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The central nervous system (CNS) is the most important section of the nervous system as it regulates the function of various
organs. Injury to the CNS causes impairment of neurological functions in corresponding sites and further leads to long-termpatient
disability. CNS regeneration is difficult because of its poor response to treatment and, to date, no effective therapies have been found
to rectify CNS injuries. Biomaterial scaffolds have been applied with promising results in regeneration medicine. They also show
great potential in CNS regeneration for tissue repair and functional recovery. Biomaterial scaffolds are applied in CNS regeneration
predominantly as hydrogels and biodegradable scaffolds.They can act as cellular supportive scaffolds to facilitate cell infiltration and
proliferation.They can also be combinedwith cell therapy to repair CNS injury.This review discusses the categories and progression
of the biomaterial scaffolds that are applied in CNS regeneration.

1. Introduction

Thecentral nervous system (CNS), which comprises the brain
and spinal cord, is the most important and complex part
of the nervous system. Two of the most common causes of
injury to the CNS are trauma [1] and hemorrhage [2]. For
example, approximately 1.5 million individuals in the USA
suffer traumatic CNS injury annually, which includes spinal
cord injury (SCI) and traumatic brain injury (TBI) [3, 4].
Injury to the CNS causes significant mortality andmorbidity,
which results in a heavy economic burden on society. It is
reported that, for 2010, the economic burden of TBI on the
US economy was approximately $76.5 billion [4, 5].

Pathologically, CNS injury can directly result in the death
of parenchymal cells in damaged tissue [6]. CNS injury can
also cause secondary injury, such as hemorrhage, edema, and
cell apoptosis due to the persisted inflammation caused by
accumulated immune cells after injury [7]. In the pathological
tissue, both neutrophils and macrophages adopt an inflam-
matory phenotype and release soluble factors, including
cytokines, proteolytic enzymes, and oxidative metabolites,
that exacerbate injury [8]. Leakage can also occur across

the blood-brain barrier (BBB), aggravating the inflammation
and damaging tissues [9–11]. The primary CNS injury in
combination with its subsequent side effects may cause long-
term disease and mortality [12–14]. Instinctive CNS repair
processes, including accumulation of endogenous stem cells,
inflammatory cells, and astrocytes; secretion of chemokines;
and formation of glia scar, occur spontaneously to mitigate
CNS injury [14, 15]. These mechanisms can partially rescue
the residual cells and repair injured tissues. However, the
endogenous repair mechanisms modify the components of
the extracellular matrix (ECM) of lesions and subsequently
cause further ECM degradation and remodeling [16, 17].
The chemokines (e.g., CCL-2, IL-6, and TNF-𝛼) secreted
by inflammatory cells can also aggravate local inflammatory
reactions [18, 19]. These microenvironmental changes cause
failure of stem cells to differentiate into nerve cells and also
impede axon regrowth by survival neurons [7, 16]. Further,
the glia scars formed by reactive astrocytes, microglia cells,
and deposited chondroitin sulphate proteoglycans (GMPGs)
separate the lesion from the surrounding tissue and hamper
CNS regeneration [15, 20, 21].

Hindawi
BioMed Research International
Volume 2018, Article ID 7848901, 19 pages
https://doi.org/10.1155/2018/7848901

http://orcid.org/0000-0001-7893-2412
http://orcid.org/0000-0001-5328-0710
https://doi.org/10.1155/2018/7848901


2 BioMed Research International

Recovery from CNS injury requires rescuing of the
surviving cells and axons, repairing damaged tissue, regen-
eration of severed axons, reconstruction of the connection
between the nervous process and soma, and rehabilitation
of the impaired neural functions. In recent years, with
developments in stem cell biology, cell therapies have been
introduced intoCNS regeneration [22, 23]. Numerous studies
have reported that transplantation of fetal tissue/stem cells
into damaged CNS tissues can give favorable results, such
as axonal regrowth and regeneration of neurons [24–26].
However, cell therapies have proven inadequate for certain
CNS injuries because when a lesion is too wide cell therapy
alone cannot repair it; extra physical support is needed to
enable engraftment of transplanted cells and cytoarchitecture
restoration [6, 24, 27, 28]. Consequently, there are currently
no effective therapies for CNS injury.

Biomaterial scaffolds have been studied in tissue regener-
ation for decades. They have been utilized for regeneration
of soft tissue, cartilage, bone, and the peripheral nerve
system (PNS) with favorable results [29–32]. Biomaterial
scaffolds have a three-dimensional (3D) architecture and
are designed to replicate the interaction between cells and
their native extracellular matrix (ECM) microenvironments
[33, 34]. They can also function as a reservoir for controlled
therapeutic molecule delivery or cell transplantation [35].
Recently, numerous studies have revealed that incorporation
of biomaterial scaffolds has promoted CNS tissue regener-
ation in repair of both SCI and TBI [36, 37]. It has been
shown that biomaterial scaffolds can repair CNS injury,
alter the microenvironment of lesions, and promote the
recovery of neural function [38, 39]. Thus, it is clear that
biomaterial scaffolds are playing an increasingly important
role in CNS regeneration.This review discusses the categories
of biomaterial scaffolds that are applied in CNS regeneration
as well as their effects.

2. Categories of Biomaterial Scaffolds Applied
in CNS Regeneration

Biomaterial scaffolds are used in effort to provide spe-
cific microenvironmental cues in 3D controlled fashion to
enhance cell survival, infiltration, and differentiation. Since
the revelation by David and Aguayo [40] of the significance
ofmicroenvironments in CNS repair, it has been asserted that
modulating hostile CNS microenvironments can improve
recovery from CNS injury. Biomaterial scaffolds and bio-
logical scaffolds are the two main scaffolds utilized in CNS
regeneration. Both types of scaffolds have a 3D topological
structure that can closely mimic the native extracellular
matrix (ECM). However, whereas biomaterial scaffolds are
composed of synthesized polymers or purified natural poly-
mers, biological scaffolds are usually in the form of decellu-
larized mammalian tissue [38, 41–43]. Further, biomaterial
scaffolds are superior to biological scaffolds in key parameters
such as architecture, pattern, biocompatibility, porosity, and
stiffness, and their degradation rate can be modulated more
easily and precisely [44].

Biomaterial scaffolds that serve as temporary ECM pro-
vide a niche for cell infiltration and differentiation. They

not only support the surrounding neural tissue but also act
as a substrate for cell growth, neurite formation, and axon
regeneration. They can also carry bioactive molecules that
can create a relatively stable, permeable, and nutritious envi-
ronment for regeneration [45–48]. Moreover, biomaterial
scaffolds can also be combined with cell therapies to form
“live” scaffolds.The combination of cell therapies and bioma-
terial scaffolds can provide physical support for transplanted
cell engraftment and isolate the implanted cell from the host
tissue to provide an independent microenvironment for cell
differentiation and proliferation (Figure 1) [49].

Based on required structure and physical and biological
properties of prospective tissue construct applied in CNS
injury, the biomaterial scaffolds utilized in CNS regeneration
can be further classified into hydrogels and biodegradable
scaffolds. In this section, we introduce the categories of
hydrogels and biodegradable scaffolds utilized in CNS regen-
eration.

2.1. Hydrogels. Hydrogels are an attractive scaffold substrata
owing to their high water content and porous inner structure,
which makes them soft and flexible and minimizes tissue
damage [50–53].Their 3D inner structure extends the surface
that makes contact with infiltrated cells and expands their
volume. Numerous studies have indicated that hydrogels can
promote cell adhesion, axon regeneration, andmyelination in
CNS injury both in vitro and in vivo [54–56].

Hydrogels can be classified into polymeric covalently
cross-linked hydrogels and self-assembled hydrogels accord-
ing to the forming mechanism [24, 51]. In polymeric cova-
lently cross-linked hydrogels, monomer units are linked by
covalent forces, which makes hydrogels more stable in alter-
ation of environment parameters such as pH and temperature
[30]. Because they are cross-linked through covalent forces,
polymeric covalently cross-linked hydrogels often appear
as having an aligned inner structure. High percentage of
covalent bonds between inner polymer molecules makes
covalently cross-linked hydrogels less deformable but stiffer.
Thus, they are usually implanted surgically [57, 58]. In
self-assembled hydrogels, monomer units are organized by
internal noncovalent forces, which results in themhaving soft
and deformable mechanical characteristics. The noncovalent
forces also cause self-assembled hydrogels to have randomly
oriented inner structures. Self-assembled hydrogels self-
assemble into hydrogels through the environmental PH or
temperature changes. Thus, they can be easily injected into
lesions [59, 60].

Hydrogel forming polymeric materials are classified as
either natural materials or synthetic materials [61]. Natural
materials are often used to produce polymeric covalently
cross-linked hydrogels. They are obtained from natural
resources such as hyaluronic acid from roster comb [62],
fibroin [63, 64], chitosan [65], collagen from the epithelial tis-
sue of calf [66, 67], and alginate from seaweed algae [68, 69].
Further, they are easy to acquire, contain specific molecules
for cell adhesion, are biodegradable, and are highly biocom-
patible [70, 71]. However, natural materials also have insuf-
ficiencies such as variations between batches, which makes
it hard to control the homogeneity of resulting scaffolds. In
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Figure 1: Application of biomaterial scaffolds in regeneration of central nervous system.

addition, the natural sources from which they are derived
may contain immune reaction-causing pathogens [72].

Ethyleneglycol monomethacrylate (HEMA) and ethylene
dimethacrylate (EDMA) are the first materials reportedly
used to synthesize polymeric covalently cross-linked hydro-
gels [73, 74]. Nowadays, the hydrogels created from synthetic
materials hydrogels that arewidely utilized inCNS are usually
synthesized from polyethylene glycol (PEG) [75], poly-N-
(2-hydroxyethyl) methacrylamide (PHEMA), or poly-N-(2-
hydroxypropyl) methacrylamide (PHPMA) [76–78]. Self-
assembling peptides (SAPs) are the main type of self-assem-
bled hydrogels. They have short, repeating units of amino
acids and altered polar and nonpolar residues that enable
them to form double-𝛽 sheet structures when dissolved in
water [79, 80]. The first reported SAP was EAK16-II [81].
Subsequently, other derivatives SAPs such as RADA16 and
KLDL12 family were developed as 3D scaffolds for cells [82–
85]. These scaffolds can mimic the structure of ECM and
functional sequences such as RGD can be added to their self-
assembling sequence to improve cell adhesion, proliferation,
differentiation, and maturation [86–88]. Peptide amphiphile
molecules (PAs) are another important class of SAPs. These
SAPs can change the interior array of hydrogels and improve
their regeneration effect in the nervous system [89, 90].
Moreover, SAPs hydrogels can also carry function molecules
such as homing peptides and neurotrophic factors to promote
regeneration (Table 1) [88].

2.2. Biodegradable Scaffolds. Biodegradable scaffolds are
biomaterials characterized by biodegradability and 3D inner
architecture. Their 3D porous structures are fabricated
through methods such as electrospinning, freeze-drying,

microfluidic fabrication, water emulsion, thermoforming,
and 3D printing [91–93].The scaffold should be progressively
replaced by the regenerating tissue, in order to last long
enough to permit cell infiltration and support axon regrowth;
moreover, their degraded product must be nontoxic [94].
Degradation of biodegradable scaffolds can occur by hydrol-
ysis and enzymatic degradation, or as a result of mechanical
and oxidative stress in vivo [95]. Their degradation rate can
be regulated through tuning degree of acetylation, stiffness of
scaffold, and changing the length of hydrolytically degradable
units within the polymer crosslink [24]. Biodegradable
scaffolds exhibit high biodegradability and biocompatibility
that minimize their side effects on tissues and attenuate
inflammation in lesions. Further, their mechanical property,
porosity, shape, and conduits alignment can be easily adjusted
through control of rate of cross-linking or concentration of
reactants and flow rate of extruded substrata in biofabrication
[96]. It has been asserted that biodegradable scaffolds are
suitable for utilization in nervous tissue as they can mimic
the microstructure and elastic modulus of the ECM of nerve
tissues [6, 97]. Moreover, biodegradable scaffolds can carry
ECM proteins, growth factors, or stem cells to generate func-
tional scaffolds [98, 99]. Biodegradable scaffolds are desirable
constructs to utilize in vivo as well as in vitro applica-
tions.

Biodegradable scaffolds can also be synthesized from
naturalmaterials or syntheticmaterials.The naturalmaterials
often used for this purpose include collagen [100], fibroin
protein (e.g., silk fibroin) [101], chitosan, and hyaluronic
acid [51, 102]. The synthetic materials that have been
used to synthesize biodegradable scaffolds include poly 𝜀-
caprolactone (PCL) [103], poly L-lactic acid (PLA), and
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Table 1: Natural materials scaffold applied in CNS.

Material Description Application in SCI Application in brain injury

Agarose

Hydrogel Functional recovery, tissue repair, delivering
neurotrophic factor, stem cell therapy [166]

Biodegradable
scaffold

Functional recovery, tissue repair, delivering
neurotrophic factor, axonal regeneration

[167]

Alginate
Hydrogel Functional recovery, tissue repair, delivering

neurotrophic factor [69, 168] Axonal regeneration [169]

Biodegradable
scaffold

Functional recovery, tissue repair, stem cell
therapy [170]

Cellulose Hydrogel Function recovery, axonal regeneration,
delivering neurotrophic factor.

Tissue repair, stem cell therapy,
anti-inflammation [171]

Chitosan

Hydrogel Function recovery, axonal regeneration,
anti-inflammation, stem cell therapy [172]

Function recovery, axonal regeneration,
delivering neurotrophic factor and drug

[173, 174]

Biodegradable
scaffold

Function recovery, axonal regeneration,
anti-inflammation, delivering neurotrophic

factor, stem cell therapy [175, 176]

Tissue repair, anti-inflammation, stem cell
therapy [177]

Collagen
Hydrogel Axonal regeneration, tissue repair, delivering

neurotrophic factor, stem cell therapy [178]
Cell survival, axonal regeneration, stem cell

therapy [179]
Biodegradable

scaffold
Function recovery, axonal regeneration,
tissue repair, stem cell therapy [180–182]

Function recovery, tissue repair, stem cell
therapy [183–185]

Fibrin

Hydrogel Cell survival, axonal regeneration [186, 187]
Function recovery, cell survival,

anti-inflammation, stem cell therapy
[156, 188]

Biodegradable
scaffold

Cell survival and proliferation, tissue repair,
anti-inflammation, stem cell therapy

[189, 190]
Tissue repair, stem cell therapy [191].

Gelatin

Hydrogel Cell survival, function recovery, axonal
regeneration, tissue repair [192]

Cell survival and proliferation, stem cell
therapy [193, 194]

Biodegradable
scaffold

Functional recovery, tissue repair, delivering
neurotrophic factor, stem cell therapy

[195, 196]

Tissue repair, anti-inflammation, stem cell
therapy [197, 198]

Hyaluronic acid Hydrogel

Function recovery, axonal regeneration,
tissue repair, anti-inflammation, delivering

neurotrophic factor, stem cell therapy
[62, 199, 200]

Cell survival, axonal regeneration, stem cell
therapy [201]

Xyloglucan Hydrogel Axonal regeneration, tissue repair, stem cell
therapy [202]

Axonal regeneration, tissue repair, stem cell
survival [203]

polyurethane [104, 105]. However, materials such as PCL
are hydrophobic, which may lead to poor cell interactivity
and further impede cell adhesion and proliferation [106]. To
solve this problem, copolymer biodegradable scaffolds have
been developed as a compromisemethod.Thismethod intro-
duces two or more different species into the polymer chain
of macromolecules to promote hydrophilicity in scaffolds.
The poly D,L-lactide-co-glycolic acid (PLGA) [107] and
poly 𝜀-caprolactone-co-ethyl ethylene phosphate (PCLEEP)
are common copolymers that are utilized in nerve system
regeneration [108]. Synthetic materials can also be combined
with other synthetic materials or natural materials to create
copolymers, such as PCL-PLGA scaffolds, which also com-
bines the properties of eachmaterial and intensifies the regen-
eration capacity of the scaffolds (Table 2) [107]. For synthetic

materials scaffolds, to achieve a specific degradation rate,
oligopeptides that are sensitive to the enzymatic cleavage have
been engineered into synthetic polymers. This results in the
fact that hydrogels are specifically degraded by targeted en-
zymes involved in matrix remodeling such as matrix metal-
loproteases (MMPs), collagenases, and plasmin [24, 94].

Both hydrogels and biodegradable scaffold are important
biomaterial scaffolds utilized in CNS regeneration. They can
serve as temporary ECMto provide a niche for cell infiltration
and differentiation. For future study, the choice of suitable
materials for scaffold synthesis and techniques for fabricated
3D structure nontoxically should be important issues in
scaffold synthesis. Besides in vivo interaction between the
ECMs and scaffolds and the mechanisms of degradation still
need further study.
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Table 2: Synthetic materials scaffold applied in CNS.

Material Description Application in SCI Application in brain injury

FGLmx Hydrogel Function recovery, axonal regeneration,
stem cell therapy [204]

Poly-𝜀-caprolactone

Hydrogel Cell survival, delivering neurotrophic
factor [205]

Biodegradable
scaffold

Cell survival, stem cell therapy, functional
recovery [206, 207]

Axonal regeneration, cell survival,
functional recovery, stem cell therapy

[161, 164]

Poly(ethylene glycol)

Hydrogel
Axonal regeneration, functional

improvements, anti-inflammation, cell
survival [208, 209]

Axonal regeneration, anti-inflammation,
cell survival, delivering neurotrophic

factor [210, 211]
Biodegradable

scaffold
Function recovery, axonal regeneration,

anti-inflammation [212]
Poly(hydroxyethyl
methacrylate) Hydrogel Nerve tissue regeneration and functional

recovery, stem cell therapy [121, 213] Cell survival, axonal regeneration [214]

Poly(hydroxypropyl
methacrylate) Hydrogel

Function recovery, axonal regeneration,
anti-inflammation, delivering

neurotrophic factor, stem cell therapy
[76, 215]

Axonal regeneration, anti-inflammation
[216]

Poly(lactide-co-glycolic
acid)

Biodegradable
scaffold

Axonal regeneration, tissue repair,
delivering neurotrophic factor, stem cell

therapy [145, 217–219]
Axonal regeneration, tissue repair [220]

Polyurethane

Hydrogel
Cell survival, axonal regeneration,

functional recovery, stem cell therapy
[221]

Cell survival, axonal regeneration,
functional recovery, stem cell therapy

[221]

Biodegradable
scaffold

Cell survival, axonal regeneration,
functional recovery, stem cell therapy

[221]
Hydroxy ethyl methacrylate Hydrogel Stem cell therapy and axons repair [222]

PuraMatrix Hydrogel Functional recovery, spinal repair, and
neuronal regeneration [223, 224] Stem cell therapy [225]

Imidazole-
poly(organophosphazenes) Hydrogel Function recovery, axonal regeneration,

anti-inflammation [140]

3. Biomaterial Scaffolds in Spinal
Cord Regeneration

Spinal cord injury (SCI) is characterized by long-term paral-
ysis and sensory disturbances. SCI patients often lose the
ability to work and require lifelong care [109]. Although
much effort has been made by clinicians and scientists to
cure this disability, the outcome for SCI patients is still
unsatisfactory. In this section, we focus on the properties
and mechanisms of non-cell therapy biomaterial scaffolds
that have been applied in the treatment of SCI. Biomaterial
scaffolds that are combined with cell therapy and applied in
SCI are discussed individually in Section 5.

3.1. Application of Hydrogel in SCI. Natural polymer-derived
hydrogels were first applied to SCI in 1995, when Joosten et
al. used collagen hydrogels in experimental SCI model. They
compared two methods of collagen hydrogels preparation,
as either a fluid or preformed solid gel, in a rat SCI model.
Their results showed that even though both scaffolds can
reduce the gliotic response, only fluid collagen gel can

induce regeneration of damaged axons [110]. Their study
also resulted in a new solution for SCI. Subsequently, the
effects of hydrogels made from other natural materials in the
treatment of SCI have been intensively studied. It has been
found that fibrin hydrogels improve tissue repair and axon
regrowth [111], chitosan hydrogels promote tissue repair and
neuroprotection in the SCI model, and alginate hydrogels
promote axonal regrowth and elongation [112]. With the
development of synthetic hydrogel techniques, raw natural
material hydrogels have been designed to carry drugs and
neurotrophic factors to enhance their SCI reparative effect.
For example, Furuya et al. [113] injected gelatin hydrogel
(GH) containing basic fibroblast growth factor (bFGF) into
a rat SCI model. The bFGF-incorporated GH showed better
performance in alleviating mechanical allodynia following
SCI. Further, drugs such as methylprednisolone are also able
to enhance axonal regeneration and reduce inflammation
[114, 115]. It has been stated that excessive Ca2+ can hamper
neurite formation and axon regrowth. To overcome this prob-
lem, McKay et al. [116] developed alginate/chitosan/genipin
hydrogels, which have a high sensitivity to Ca2+ composites.
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The developed hydrogels exhibited excellent ability to regu-
late astrocyte behavior and prevent Ca2+-related secondary
neuron damage during acute SCI.

Hydrogels made from natural materials can also deliver
specific antibodies or drugs to block receptors that impede
regeneration after SCI. Nogo is a myelin-associated inhibitor
(MAI) that can limit axon growth and benumb functional
neuronal circuits. Wen et al. developed hyaluronic acid (HA)
hydrogels that blend with the anti-Nogo receptor antibody
(antiNgR). Hydrogels have also been combined with PLGA
microspheres containing brain-derived neurotrophic factor
(BDNF) and vascular endothelial growth factor (VEGF).
The hydrogels were implanted into the rat SCI model and,
after a few weeks, angiogenesis and axons regrowth were
observed in hydrogels; the implanted rats also exhibited
improved locomotor recovery [117]. These studies prove that
hydrogels made from natural materials are effective in SCI
treatment. They are highly biocompatible and contain a
specific molecule for cell adhesion; their inner structure can
mimic the extracellular matrix to provide an environment for
cell proliferation.

Similar to natural hydrogels, hydrogels made from syn-
thetic materials for the treatment of SCI can mimic the
extracellular matrix to provide an environment for cell
proliferation and adhesion. Further, hydrogel networks can
serve as scaffolds that support regeneration until thematerials
are ultimately absorbed by the host. Hydrogels made from
synthetic materials are more adjustable than hydrogels made
from natural materials, as their key parameters can be
easily controlled through modification. Poly(hydroxyethyl
methacrylate) (PHEMA) was one of the earliest biomate-
rials utilized for tissue engineering scaffolds as they alle-
viate inflammation and promote axon regeneration after
SCI [118]. Subsequently, biocompatible hydrogels such as
polyethylene glycol (PEG) and poly-N-(2-hydroxypropyl)
methacrylamide (PHPMA) hydrogels have been utilized
in SCI treatment. Namba et al. [119] applied porous PEG
hydrogels to SCI. They demonstrated that PEG hydrogels
are simple and efficient and enable uniform seeding of
neural cells throughout the entire porous scaffolds, thereby
promoting axon regeneration. PHPMA hydrogels exhibit
reduced macrophages/monocytes accumulation at the lesion
border, and axons andmyelin are both preserved in the rostral
and caudal of the lesion [76].Many aspects of hydrogelsmade
from synthetic materials, such as phase, stiffness, biodegrad-
ability, and pattern, can also be modified to provide precise
temporal control of the hydrogels and host cell interactions.
For example, the hydrogels can be charged; positively charged
hydrogels display higher cell infiltration and growth than
negatively charged hydrogels [120].

Hydrogels made from synthetic materials can also act as
a carrier to deliver growth factor to lesions and enhance their
reparative effect. Chen et al. [121] incorporated basic fibrob-
last growth factor (bFGF) into hydroxyl ethyl methacry-
late [2-(methacryloyloxy)ethyl] trimethylammonium chlo-
ride (HEMA-MOETACL) hydrogels and implanted them
into the lesion of an SCI model. Their results showed that
the hydrogels promoted both nerve tissue regeneration and
functional recovery in the SCI model.

Adjunction of functional sequence is also a common
method used to modify hydrogels. RGD [122], IKVAV [123],
and laminin [124] are functional sequences that are often
utilized to modify hydrogels. These functional sequences can
enhance the treatment effects of scaffolds by promoting cell
adhesion and proliferation in scaffolds. Woerly et al. [125]
synthesized poly-N-(2-hydroxypropyl) methacrylamide
(PHPMA) based hydrogels and demonstrated that they can
promote axonal regeneration in an experimental SCI model.
They further decorated PHPMA hydrogels with an RGD
sequence and showed that themodified hydrogels can induce
tissue ingrowth into the lesion cavity, and angiogenesis and
axon regeneration are more effective in modified hydrogels.

SAPs and PAs are important synthetic polymers for
producing self-assembling hydrogels. The self-assembling
hydrogels are injectable and facilitate clinical application.
Gou et al. [126] were the first to apply RADA16-I hydrogels
to an experimental SCI model and prove that SAP hydrogels
can promote SCI recovery. Cigognini et al. [127] further func-
tionalized RADA16-I hydrogels with a bone marrow homing
motif (BMHP1). To facilitate scaffold stability and expose
more biomotifs, they inserted 4-glycine-spacer into the
hydrogels. Their results indicated that RADA16-I hydrogels
can increase cell infiltration, basementmembrane deposition,
and axon regeneration in SCI. Tysseling et al. [128] applied
the functional sequence IKVAV to modified PA hydrogels
and implanted them into a rat SCI model. Their results
showed that, in contrast to randomized functional sequences,
IKVAVPA hydrogels can improve histological and functional
recovery. Their results also suggest that proper matching of
functional sequence and hydrogels may be important in the
synthesis of functional hydrogels.

Neuroinflammation develops within hours after SCI and
TBI and can persist for months to years [11]. Delivering inter-
ventions following injury may be critical for regeneration
and restraining lesion expansion [129]. Monocyte-derived
macrophages are early responders to injury [130]. Both in
vitro and in vivo evidences demonstrate that with specific
stimulation macrophages can polarize towards function-
ally divergent subsets. Historically, polarized macrophages
have been classified as classical (M1) macrophages, which
promote inflammation, or as alternatively activated (M2)
macrophages, which restrict inflammation and foster wound
repair. Outside the CNS, M1 macrophages are quite rapidly
(after about 1 week) replaced by M2 macrophages that
successively infiltrate the lesion, where they largely contribute
first to tissue repair and then remodeling via release of
anti-inflammatory cytokines, stimulation of proliferation of
fibroblasts and endothelial cells (angiogenesis), and produc-
tion of ECM [131–134]. However, in traumatic SCI, this coun-
terbalancing is impaired. The M2 macrophages are activated
early, but disappear after about one week after lesion, while
proinflammatory M1 macrophages persist indefinitely [135].
Similarly, in TBI, field alternation of M1 and M2 is also
observed through numerous studies [136, 137]. Hydrogels
made from both natural and synthetic materials are anti-
inflammatory and alleviate gliosis after SCI, providing a
favorable microenvironment for regeneration. Furthermore,
it is reported they can enhance M1 macrophages modified
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to M2 macrophages in SCI. Caron et al. [138] applied the
functional sequence RDG to modified agarose hydrogels and
implanted them into a rat SCI model. Their results showed
that the hydrogels can not only repair injured spinal cord
but also be able to increase and/or convert efficaciously M2
macrophages in the injured site, promoting a proregenerative
environment that represents a relevant outcome in treating
SCI. Chedly et al. [139] also found that chitosan favors tissue
repair in part by increasing activation and/or proliferation of
M2macrophages during the early postlesion phase. Recently,
experimental evidence has demonstrated that the imidazole-
poly hydrogel promotes ECM remodeling by activating the
metalloproteinase-9 (MMP-9)matrix found inmacrophages.
This indicates that hydrogels may perform complex interac-
tions with the immune system during SCI treatment [140].
However, the mechanisms of increased proliferation of M2
macrophages after applying hydrogels are still not elucidated.

In summary, hydrogels have great potential in the treat-
ment of SCI. They have advantages such as excellent his-
tological and functional recovery and the fact that they
can be injected into lesions. The injectability of hydrogels
minimizes the risk of secondary injury when hydrogels are
administrated in SCI.They can also bemodified by functional
sequences or delivering growth factors. However, issues such
as the need to enhance their mechanical strength, durability,
and stability in application and balance between fluidity and
mechanical strength need to be investigated in future studies.
The exact mechanisms by which hydrogels interact with SCI
also require further study.

3.2. Application of Biodegradable Scaffolds in SCI. Biodegrad-
able scaffolds are also important biomaterials that are utilized
in SCI. They are often surgically implanted into lesions
and are synthesized through electrospinning techniques to
decrease the use of organic solvent. In the spinal cord, the
axons often appear in a longitude arrangement, and the elec-
trospinning technique can fabric materials into any desired
pattern and mimic the arrangement of axons. Chitosan,
gelatin, PCL, and PLGA are the scaffolds predominantly
applied in SCI, as they have an effect on axon regeneration,
are anti-inflammatory, and promote tissue repair [141]. The
effects of gelatin and PLGA scaffolds have been compared
by Du et al. Their results suggest that gelatin scaffolds are
superior to PLGA scaffold in SCI treatment, possibly because
PLGA scaffolds generate more acidic medium than gelatin
scaffolds in the process of degradation [142].

Biodegradable scaffolds can be incorporated with hydro-
gels to treat SCI [24]. The goal of this approach is to combine
the therapeutic ability of hydrogels with the mechanical and
physical properties of biodegradable scaffolds to enhance
treatment effects. Gelain et al. [143] developed PCL/PLGA
nanostructuredmicroguidance scaffolds synthesized through
the electrospinning technique. They implanted the scaffolds
into chronic rat SCI lesions with self-assembled RADA16-I-
BMHP1. Their results indicate that scaffolds can induce both
regeneration and myelination of axons in chronic SCI and
the motor function can also be recovered. The biodegradable
scaffolds can also carry drugs or growth factors. Further-
more, they can be designed hierarchically; growth factors or

functional materials can be synthesized in different layers of
the scaffold; thus, with degradation of the scaffolds, they can
take effect in different phases in SCI treatment. Thomas and
Shea [144] implanted electrospun poly(lactide-co-glycolide)
(PLG) scaffolds to carry polysaccharides, chitosan, and
heparin. They found that, in the early stage of SCI, the
scaffold can have an anti-inflammatory effect, after which
the scaffolds can enhance axon growth and myelination.
Neurotrophins-3 are applied in SCI treatment as they can
encourage axon regeneration and cell proliferation. Fan et al.
[145] synthesized PLGA/recombinant human neurotrophin-
3 (rhNT3) scaffolds and utilized them in a rat SCI model.
Their results indicated that axonal regeneration, locomotor,
and sensory recovery occurred.

Surface modification of scaffolds can enhance the effect
of regeneration through promotion of cell adhesion to the
scaffold. Zamani et al. [146] developed electrospun PGLA
three-dimensional core-sheath scaffolds.The developed scaf-
folds have a nanorough sheath and an aligned core. They
implanted the developed scaffolds into an experimental SCI
model and the results showed that they can improve axon
regeneration as well as locomotor and sensory recovery. The
pattern of the scaffold is another important parameter that
can affect regeneration. It has been suggested that fabricating
scaffolds with smaller diameter channels promotes greater
regeneration over larger diameter channels [147].

Biodegradable scaffolds are also utilized in SCI as they
have goodmechanical strength and tunable inner pattern and
are biodegradable. However, the need for surgical implan-
tation narrows their application in some clinical situations.
In summary, biodegradable scaffolds as biomaterials that are
applied in SCI have considerable potential. In future studies,
the application of new materials, relationship of the inner
pattern and SCI recovery, exploration of multicomponent
scaffolds, and development of a mini-invasive implantation
method may be the main problems explored in the develop-
ment of biodegradable scaffolds.

4. Biomaterial Scaffolds in Brain Regeneration

Traumatic brain injury (TBI), brain tumors, and brain hem-
orrhages are common causes of brain damage. In the USA,
at least 5.3 million people suffered from disability after TBI,
costing approximately $76.5 billion in lost productivity in
2010 [4]. These disabilities result in social and economic
burdens and need to be solved urgently.The brain is the most
complex organ in the human body. It has numerous neuronal
cells and their neurites are woven into a sophisticated net.
After injury, activation of the immune system and a poor
instinctive repair process make it difficult to regenerate
injured tissue. Hence, current strategies for brain tissue
regeneration are still insufficient. Recently, some studies have
applied biomaterial scaffolds to brain injury. Their results
indicate that biomaterial scaffolds have significant potential
in the treatment of brain injury. In this section, we review
biomaterial scaffolds that have been applied in the treatment
of TBI and other brain injury models. Biomaterials scaffolds
that are appliedwith cell therapy for brain repair are discussed
in Section 5.
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4.1. Application of Hydrogel in Brain Regeneration. The brain
is protected by the cranial bone, which makes it difficult
to inject materials into the brain directly. The materi-
als applied in brain injury scenarios are often surgically
implanted. Natural materials, such as hyaluronic acid (HA)
[148], collagen [149], chitosan, and methylcellulose [150, 151],
have been used to synthesize hydrogels that are applied in
these cases. Hydrogels can fill the brain cavity, replacing
the growth-prohibiting environment with a more growth-
permissive one. Further, it has been reported that hydrogels
can decrease inflammation through reduction of secretion
of inflammatory cytokine [152]. These mechanisms might
enable cells and axons to infiltrate into hydrogels and further
repair injured brain tissue [148]. Similar to the hydrogels
applied in SCI, the hydrogels used in the brain can also
be connected with functional peptides such as IKVAV and
RGD to enhance their cell adhesion and axon regrowth
effects [123]. In addition, hydrogels can be modified to carry
antibody or drugs to improve regeneration. The Nogo-66
antibody carriedHAhydrogels to promote axon regeneration
in the rats stroke model; it has also been proven that these
hydrogels have the effect of functional recovery [153].Ma et al.
synthesized HA based biodegradable hydrogel scaffolds and
mixed them with PLGA microspheres containing vascular
endothelial growth factor (VEGF), angiopoietin-1 (Ang1),
and Nogo receptor antibody (NgR-Ab). They implanted the
hydrogels into a mice brain ischemic model, and their results
showed that the hydrogels have good compatibility with
brain tissue and inhibition to gliosis and inflammation after
implantation [154]. Recently, thermosensitive and sound-
sensitive hydrogels have been developed for injection in
brain injury. Koivisto et al. developed biomimetic hydrogels
based on gellan gum.The developed hydrogels use bioamines
spermidine and spermine to function as crosslinkers for
gellan gum hydrogel at +37∘C [155]. These hydrogels can
promote neuronal cell migration, maturation, and neurite
formation. Fernández-Garćıa et al. developed in situ gelling
silk fibroin hydrogels. The gelation of silk fibroin solutions
can be induced by sonication.These hydrogels can be injected
into a mouse brain and integration of hydrogels into the
brain tissue can be controlled by the intensity and duration
of sonication. Their results prove that hydrogels have good
biocompatibility in the brain and can be further applied in
TBI treatment [156].

Several hydrogels made from synthetic materials have
also been applied in brain regeneration. In general, such
hydrogels are combined with cell therapy in brain injury
treatment. Hydrogels made from synthetic materials are
easier to chemically modify and have a 3D inner struc-
ture and low immune responses. PHPMA-RGD hydrogels
containing brain-derived neurotrophic factors have been
tested in a rat TBI model, with results showing the occur-
rence of axon regeneration and cell infiltration [157]. Self-
assembling hydrogels, such as the RADA16-I hydrogel, also
show the ability to promote regeneration of brain tissue
and angiogenesis [158, 159]. Hydrogels made from synthetic
materials can be combined with the scaffold to increase its
strength. Polymer poly-L-lactide (PLLA) electrospun fibers
with fibronectin inclusion and which are dispersed in an

agarose/methylcellulose hydrogen can promote cell infiltra-
tion into the lesion site following brain injury [151].

4.2. Application of Biodegradable Scaffolds in Brain Regenera-
tion. Biodegradable scaffolds are used to carry cells in brain
regeneration. Only a few studies have investigated the effect
of bare biodegradable scaffolds in animal TBI models. In
this section, we discuss research conducted on the materials
associated with brain regeneration.

Themechanisms of biodegradable scaffolds in promoting
brain regeneration are mainly concentrated on their effects
in enhancing support for microenvironments, guiding axon
sprouting, and cell migration. PCL based scaffolds are the
most studied scaffolds in brain regeneration. Nisbet et al.
implanted electrospun PCL scaffolds into the caudate puta-
men of an adult rat brain and discovered neurite infiltration
and growth in the scaffold [160]. They stated that the
characteristics of the inner structure of PCL scaffolds, such as
large porosity and perpendicular alignment at the implant-
tissue interface, can promote neurite growth [161]. Wong et
al. further studied the relationship between PCL scaffolds’
channel direction and cell infiltration. Their study revealed
that pores or channels oriented towards the parenchyma will
increase astrocytic infiltration and that microgrooves ori-
ented in the desired direction of cell migration and neuronal
alignmentwill also provide benefit for regeneration.They also
discovered that fully interconnecting channels for cell migra-
tion and tissue integration can increase regeneration [162].
Wong et al. also compared the regeneration effects of PCL and
PLGA scaffolds in a rat brain.They found that both polymers
can alleviate astrocytic activation, prevent enlargement of the
defect, and improve neural ingrowth. However, PCL induces
a lower inflammatory response than PLGA [163]. Recently,
studies have indicated that migration and differentiation of
endogenous stem cells play an important role in brain repair.
Fon et al. applied electrospun PCL scaffolds incorporated
with small molecule nonpeptide ligand (BDNF-mimetic) to
a rat model. Their results proved that PCL scaffolds can
improve neuroblast survival and promote neuroblast migra-
tion towards lesions [164]. Our team also investigated the
effect ofwaterborne biodegradable polyurethane (WBPU) 3D
porous scaffolds on the regeneration of a rat TBI model. We
found that the scaffold can improve axonal regeneration as
well as functional recovery. We also found that a percentage
of poly ethylene glycol (PEG) within the scaffold may affect
the result of regeneration [165]. The mechanisms underlying
these phenomena are still being studied.

5. Combination of Biomaterial Scaffolds and
Cell Therapy

The combination of biomaterial scaffolds and cell therapy in
CNS regeneration has garnered the attention of researchers
in recent years. The combination of these two therapeutic
methods makes it possible to achieve both cell regeneration
and tissue reconstruction.The basic principle of thismodality
is combining exogenous cell and scaffolds to form “live”
scaffolds.These “live” scaffolds can be implanted into animals
through injection or surgical implantation. The parenchyma
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part of CNS comprises neuron and glial cells that include
astrocyte and oligodendrocyte. Neural stem/progenitor cells
(NSPCs) are present in the adult CNS and are important
in the maintenance and repair of CNS [226]. NSPCs can
be differentiated into neuron and glial cells and hold great
promise for repair of CNS [227]. However, NSPCs also have
defects such as poor survival and uncontrolled differentia-
tion. NSPCs have even been implicated as the origin of brain
tumors [228, 229]. Thus, the survival factors and niches of
NSPCs are critical for their application [230]. Biomaterial
scaffolds have features that mimic the ECM and create a
stable environment. Further, they have the potential to carry
cytokines such as neural growth factor (NGF) or other
functional molecules. Thus, biomaterial scaffolds are suitable
for assisting with stem cell survival and differentiation [231].
In addition to NSPCs, other stem cells that have the potential
to differentiate into neurocytes have also been implanted into
biomaterial scaffold to help with CNS regeneration. These
cells can be derived from bone marrow stem cells [138],
induced pluripotent stem cells (iPSC) [232], induced pluripo-
tent stem cells (iPSC) [233], embryonic stem cell [234], or
adult stem cells [235]. The feasibility of transplantation of
exogenousNSPCs has been tested by Li et al. who synthesized
a methacrylamide chitosan (MAC) hydrogel system. They
immobilized recombinant fusion proteins into methacry-
lamide chitosan (MAC) based biopolymer through a strep-
tavidin linker. Their results indicated that the system can
induce a majority of NSPCs to differentiate into the desired
cell types by day 28. Their study proved that biomaterial
scaffolds can regulate cells to differentiate into desired cells
[236]. Biomaterial scaffolds can serve as carriers of NPSCs for
injury treatment. They can create a stable microenvironment
and provide the appropriate infrastructure to support cell
migration into surrounding tissue [237]. In this section,
we discuss progress made in the field of combination of
biomaterial scaffolds and cell therapy in CNS regeneration.

In the field of SCI treatment, both hydrogels and
biodegradable scaffolds have been studied in various studies.
Hydrogels have been proven to improve both cell prolif-
eration and differentiation in vivo. Further, they can carry
growth factors or drugs to promote their effects in stem
cell therapy. Mothe et al. developed a kind of hyaluronan
and methyl cellulose (HAMC) hydrogels. They conjugated
HAMC hydrogels with recombinant platelet-derived growth
factor-A (rPDGF-A) to promote oligodendrocyte differenti-
ation. The HAMC-rPDGF-A hydrogels were blended with
adult brain-derived neural stem/progenitor cells (NSPCs),
and the hydrogels were injected into a subacute, clinically
relevant model of a rat SCI. They found that rats treated
with HAMC-rPDGF-A hydrogels showed reduced lesion
size, increased distribution of perilesional host neurons and
oligodendrocytes, and better functional recovery [199]. An
interesting comparison between the effects of hydrogels and
biodegradable scaffolds in cell therapy has been made by
Caron et al. They developed an agarose/carbomer based
three-dimensional hydrogel and lyophilized sponge-like scaf-
folds, in which both scaffolds were loaded with mesenchymal
stem cells (hMSC). Their results indicated that, compared
with classic hydrogels, lyophilized sponge-like scaffolds can

not only modulate inflammatory response, but also better
preserve hMSCviability and stemness in an SCImousemodel
[138]. This result indicates that biodegradable scaffolds may
be better scaffolds in cell therapy. However, the controversy
that stem cells can cause brain tumor is a long standing
issue in cell therapy. Considering this problem, Führmann
et al. developed a platelet-derived growth factor (PDGF-
A) and RGD peptide modified hyaluronan and methylcellu-
lose hydrogels. Their results showed that the hydrogels can
enhance the survival of oligodendrocyte derived from iPSC.
Moreover, they discovered that stem cells seeded in hydrogels
attenuated the formation of teratoma, with the majority of
stem cells differentiating to a glial phenotype. Their study
indicates that hydrogels may decrease the formation of tumor
after transplanting of stem cells, which is a profound result
in stem cell therapy. However, more types and structures of
materials need to be studied to confirm the phenomenon
[238].

Biodegradable scaffolds have advantages in terms of
mechanical property and biodegradability. Research on the
application of biodegradable scaffolds in the treatment of SCI
is concentrated on critical issues such as vitality of imbed-
ded cells and whether they can differentiate into desired cell
types. Terraf et al. utilized PCL scaffolds to carry human end-
ometrial stem cells and applied them in a rat hemisected
SCI model. According to their result, neurite outgrowth and
axon regeneration can be observed and animals also showed
functional recovery [239]. The strategy of combining dif-
ferent scaffolds to combine the advantage of each scaffold
has also been used in cell therapy. Liu et al. implanted three-
dimensional (3D) electrospun poly(lactide-co-glycolide)/
polyethylene glycol (PLGA-PEG) scaffolds carrying iNSC
into transected rat spinal cords. Their result showed iNSC
survival and differentiation within the scaffolds. The cavity
of the spinal cord was restored by the scaffold and functional
recovery was also observed [217]. Kim et al. studied the differ-
ence in efficacy between implantedMSCs through traditional
intralesional injection and through scaffold assisted implan-
tation in a rat SCI model. They concentrated on engraftment
and differentiation of transplanted cells, expression of neu-
rotrophic factors in lesions, and functional recovery. Their
results indicated higher success rate of MSCs engraftment
in scaffold groups compared with the injection group. They
also indicated that expression of neurotrophic factors is
no different among all groups, whereas better functional
recovery was exhibited in the scaffold groups. Their result
proves the superiority of combining scaffolds and stem cells
over traditional stemcell therapy.These results also imply that
carrying neurotrophic factors in scaffolds seeded with stem
cells may achieve better regeneration effects [240]. Neural
growth factors (NGFs) are carried in biodegradable scaffolds
that are supplied with stem cells to promote cell differen-
tiation and proliferation. Among all NGFs, neurotrophin-3
(NT-3) is the most frequently used NGF in stem cell therapy.
Johnson et al. reported that the combination of NT-3 and
fibrin scaffolds can increase the total number of embryonic
stem cell-derived neural progenitor cell (ESNPCs) derived
neurons in NT-3 fibrin scaffolds after transplantation in a rat
SCI model [241, 242]. Qiu et al. and Yang et al. both applied
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NT-3/chitosan scaffolds to promote the survival and pro-
liferation of neural stem cells (NSCs). They exhibited that
scaffolds can induce NSCs to differentiate into desired phe-
notypes such as neurons and astrocyte [243, 244]. Duan et al.
further investigated themolecularmechanismunderlying the
phenomenon.Through weighted gene coexpression network
analysis (WGCNA), they found that enhanced new neuroge-
nesis and angiogenesis and reduced inflammatory responses
were the key mechanisms of NT3-chitosan scaffolds in
treating SCI [175].

Application of biomaterial scaffolds as cell carriers and
tissue supporters has also been investigated in brain injury.
Hydrogel use in the brain has been proved to promote prolif-
eration, maturation, and differentiation of stem cells with or
without other trophic factors. Because hydrogels are inject-
able, when damage is located in the deep region of the brain,
they can be injected directly into lesions to avoid damage to
the superficial cortical tissue. Shi et al. developed RADA16
self-assembling peptide hydrogels that carry brain-derived
neurotrophic factor (BDNF). They seeded both MSCs and
astrocytes into the scaffold and applied chemokine receptor
4 to promote migration of transplanted cells. Their results
indicate that transplantation of scaffolds can aid repair of
moderate-sized lesion cavities caused by TBI [245]. With
the development of hydrogels, visualized stem cell hydro-
gels have been applied in the brain to monitor their in
vivo process. Moshayedi et al. developed HA based self-
polymerizing hydrogels that can be tracked in vivo through
MRI imaging. They encapsulated human neural progenitor
cells (iPS-NPCs) into the hydrogels and injected the hydro-
gels into a mice stroke model. Their results showed that
hydrogels can promote survival of iPS-NPCs after trans-
plantation into the stroke core. In addition, the hydrogels
can also increase differentiation of transplanted cells [201].
Self-assembly hydrogels modified with functional peptides
such as RADA16-IKVAV also have been reported to promote
proliferation and differentiation of NSCs in vivo [246]. With
the exception of SAPs, other self-assembly hydrogels such
as thermosensitive diblock copolypeptide hydrogels (DCH)
have also been applied to deliver NSCs.This shows that DCH
can significantly increase the survival of NSCs in healthy
CNS. Inmousemodels, DCThas also been distributedwell in
nonneural lesion cores, integrated with healthy neural cells at
lesion perimeters, and supported the regrowing of host nerve
fibers [247].

The application of biodegradable scaffolds and cell ther-
apy in regeneration of the brain is a newly developed field
and has been increasingly noticed in recent years. Chitosan
scaffolds are one of the most popular scaffolds used in
brain injury. Shi et al. developed a kind of BDNF blended
chitosan scaffold to carry umbilical cord mesenchymal stem
cells (hUC-MSCs) through a freeze-dry technique. They
found that the scaffolds can increase the differentiation rate
of NSCs and the average neuron perimeter [248]. The in
vivo process of implanted cells in the brain is important
for explaining the mechanisms of repair. To achieve this
goal, Hwang et al. applied poly-L-lactic acid (PLLA) scaf-
folds to carry NSCs that express firefly luciferase. Thus,
they can monitor the process of cell proliferation in vivo

conveniently and noninvasively. Their result showed that
the signals from cells in the scaffold are both stronger and
more durable than nonencapsulated cells [249]. The plasma
surface between scaffold and cells can affect cell adhesion
and proliferation. Zandén et al. studied the effect of different
plasma surfaces of polyurethane scaffolds for attachment and
proliferation of human embryonic stem cell (hESC). They
found that, compared with oxygen and hydrogen plasma
surface, argon plasma induced themost optimal combination
of surface functionality and roughness for cell expansion
[250].

In summary, in the treatment of CNS damage, using
both hydrogels and biodegradable stem cell scaffolds can
combine advantages of both modalities. The scaffolds can
increase the survival rate of stem cells and accelerate the
accumulation of ECM. They also give stem cells an isolated
environment to differentiate and proliferate. Moreover, stem
cells can differentiate into desired cell types to reconstruct the
damaged tissue and result in functional recovery. However,
many factors can affect the repair effect, such as cell type,
topography, category of materials, and physical and chem-
ical properties of materials. Thus, the optimum method of
combination of materials and stem cells still needs future
study.

6. Conclusion and Prospects

In this review, we summarized present development in the
application of biomaterial scaffolds in central nervous system
regeneration. We showed that some materials have great
potential in CNS regeneration as well as the combination of
materials and cell therapy in this field. Biomaterial scaffolds
can reduce inflammation at injury sites and can also change
the microenvironment of lesions. In addition, they can carry
drugs and neurotrophic factors to enhance the effect of
therapy. Moreover, combining biomaterial scaffolds and cell
therapy can promote survival and differentiation of stem cells
and reduce the side effect of cell therapy. Hence, biomaterial
scaffolds-assisted therapy is a promising strategy in CNS
regeneration. However, these effects of scaffolds are based on
animal experimentation; humanCNS injury ismore complex
and is still a great problem that needs to be solved by the
overall medical world. Developing biomaterial scaffolds that
are biodegradable, biocompatible, and mechanically flexible
is still an important issue in CNS regeneration. Moreover,
using hybrid knowledge of cell therapy, pharmaceutical ther-
apy, and clinic technique to enhance the ability of biomaterial
scaffolds in CNS regeneration is an important strategy to
improve biomaterial scaffolds. Finally, degrading the speed
of biomaterial scaffolds should correspond to differentiating
the phase of tissue regeneration, so that they can be designed
to have different functions in different stages of regeneration.
With the development of materials and biology, it is reason-
able to surmise that we can achieve perfect CNS regeneration
in the near future.
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