR-M1896 (Tocris Bioscience, 0.1 μM/paw) (1.2x10-8 mmol/kg) [27] (each group, n = 10).

The behavioral tests were assessed 15 min before and at 30, 60, 90, and 120 min after drug

application. All behavioral assessments were obtained by an investigator blinded to the treat-

ment groups.

Mechanical allodynia was evaluated by means of von Frey filaments [32]. von Frey fila-

ments (Semmes-Weinstein Monofilaments, North Coast Medical, Gilroy, CA; USA) of differ-

ent bending forces, including 0.6, 1.0, 1.4, 2.0, 4.0, 6.0, 8.0, 10.0, 15.0, and 26.0 g, were used to

examine the mechanical threshold of the rat forepaws [1, 7]. Briefly, tests were started with the

smallest bending force and continued in increasing order. Each filament was applied five times

in the medial surface of a forepaw; the first filament in the series that evoked withdrawal three

times was regarded as the paw withdrawal threshold. Thresholds of individual rats in each

group were averaged, and results are presented as the mean and standard error of the mean

(mean ± SEM).

Electrical stimulation

On the 7th day after CCI, a second dose of saline, M871, or AR-M1896 was administered 15

min prior to electrical stimulation. The animals were anesthetized intraperitoneally with a

mixture of Zoletil/xylazine and the median nerve was carefully exposed and dissected free.

Bipolar silver hook electrodes were placed beneath the isolated median nerve immediately

proximal to the level of the elbow joint, at least 5 mm proximal to the constricted site. The

exposed segment of the nerve was immersed in paraffin oil, and a 10-min pulse train of electri-

cal stimulation was discharged with a 0.1-ms duration, 10-Hz frequency, and 0.1-mA intensity

from a stimulator (Grass S88, Warwick, RI, USA) via a constant-current unit (Grass CCU1A)

[1, 33]. For sham stimulation in half of the respective treatment groups, the median nerve was

placed on stimulating electrodes, but no electrical stimulation was applied.

Tissue preparation and immunohistochemistry

Two hours after electrical or sham stimulation, rats were re-anesthetized with a mixture of

Zoletil (25 mg/kg) and xylazine (10 mg/kg) and perfused with 500 ml 4% paraformaldehyde

in 0.1 M PB (pH 7.4). The brain stem containing the CN was harvested, post-fixed with the

same fixative for 2 h, and stored in PB containing 30% sucrose. Tissue blocks were cut trans-

versely into 30-μm-thick serial sections and divided in order into four sets. One of the four

serial sections were treated with 1% H2O2 and blocked with 5% normal goat serum in 0.1 M

PB containing 0.2% Triton X-100 for 2 h. They were incubated in rabbit anti-c-Fos (1:2000,

Calbiochem, San Diego, CA, USA) antibody at 4˚C for 48 h. After several washes, sections

were processed with biotinylated goat anti-rabbit antiserum (Vector, Burlingame, CA, USA)

for 2 h at room temperature, and processed with avidin-biotin-horseradish peroxidase (HRP)

complex (ABC kit, Vector), and visualized with a Vector1 SG Substrate Kit. Finally, they were

mounted onto gelatinized slides and their images were captured with a digital camera (Nikon,

D1X, Tokyo, Japan) through a light microscope to measure c-Fos-LI cells in the CN.

Image analysis and statistical analysis

All assessments of galanin-LI, GalR2-LI, NPY-LI, nNOS-LI, NF200-LI and double-labeled

neurons in C6 DRGs and c-Fos-LI neurons in the CN were undertaken by a researcher blinded

to the treatments. To evaluate changes in their expression patterns, sections were inspected

with a Zeiss light microscope (Oberkochen, Baden-Württemberg, Germany) or Leica TCS

Galanin receptor type 2 and mechanical hypersensitivity
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SP5-laser scanning confocal microscope. Images were captured with a Nikon digital camera or

confocal microscope at 200x magnification. Numbers of neutral red-labeled, galanin-LI,

GalR2-LI, and double-labeled (GalR2 + galanin, GalR2 + NPY, GalR2 + nNOS, GalR2

+ NF200, galanin + NF200, NPY + NF200, and nNOS + NF200) neurons were measured from

every 10th DRG section of a series. The percentage of double-labeled neurons was defined as

the number of double-labeled neurons divided by the total number of neutral red-stained neu-

rons (in an adjacent section) [6], and was then statistically compared using the Student’s t-test.

The numbers of galanin-LI and GalR2-LI neurons divided by the total number of neutral red-

stained neurons were defined as the percentages of galanin-LI and GalR2-LI neurons. Percent-

ages of galanin-LI and GalR2-LI neurons in the MNT and CCI DRG at different time points

were calculated and statistically compared using a two-way analysis of variance (ANOVA) and

Bonferroni’s post-hoc tests. Furthermore, galanin-, GalR2-, NPY-, and nNOS-LI neurons with

a visible nucleus were classified as small (<32 μm in diameter), medium (32–50 μm in diame-

ter), and large-sized (>50 μm in diameter) as described previously [34, 35]. For quantitative

analysis, sections of the middle CN, which was defined as an area 0.3~0.7 mm caudal to the

obex [1, 36], were collected from the entire rostrocaudal extent of the CN. Four sections were

collected from the middle region of each animal. The mean number of c-Fos-LI cells in the CN

was defined as the number of surveyed c-Fos-LI cells divided by the number of tissue sections,

and was calculated and statistically compared with a one-way ANOVA and Bonferroni’s post-

hoc tests in the respective groups.

Results

Changes in galanin and GalR2 in DRGs after median nerve injury

Using immunohistochemistry, a few galanin-LI and GalR2-LI neurons were respectively

found in about 6% and 15% of surveyed neurons in control C6 DRGs, which were predomi-

nantly small-sized neurons (Figs 1A and 2A). Following median nerve CCI, amounts of gala-

nin-LI and GalR2-LI neurons increased, peaked at 1 week after injury, and were nearly 30% of

injured DRG neurons of all sizes (galanin-LI, 29.44% ± 1.96%; GalR2-LI, 34.40% ± 1.57%)

(Figs 1 and 2). Additionally, in the C6 DRGs of rats 1 week after median nerve transection

(MNT), we detected similar increases in both galanin-LI (29.16% ± 0.56%) and GalR2-LI neu-

rons (31.45% ± 0.66%) (data not shown). Then, we focused on characterizing GalR2-LI neu-

rons in C6 DRGs at 1 week after median nerve CCI.

Characterization of GalR2-LI neurons in the DRG after median nerve CCI

Under normal conditions, GalR2-LI neurons in the intact C6 DRG were almost all small-sized

cells and rarely colocalized with NF200 (2.36% ± 0.32%, n = 3) (Fig 3), which was considered

to be the A-type (large- or medium-sized) neuron marker. One week after CCI, the proportion

of NF200-LI neurons in the injured DRG did not dramatically differ from that in the control

group (naïve 33.91% ± 1.1% vs. CCI1W 34.95% ± 0.52%). But following CCI, increases in

amounts of galanin-LI neurons (Fig 4) and proportions of NPY-LI neurons (naïve 1.20% ±
0.02% vs. CCI1W 25.82% ± 0.23%) (Fig 5) and of nNOS-LI neurons (naïve 3.57% ± 0.29% vs.

CCI1W 12.00% ± 0.24%) (Fig 6) were detected in injured DRGs. Moreover, with double-label-

ing, percentages of GalR2-LI neurons in CCI DRGs colocalized with NF200 (naïve 2.36% ±
0.32% vs. CCI1W 14.19% ± 0.59%) (Fig 3), galanin (naïve 3.95% ± 0.23% vs. CCI1W 11.71% ±
0.44%) (Fig 4), NPY (naïve 0.49% ± 0.04% vs. CCI1W 5.17% ± 0.45%) (Fig 5), and nNOS

(naïve 2.33% ± 0.16% vs. CCI1W 9.06% ± 0.24%) (Fig 6) had significantly increased compared

to the control group. Percentages of galanin-LI and NPY-LI neurons labeled for NF200 in CCI

DRGs were dramatically higher than those in control DRGs, but none was detected in

Galanin receptor type 2 and mechanical hypersensitivity
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Fig 1. Photographs showing galanin-like immunoreactive (LI) neurons in the sixth cervical (C6) dorsal root

ganglion (DRG) at various time points after chronic constriction injury (CCI). A few galanin-LI neurons were

found in the C6 DRG of the naïve group (A). The number of galanin-LI neurons was detected to have increased in the

DRG at 1 (B) and 2 weeks (C) following CCI. Histograms (D) display the percentage of galanin-LI neurons in the DRG

at various time points following CCI. The percentage of galanin-LI neurons dramatically increased at 1 and 2 weeks

and reached a peak at 1 week after CCI in the injured DRG compared to the naïve DRG (�� p<0.01, ��� p<0.001,

compared to the naïve group. Scale bar = 50 μm).

https://doi.org/10.1371/journal.pone.0199512.g001

Fig 2. Photographs presenting galanin receptor type 2-like immunoreactive (GalR2-LI) neurons in the sixth

cervical (C6) dorsal root ganglion (DRG) at various time points after median nerve chronic constriction injury

(CCI). Several GalR2-LI neurons were observed in the C6 DRG of the naïve group (A). The number of GalR2-LI

neurons increased in the DRG at 1 (B) and 2 weeks (C) after CCI. Histograms show the percentage of GalR2-LI

neurons in the DRG at various time points following CCI (D). The percentage of GalR2-LI neurons in the DRG

significantly increased after CCI and reached the highest percentage in the CCI1W group (�� p<0.01, ��� p<0.001,

compared to the naïve group. Scale bar = 50 μm).

https://doi.org/10.1371/journal.pone.0199512.g002
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nNOS-LI neurons (naïve vs. CCI1W, galanin: 1.20% ± 0.07% vs. 5.81% ± 1.06%; NPY: 0.11% ±
0.07% vs. 19.43% ± 0.49%; nNOS: 2.12% ± 0.48% vs. 2.75% ± 0.60%) (Fig 7).

In the naïve group, galanin- and GalR2-LI neurons in the rat DRGs were mainly small-sized

(Table 1). One week after median nerve CCI, a significantly higher proportion of medium-sized

galanin- and GalR2-LI neurons were observed in DRGs compared to the naïve group. There

were no NPY-LI neurons detected in the naïve DRGs; by contrast, after median nerve injury,

NPY-LI neurons were evidently observed, and most of them were classified as medium- and

large-sized neurons. The size distribution of nNOS-LI neurons in the rat DRGs was similar

between the naïve and CCI groups, and the majority of those were small-sized neurons.

Effects of the GalR2 antagonist and agonist on CCI-induced neuropathy

After CCI of the median nerve, rats displayed lower von Frey withdrawal threshold values on

days 1~5 (Fig 8). To examine the role of GalR2 in neuropathic pain behavior, 5 days after the

Fig 3. Photographs showing double-labeling for galanin receptor type 2 (GalR2) (A, D), NF200 (B, E), and merged images (C, F) in dorsal root

ganglion (DRG) neurons of the naïve (A-C) and chronic constriction injury 1 week (CCI1W) (D-F) groups. Arrows indicate double-labeled

neurons which had substantially increased in DRGs after CCI1W (F). Histograms demonstrate changes in the percentage of GalR2-like

immunoreactive (LI) neurons associated with NF200 in naïve and CCI1W DRGs (G). The percentage of GalR2-LI neurons labeled for NF200 in the

DRG significantly increased in the CCI1W group (��� p<0.001, Scale bar = 50 μm).

https://doi.org/10.1371/journal.pone.0199512.g003

Fig 4. Photographs showing double-labeling for galanin (Gal) (A, D), galanin receptor type 2 (GalR2) (B, E), and

merged images (C, F) in dorsal root ganglion (DRG) neurons of the naïve (A-C) and chronic constriction injury 1

week (CCI1W) (D-F) groups. Numbers of both Gal-like immunoreactivity (LI) (A, D) and GalR2-LI (B, E) neurons

increased in the CCI1W group, and numerous GalR2-LI neurons with galanin (arrows) were found (F). Histograms

show changes in the percentage of GalR2-LI neurons associated with galanin in naïve and CCI1W DRGs (G). The

percentage of GalR2-LI neurons labeled for galanin in the DRG significantly increased in the CCI1W group (���

p<0.001, Scale bar = 50 μm).

https://doi.org/10.1371/journal.pone.0199512.g004
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CCI operation, rats were given an intraplantar injection of saline, M871 (a GalR2 antagonist),

or AR-M1896 (a GalR2 agonist). After M871 treatment, rats developed an increased with-

drawal threshold to mechanical stimulation at 60~120 min after application. Compared to the

saline group, the mechanical sensitivity was significantly relieved by M871 but slightly aggra-

vated by AR-M1896 only at 60 min (Fig 8).

On day 7 after CCI, rats that were treated on day 5 were given another dose of saline,

AR-M1896, or M871 15 min prior to electrical stimulation to examine the effects of drug appli-

cations on c-Fos expression in the CN (Fig 9). As previously described, in all CCI rats, numer-

ous c-Fos-LI neurons were exclusively detected in the stimulated group but not in the

unstimulated group. Following electrical stimulation of the CCI-treated median nerve, many

c-Fos-LI neurons in the CN were found in the saline group (Fig 9A). Interestingly, the number

of c-Fos-LI neurons had increased in the AR-M1896 group (Fig 9B), but had decreased in the

M871 group (Fig 9C). Compared to the saline group (23.5 ± 0.29 cells), there were a significant

increase in the number of c-Fos-LI neurons in the AR-M1896 group (32 ± 0.32 cells) and a sig-

nificant decrease in the M871 group (15 ± 0.45 cells) (Fig 9D).

Fig 5. Photographs displaying double-labeling of neuropeptide Y (NPY) (A, D) and galanin receptor type 2

(GalR2) (B, E) neurons in the dorsal root ganglion (DRG) of the naïve (A-C) and chronic constriction injury 1

week (CCI1W) (D-F) groups. GalR2-like immunoreactive (LI) neurons were detected in both the naïve and CCI1W

groups (B, E), but NPY-LI neurons were almost only found in the CCI1W group (D). The arrow indicates GalR2-LI

neuron with NPY in the injured group (F). Histograms show changes in percentages of GalR2-LI neurons associated

with NPY in naïve and CCI1W DRGs (G). The percentage of GalR2-LI neurons labeled for NPY in the DRG

significantly increased in the CCI1W group (�� p<0.01, Scale bar = 50 μm).

https://doi.org/10.1371/journal.pone.0199512.g005

Fig 6. Photographs displaying double-labeling for neuronal nitric oxide synthase (nNOS) (A, D) and galanin

receptor type 2 (GalR2) (B, E), and merged images (C, F) in dorsal root ganglion (DRG) neurons of the naïve

(A-C) and chronic constriction injury 1 week (CCI1W) (D-F) groups. Arrows indicate double-labeled neurons

which increased in the DRG after CCI1W (C, F). Histograms show changes in the percentage of GalR2-like

immunoreactive (LI) neurons associated with nNOS in the naïve and CCI1W groups in the DRG (G). The percentage

of GalR2-LI neurons coexpressed with nNOS in the DRG of the CCI1W group was significantly higher than that in the

naïve group (��� p<0.001, Scale bar = 50 μm).

https://doi.org/10.1371/journal.pone.0199512.g006
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Discussion

The present study revealed that median nerve injury upregulated amounts of galanin-LI and

GalR2-LI neurons in injured DRGs. By immunofluorescence double-labeling following

median nerve CCI, percentages of GalR2-LI neurons co-expressing NF200, galanin, NPY, and

nNOS immunoreactivity dramatically increased in injured DRGs. Treatment with the GalR2

antagonist, M871, ameliorated CCI-induced mechanical hypersensitivity, but it was exagger-

ated by the GalR2 agonist, AR-M1896. Moreover, the number of c-Fos-LI neurons in the CN

Fig 7. Photographs showing galanin-like immunoreactive (Gal-LI) (A, B), neuropeptide Y (NPY)-LI (D, E), and

neuronal nitric oxide synthase (nNOS)-LI (G, H) dorsal root ganglion (DRG) neurons labeled for NF200 in the

naïve (A, D, G) and chronic constriction injury 1 week (CCI1W) (B, E, H) groups. Arrows indicate double-labeled

neurons. Histograms show changes in percentages of Gal-LI (C), NPY-LI (F), and nNOS-LI (I) neurons associated

with NF200 in the naïve and CCI1W groups of the DRG. Percentages of Gal-LI and NPY-LI neurons labeled for

NF200 in CCI DRGs were dramatically higher than those in naïve DRGs (� p<0.05, �� p<0.001), but none was

detected in nNOS-LI neurons (Scale bar = 50 μm).

https://doi.org/10.1371/journal.pone.0199512.g007

Table 1. Number of galanin-, GalR2-, NPY- and nNOS-LI neurons in the DRG with regards to neuron sizes and experimental assignment.

Neuron size

Total N Small Medium Large

Galanin Naïve 542 537 (99.1%) 5 (0.9%) 0 (0%)

CCI1W� 673 543 (80.7%) 125 (18.6%) 5 (0.7%)

GalR2 Naïve 1017 1013 (99.6%) 4 (0.4%) 0 (0%)

CCI1W� 1380 1236 (89.6%) 128 (9.3%) 16 (1.1%)

NPY Naïve 0 0 (0%) 0 (0%) 0 (0%)

CCI1W� 310 4 (1.3%) 235 (75.8%) 71 (22.9%)

nNOS Naïve 312 304 (97.4%) 8 (2.6%) 0 (0%)

CCI1W 393 373 (94.9%) 20 (5.1%) 0 (0%)

N, number of immunoreactive neurons.

Numerical data are expressed as N (%) unless otherwise indicated.

�p < 0.05 compared with the corresponding naïve group.

https://doi.org/10.1371/journal.pone.0199512.t001
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was reduced by M871 treatment and was increased by AR-M1896 administration after electri-

cal stimulation of the CCI median nerve. The functional significance of an increase in the

number of GalR2-LI neurons in the DRG after CCI is discussed below.

After injury to the median nerve, the number of galanin-LI neurons in the injured DRG sig-

nificantly increased and was similar to previous reports [20, 37–39]. Of note, this study is the

first to demonstrate temporal changes in galanin and GalR2 expressions in the DRG after

median nerve CCI, and both increased as the peak was reached at 1 week after injury. More-

over, 1 week after MNT, the number of GalR2-LI neurons had also remarkably increased in

the injured DRG. This result differs from previous studies which showed downregulation of

GalR2 mRNA in the lumbar DRG after sciatic nerve transection [39, 40], but was comparable

to prior reports showing increases in GalR2 mRNA and immunoreactivity in the ipsilateral

DRG after peripheral tissue inflammation [40, 41]. The reason for this variance is not clear but

is likely due to different methods employed; i.e. in situ hybridization [39, 40] versus immuno-

histochemistry, or different segmental DRGs investigated could possibly have resulted in this

difference. Taken together, both CCI and transection of the median nerve may incur increased

percentages of GalR2-LI neurons in C6 DRGs.

The present study showed that the percentages of GalR2-, galanin-, and NPY-LI neurons

labeled for NF200 in the injured DRG were significantly increased after median nerve CCI,

suggesting that some of the above-mentioned injury-induced elements were expressed by

medium- or large-sized DRG neurons and may subsequently give rise to Aα/β primary affer-

ent fibers to the CN [1]. It has been shown that profound changes in galanin [8, 42] and NPY

Fig 8. Influence of the galanin receptor type 2 (GalR2) antagonist (M871) or agonist (AR-M1896) on median nerve chronic constriction injury

(CCI)-induced mechanical allodynia. The paw withdrawal threshold in response to mechanical stimuli with von Frey filaments was measured from 30

min after saline, M871, or AR-M1896 treatment in CCI rats. It is noteworthy that M871 treatment significantly suppressed mechanical allodynia at 60

min after drug administration compared to administration of saline (#P< 0.05). By contrast, CCI rats receiving AR-M1896 exhibited enhanced

mechanical allodynia at 60 min compared with those receiving saline, but the difference did not reach statistical significance. The dotted line indicates

the time of drug administration.

https://doi.org/10.1371/journal.pone.0199512.g008
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[7, 8] expressions in the CN following nerve injury are involved in the neuropathic pain mech-

anism. Characterization of upregulated GalR2-LI neurons in the injured DRG at 1 week after

CCI was used with immunofluorescence double-labeling for galanin, NPY, and nNOS. Of

note, this study is the first to show that amounts of GalR2-LI neurons containing galanin,

NPY, and nNOS in CCI DRGs were significantly higher than those in control DRGs. Burazin

and Gundlach reported that galanin and GalR2 mRNA levels increased in the ipsilateral facial

motor nucleus after facial nerve crush, and both displayed a similar temporal expression pat-

tern; therefore, the study suggests that the GalR2 may act as the active galanin “autoreceptor”

during nerve injury [43]. Then the functional role of injury-increased galanin activation of

GalR2 was thought to process pro-nociception [27, 44]. Moreover, the present study also pro-

vides novel evidence that many GalR2-LI neurons were labeled for NPY in the median nerve

CCI DRG, but not in the control group. Recent studies elucidated that median nerve injury-

induced NPY participates in development of tactile, but not thermal, hypersensitivity [7, 30].

This study further provides for the first time that the percentage of GalR2-LI neurons coloca-

lized with nNOS in CCI DRGs was significant higher than that in the control DRG. Our previ-

ous results showed that median nerve injury caused upregulation of the number of nNOS-LI

neurons in the cervical DRG and CN [10, 11]. The nNOS-LI neurons in the DRG were pre-

dominantly found to be small-sized and were previously regarded to function not only in

mechanical allodynia but also in thermal hyperalgesia after nerve injury via its synthesizing the

product NO [11, 45, 46]. Taken together, we speculate that increased proportions of galanin-,

NPY- and nNOS-containing GalR2-LI neurons in the DRG may make neuropathic pain pro-

cessing much more complicated; however, the exact functional role of each type of neurons

needs to be clarified in the coming studies.

Fig 9. Photographs showing c-Fos-like immunoreactive (LI) neurons in the middle region of the cuneate nucleus

(CN) following unilateral electrical stimulation of the injured nerve at 1 week after median nerve chronic

constriction injury (CCI) in the saline (A), AR-M1896 (B), and M871 (C) groups. Histograms show that the mean

number of c-Fos-LI neurons in the M871 treatment group was significantly less than that in the saline treatment group

(��� p<0.001) (D). In contrast to the M871 group, the numerous c-Fos-LI neurons in the AR-M1896 group were

significantly higher than those in the saline group (Scale bar = 50 μm).

https://doi.org/10.1371/journal.pone.0199512.g009
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The present intraplantar application of the GalR2 antagonist, M871, and agonist,

AR-M1896, significantly attenuated and aggravated mechanical allodynia, respectively, in CCI

rats. These behavioral findings are consistent with previous studies which demonstrated that

activating GalR2 augmented nerve injury-induced nociceptive behaviors [41, 47]. These data

indicate that GalR2 is a major candidate for mediating the peripheral excitatory effect of gala-

nin, which is strongly supported by the fact that high percentages of peripheral digital nerves

were labeled for galanin and GalR2 [41]. Comparing the present double-labeling results, the

percentage of GalR2-LI neurons labeled for NPY or nNOS after CCI was upregulated. Thus, it

is reasonable to assume that the increased GalR2-LI neurons play an important role in

mechanical allodynia development after CCI.

This study is also the first to demonstrate that the number of c-Fos-LI cells in the CN after

electrical stimulation of the injured nerve was reduced by M871 treatment and increased by

AR-M1896 application. The present results differ from a previous study which found that

AR-M1896 reduced the glutamate-induced c-Fos protein in primary neural hippocampal cells

[48]. Although the reason for this discrepancy remains uncertain, it might have been due to

differences in the dose applied or nuclei examined. Moreover, c-Fos-LI cells were only

detected in the CN with electrical stimulation of the CCI median nerve, but not in the CN

without stimulation. Based on our observation that GalR2-LI neurons contained NPY and/or

galanin, one possible explanation is that activation of GalR2 modulated injury-induced NPY

or galanin release from primary afferent terminals to induce c-Fos expression in the CN by

electrical stimulation. This speculation is supported by an earlier study that reduced NPY

expression and c-Fos induction are observed in the stimulated side of the CN following electri-

cal stimulation of the transected median nerve [7]. Furthermore, as to the functional signifi-

cance of c-Fos induction in the CN, it was previously reported that the density of c-Fos-LI cells

is positively correlated with the magnitude of mechanical allodynia [7, 30]. Molander et al.
reported that all c-Fos-LI cells in the spinal cord dorsal horn are neurons but not astroglia or

microglia after electrical stimulation of the transected sciatic nerve [49]. In previous studies,

we found that pronounced c-Fos expression is induced in the thalamic projection neurons of

the CN by electrical stimulation of injured median nerve in neuropathic rats [1, 7, 31]. It is

therefore proposed that after electrical stimulation of the injured median nerve, the induced

expression of c-Fos in the CN thalamic projection neurons may exert an ascending influence

on the thalamus for propagating the neuropathic pain signals. Taken together, injection of

AR-M1896, via binding to GalR2, activates the Gq/11 and subsequent Ca2+-phospholipase C-

dependent protein kinase C pathway [48, 50], which may lead to NPY and/or galanin release

from primary afferent terminals and c-Fos expression in the thalamic projection neurons of

the CN following electrical stimulation of the injured median nerve, and then provide the

ascending thalamic transmission of neuropathic pain signals. On the contrary, application of

M871, which competes with galanin for binding to GalR2 [27, 51], intercepts the above signal

transduction cascade.

Although many nerve injury studies have been carried out in hindlimb nerve models, in

particular the sciatic nerve, differences in nociceptive circuitry between forelimbs and hin-

dlimbs of rats were evident [52, 53]. Therefore, experimental results obtained from studies in

hindlimbs of rats may not be generalized and applicable to forelimbs. In addition, the majority

of human peripheral nerve injuries involve the upper limbs, and median nerve injury is com-

monly encountered as a result of laceration, fracture-associated stretch and contusion, com-

pression, and injection injuries [54, 55]. Patients with median nerve injury may experience

exquisite pain to tough over the affected sites, with even a light touch triggering a dispropor-

tionate pain reaction [54, 56]. In this study, we observed prominent changes in the mechanical

withdrawal threshold to light touch by von Frey filaments in a rat model of median nerve CCI.

Galanin receptor type 2 and mechanical hypersensitivity
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Thus, the animal model applied herein seems to simulate human upper limb neuropathy and

will be useful in studying for clinically relevant disorders.
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