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Abstract

Background

The tumor microenvironment (TME) is increasingly appreciated as an important determinant

of cancer outcome, including in multiple myeloma (MM). However, most myeloma microen-

vironment studies have been based on bone marrow (BM) aspirates, which often do not fully

reflect the cellular content of BM tissue itself. To address this limitation in myeloma

research, we systematically characterized the whole bone marrow (WBM) microenviron-

ment during premalignant, baseline, on treatment, and post-treatment phases.

Methods and findings

Between 2004 and 2019, 998 BM samples were taken from 436 patients with newly diag-

nosed MM (NDMM) at the University of Arkansas for Medical Sciences in Little Rock, Arkan-

sas, United States of America. These patients were 61% male and 39% female, 89% White,

8% Black, and 3% other/refused, with a mean age of 58 years. Using WBM and matched

cluster of differentiation (CD)138-selected tumor gene expression to control for tumor bur-

den, we identified a subgroup of patients with an adverse TME associated with 17 fewer
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months of progression-free survival (PFS) (95% confidence interval [CI] 5–29, 49–69 versus

70–82 months, χ2 p = 0.001) and 15 fewer months of overall survival (OS; 95% CI –1 to 31,

92–120 versus 113–129 months, χ2 p = 0.036). Using immunohistochemistry-validated

computational tools that identify distinct cell types from bulk gene expression, we showed

that the adverse outcome was correlated with elevated CD8+ T cell and reduced granulo-

cytic cell proportions. This microenvironment develops during the progression of premalig-

nant to malignant disease and becomes less prevalent after therapy, in which it is

associated with improved outcomes. In patients with quantified International Staging Sys-

tem (ISS) stage and 70-gene Prognostic Risk Score (GEP-70) scores, taking the microenvi-

ronment into consideration would have identified an additional 40 out of 290 patients (14%,

premutation p = 0.001) with significantly worse outcomes (PFS, 95% CI 6–36, 49–73 versus

74–90 months) who were not identified by existing clinical (ISS stage III) and tumor (GEP-

70) criteria as high risk. The main limitations of this study are that it relies on computationally

identified cell types and that patients were treated with thalidomide rather than current

therapies.

Conclusions

In this study, we observe that granulocyte signatures in the MM TME contribute to a more

accurate prognosis. This implies that future researchers and clinicians treating patients

should quantify TME components, in particular monocytes and granulocytes, which are

often ignored in microenvironment studies.

Author summary

Why was this study done?

• The cells around a tumor, also known as the tumor microenvironment (TME), can help

a tumor grow by suppressing the immune system or fight a tumor by mounting an

immune response.

• Most studies of multiple myeloma (MM) have focused on the tumor itself, rather than

the bone marrow (BM) TME in which the tumor is growing.

• We hypothesized that the MM TME held clues that could help us better treat patients.

What did the researchers do and find?

• We used a gene-expression–based computational technique to determine which cell

types were present in patient BM.

• Patients with BM lacking a family of innate immune cells called granulocytes presented

with worse outcomes compared to other patients.

• As MM progresses from a predisease to a cancerous state, the percentage of granulocytes

decreases; the patients with the fewest granulocytes had more serious diseases.
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What do these findings mean?

• If granulocytes help myeloma patients respond to therapy, then addressing the decline

in granulocytes may improve MM treatment.

• Patients with MM and few granulocytes in their BM should be watched for worse

outcomes.

Introduction

A major aim of modern cancer therapy is to develop precision immuno-oncology in which

treatment is targeted to the biology of distinct disease segments [1]. Multiple myeloma (MM)

is a bone marrow (BM) cancer for which modern therapy has increased 5-year patient survival

from approximately 35% in 2000 to nearly 70% in 2017 [2]; however, more than 10% of

patients do not respond well [3], necessitating novel treatment modalities. To date, work on

disease stratification in MM has focused on the clonal plasma cells (the tumor) rather than the

environment (the BM) in which the tumor proliferates. This work has led directly to the trans-

location cyclin D classification [4–6]; however, tumor-mutation–based stratification does not

fully explain patient outcomes. Furthermore, these approaches have failed to identify a consis-

tent mutational pattern driving disease progression from abnormal, but premalignant, plasma

cells to cancer.

MM often starts as monoclonal gammopathy of undetermined significance (MGUS), in

which a clonal plasma cell has multiplied to constitute <10% of the plasma cells in the BM but

the patient is otherwise asymptomatic. Each year, about 1% of patients with MGUS will prog-

ress to MM. Should that clonal plasma cell proliferate to account for>10% of plasma cells, the

patient is considered to have asymptomatic or smoldering multiple myeloma (SMM). About

10% of patients with SMM will progress to MM each year [7]. Attempts to define the nature of

the plasma cell mutations driving disease progression from MGUS through SMM to MM

requiring therapy have largely failed and instead focused attention on changes in subclonal

structure driven potentially by the tumor microenvironment (TME) [8].

The importance of microenvironmental interactions between clonal plasma cell and stro-

mal cells mediated by autocrine and paracrine loops has been appreciated for some time [9–

11]. However, little information is available on quantifying the global pathologic impact of the

clone on the microenvironment [12,13]. Previous work has addressed the impact of clonal

tumor cells on T cell subsets, natural killer (NK) cells, macrophages, dendritic cells, and high-

density neutrophils [4–6,8–10], but none of these studies took into account the contextual

composition of nontumor cells within the whole bone marrow (WBM). We hypothesized that

understanding the TME will improve our ability to identify patients who will have worse out-

comes with current therapies and point toward potential new treatment avenues for those

patients. This hypothesis was validated using the experimental design shown in Fig 1.

Methods

Patient data

Patients considered for analysis were enrolled into the Total Therapy (TT) 3–5 trial series;

details of these protocols have been described in previous publications [14–16]. These patients
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Fig 1. On-treatment MM project overview. (A) Samples from 436 patients with NDMM were taken during the course of

treatment, resulting in 867 total samples. (B) The putatively pure tumor CD138+ samples were combined with the LM22

leukocyte signature matrix and 5 additional BM-specific cell types to determine the cell-type mix in the WBM samples.

Illustration based on [18]. (C) The proportion of gene expression from the tumor was computationally removed from the

WBM samples, which were then assigned to one of the 5 unique microenvironment clusters shown on the left side of the

panel. One of these clusters (termed “low-granulocyte” Cluster 5) was associated with lower patient PFS/OS as shown on the
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were enrolled between February 25, 2004 and January 11, 2014 with 25–5,241 days of follow-

up (mean 2,628 days, standard deviation 1,387 days, S1–S3 Tables). They included 266 males

and 170 females aged 32.4–75.2 years at baseline (mean = 58.48, median = 59.85); 387 identi-

fied as White, 34 as Black, 5 as Hispanic, 5 as Asian, 3 as Native American, and 2 refused to

identify a race. TT 3–5 generally includes treatment with thalidomide, dexamethasone, and

autologous BM transplant with personalized treatment regimens informed by tumor gene

expression and cytogenetics. In this study, samples were grouped by treatment stage into time

points: pretreatment, postinduction, post-transplantation, postconsolidation, and postmainte-

nance (Fig 1A). All TT protocols were approved by the Institutional Review Board of the Uni-

versity of Arkansas for Medical Sciences. All patients provided written informed consent prior

to enrollment in keeping with institutional, federal, and international guidelines. All patients

enrolled in TT 3–5 with at least one WBM biopsy sample taken prior to the initiation of ther-

apy were considered for analysis. All patients provided written informed consent to approve

the use of their BM biopsy samples for research in accordance with the Declaration of Helsinki

of 2013. Additional patient and sample data are provided in S1–S3 Tables.

Ethics statement

Previously untreated patients with newly diagnosed multiple myeloma (NDMM) recruited to

the TT clinical trials between February 2004 and August 2017 were included in this investiga-

tion after written informed consent. The sample collection protocol was approved by the Uni-

versity of Arkansas for Medical Sciences Institutional Review Board (protocol #2012–12). This

study was performed in accordance with the 1964 Declaration of Helsinki. Ethics approval was

not required for this analysis. This study has been reported according to the STROBE guideline

available in S1 Text, STROBE checklist.

Methods overview

Analysis of RNA extracted from WBM biopsies potentially contains information necessary to

provide a comprehensive analysis of the microenvironment [17]. To extract this information,

we developed a custom algorithm able to define and quantitate the cellular subcomponents of

the BM microenvironment. We applied it to WBM trephine biopsies taken from the aforemen-

tioned TT patients. These biopsies were paired with pathologist-estimated tumor fractions and

cluster of differentiation (CD)138+-selected plasma cells from those patients, allowing the sig-

nal from the malignant plasma cells to be removed and the focus put on the residual signal

derived from the microenvironment.

right side of the panel. (D) Cluster 5 had a distinct microenvironment characterized by unusual levels of various cell types. (E)

Follow-up studies on predisease SMM and MGUS patients revealed that this microenvironment developed as the disease

progressed. As the 3 pClusters on the left contain an ever-greater portion of patients with SMM, they come to resemble the

microenvironment for Cluster 1–4 patients with NDMM. Cluster 5 NDMM patients show an extension of the trends observed

as the disease develops. (F) Machine learning revealed that patients with low levels of granulocytes had consistently worse

outcomes, even after accounting for high-risk status using GEP-70 and ISS stage. (G) As predicted, patients with RRMM in the

STRATUS trial were significantly enriched for the low-granulocyte phenotype. BM, bone marrow; CD, cluster of

differentiation; del, deletion; GEP-70, 70-gene Prognostic Risk Score; IMiD, immunomodulatory drug; ISS, International

Staging System; LM22, leukocyte matrix 22; MGSM, myeloma genome signature matrix; MGUS, monoclonal gammopathy of

undetermined significance; MM, multiple myeloma; NDMM, newly diagnosed multiple myeloma; OS, overall survival;

pCluster, premalignant microenvironment cluster; PFS, progression-free survival; RRMM, relapsed/refractory multiple

myeloma; SMM, smoldering multiple myeloma; STRATUS, Evaluation of Safety of Pomalidomide in Combination With

Dexamethasone (Low Dose) in Patients With Refractory or Relapsed and Refractory Multiple Myeloma; t, translocation; TME,

tumor microenvironment; UAMS70, University of Arkansas for Medical Sciences 70-gene signature; WBM, whole bone

marrow.

https://doi.org/10.1371/journal.pmed.1003323.g001
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Generation of myeloma genome signature matrix 27 (MGSM27)

To deconvolve the cellular content of the BM of plasma cell disorders, we upgraded a pre-exist-

ing 22-leukocyte signature matrix [18] by adding tumor and 4 BM cell types (S1A Fig). Decon-

volution of samples purified to contain only single cell types revealed cell types that are likely

to be mis-deconvolved as other cell types (S1B Fig). This spillover, combined with biological

considerations, led to post hoc combination of several deconvolution estimates, resulting in

the 18 cell types presented in this analysis. More details about signature matrix construction,

including a usable version of MGSM27, are available in the Automated Deconvolution Aug-

mentation of Profiles for Tissue Specific cells [19] package available on the Comprehensive R

Archive Network (https://cran.r-project.org/web/packages/ADAPTS/index.html).

Testing deconvolution cell-type predictions

The digital cell quantifier algorithm [20] was modified to deconvolve cell types from bulk

mRNA expression data using our custom MGSM27 signature matrix. DCQ was chosen

because it outperformed other deconvolution methods in our internal trials (S1H and S1I Fig).

To ensure that the algorithm could accurately estimate malignant plasma cells and other cell

types from bulk gene expression, we calibrated CD138+ cell-type estimates (normal and malig-

nant plasma cells) against clinical estimates of myeloma plasma cell percentage in WBM

(immunohistochemistry and flow cytometry) and purified CD138+ aspirates. The deconvolu-

tion method was then validated against publicly available PBMC data [21] and pathologist esti-

mates of eosinophils (S1E Fig, S4 Table), neutrophils (S1F Fig, S5 Table), and mast cells (S6

Table) in subsets of our patient samples.

Clustering of BM based on its microenvironment

To address whether there were distinct clusters within the microenvironment of NDMM, we

constructed pseudo-CD138– gene-expression profiles from the WBM by removing the signa-

ture of CD138+ cells. Patient samples from all time points (N = 867) were clustered using unsu-

pervised machine learning to identify groups of patients with similar BM microenvironments.

Fig 2A shows how patients in each cluster have similar BM gene-expression patterns. Fig 2B

and 2C shows the number of patients in each of those clusters and how they change during the

course of treatment.

Statistical analyses

For supervised machine-learning survival analysis, cell-type estimates for cells with similar

functions and gene-expression signatures were added together to create 19 cell types for assess-

ment (S1B Fig). To determine which combinations of cell types and cytogenetic characteristics

best separated patients with relative long and short overall survival (OS) and progression-free

survival (PFS), we used conditional inference trees [22] with the Cox proportional hazards

model [23], which conveniently included permutation tests to help determine generalizability.

Kaplan–Meier curves were generated using the R Survival package [24], and p-values were

estimated with a χ2 test. Estimated survival times were calculated by the survfit function and

generally reported as restricted mean ± 1 standard error. Regression analysis (including lasso

regression) to evaluate feature performance was performed using Cox regression in the R

package GLMnet (Bioconductor) [24,25]. Decision trees were generated using the conditional

inference trees algorithm, which accounts for censoring using a Cox proportional hazards

model and only adds variables when they pass a p-value cutoff as calculated by a permutation

test [22,26].
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Fig 2. Pseudo-CD138– gene-expression clusters: Clustering of 867 samples with tumor signature removed based

on deconvolution. (A) Columns show the 867 patient samples; rows show the high-variance genes, with relatively low

expression shown in white and high expression shown in blue. Hierarchical clustering and Bayesian information

criteria analysis revealed 5 large clusters, with all other samples (shown in purple) classed as orphan clusters. (B)

Cluster membership is distributed across treatment time points. (C) A Sankey diagram showing the cluster population

shifts that occur during treatment. Colored lines are scaled to show the number of patients in each cluster at each time
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Stepwise Cox regression was performed by first selecting the variable with the lowest uni-

variate p-value. At each subsequent step, variables were evaluated with an F test to determine

which had the lowest p-value. If that p-value was< 0.1, then that variable was added to the

model. A t test was then performed on the regression coefficients, and any variable (except age

and sex) was removed if its coefficient p-value was>0.05. The procedure was continued until

no more variables could be added to the model. To prevent bias in statistical analysis, results

were calculated in parallel by 2 teams. One focused on lasso regression, which features pre-

dominantly in machine-learning literature; the other used stepwise regression, a technique

rooted in conservative clinical and statistical analysis. Differences in these analyses (e.g., quar-

tiles versus continuous regression) arose as a consequence of this independent verification.

Additional methods are available in S2 Text, supplementary methods.

Results

Validation of MGSM27 cell-type predictions

The MGSM27 signature matrix correctly identified that, post-CD138+ selection, the samples

were almost entirely pure CD138+ cells (N = 423; Wilcoxon p< 0.001; S1C Fig). In WBM sam-

ples in which the global RNA contribution of the CD138+ cells to the admixture was heteroge-

neous (S1D Fig), the correlation coefficient was 0.63 with a root mean-square error (RMSE) of

9.99% (N = 247; Fisher’s Z p< 0.001). The predictions also mirrored pathologist estimates of

eosinophil and neutrophil numbers. Eosinophils had a correlation coefficient of 0.27 with an

RMSE of 3.05% (N = 345; Fisher’s Z p< 0.001; S1E Fig), and neutrophils had a correlation

coefficient of 0.32 with an RMSE of 9.55% (N = 356; Fisher’s Z p� 0.001; S1F Fig).

Follow-up studies stained a small number of samples (n = 20) with the mast cell marker

CD117 (c-Kit). CD117+ cells with morphological characteristics of immature mast cells were

correlated with deconvolved mast cell predictions (Pearson’s r = 0.319, Fisher’s Z p = 0.171,

n = 20) and also with neutrophils (r = 0.449, p = 0.047, n = 20) and monocytes (r = 0.489,

p = 0.029, n = 20), as well as other cell types (S6E Fig). Morphologically mature CD117+ mast

cells were unexpectedly rare (much less than the previously reported 4.8% of cells in active

myeloma) [27,28], and these CD117+ cells did not correlate with deconvolved mast cell

estimates.

The MGSM 27 signature matrix was also applied to publicly available peripheral blood

mononuclear gene-expression data (E-MTAB-3732) [21]. This test of the algorithm’s ability to

reconstruct all components of mixed cell-type samples revealed that the estimated cell percent-

ages fell within the expected clinical ranges (S1G Fig).

BM microenvironment clusters

Clustering identified 5 main microenvironment clusters (Fig 2A), with patient demographics

outlined in Table 1. Of these clusters, Cluster 5 was unique both in terms of immune composi-

tion and patient outcomes (Fig 3 and S2 Fig).

Cell-type estimates from the WBM revealed that Cluster 5 was also noteworthy for its dis-

tinct microenvironment. It was significantly enriched (false discovery rate [FDR]� 0.05) for

estimated T cells, dendritic cells, M1 macrophages, tumor plasma cells, and other B cells (Fig

3C and 3D) and was significantly depleted for adipocytes, osteoclasts, eosinophils, mast cells,

point. Gray lines indicate transitions between time points. Portions of colored lines with no attached gray lines had no

samples in the immediately preceding or following time point. �Proportions significantly different to pretreatment

time point (i.e., binomial false discovery rate< 0.05). CD, cluster of differentiation; TME, tumor microenvironment.

https://doi.org/10.1371/journal.pmed.1003323.g002
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neutrophils, monocytes, M0 and M2 macrophages, and NK cells, with a lower innate/adaptive

immune cell ratio. It was also enriched for International Staging System (ISS) stage III samples,

as well as signs of a more malignant tumor: 70-gene Prognostic Risk Score (GEP-70) high risk,

deletion (del)16p, translocation (t)(12;14), and t(14;16) (Fig 3C).

The “high-granulocyte” Cluster 4 was the most different from Cluster 5 (Fig 3C and 3D): it

had the highest number of eosinophils, mast cells, neutrophils, monocytes, M0 macrophages,

and osteoclasts, and it was also enriched for ISS stage I samples. Cluster 1 was enriched for

amplification of 1q, a high-risk factor [29], and showed a lack of BM resident cells, such as adi-

pocytes, osteoblasts, osteoclasts, and inflammatory cells such as M1 macrophages and den-

dritic cells. However, this cluster had standard PFS/OS times and was effectively eradicated

post-transplantation. Clusters 2 and 3 showed similar levels of adipocytes, innate cells, and

lymphocytes, but they had inverse ratios of osteoblasts and osteoclasts. Whereas Cluster 2 had

an M2 macrophage signal, Cluster 3 had an increase in the NK cell population with modest

positive outcomes (estimated mean pretreatment PFS was 95 ± 9 months, 10 events, χ2

p = 0.087 [S2A Fig], and OS was 136 ± 10 months, 8 events, χ2 p = 0.082; n = 29 patients; S2B

Fig).

Cluster 5 showed a negative impact on survival

Microenvironment Cluster 5 had significantly impaired mean PFS of 59 ± 5 months (66

events, n = 106) compared with 76 ± 3 months (124 events, n = 248) for the other clusters com-

bined (χ2 p = 0.001; Fig 3A); the mean OS was 106 ± 7 months (50 events, n = 106) compared

with 121 ± 4 months (103 events, n = 248) for the other clusters (χ2 P = 0.036; Fig 3B). As

might be expected, Cluster 5 was significantly enriched for the level of malignant plasma cell

infiltration (Fig 3D); however, the cluster persisted even when the tumor load was reduced by

therapy (Fig 2B) and so was not driven by it. The adverse outcome of Cluster 5 was an inde-

pendent prognostic feature in multivariate analysis including percentage myeloma infiltration,

GEP-70, ISS stage III status, high-risk cytogenetics, age, sex, and Cluster 5 membership to

Table 1. Baseline patient demographics.

Factor, n/N (%) All patients Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Orphan p-Valuea

Age� 65 years 104/354 (29) 18/59 (31) 17/54 (31) 3/28 (11) 24/76 (32) 32/107 (30) 10/30 (33) 0.284

Female 137/354 (39) 21/59 (36) 13/54 (24) 10/28 (36) 32/76 (42) 53/107 (50) 8/30 (27) 0.023

White 314/354 (89) 54/59 (92) 50/54 (93) 27/28 (96) 67/76 (88) 90/107 (84) 26/30 (87) 0.326

ISS Stage 1 130/354 (37) 17/59 (29) 26/54 (48) 12/28 (43) 44/76 (58) 17/107 (16) 14/30 (47) < 0.001

ISS Stage 2 132/354 (37) 23/59 (39) 22/54 (41) 11/28 (39) 22/76 (29) 45/107 (42) 9/30 (30) 0.485

ISS Stage 3 92/354 (26) 19/59 (32) 6/54 (11) 5/28 (18) 10/76 (13) 45/107 (42) 7/30 (23) < 0.001

Albumin < 3.5 g/dL 124/354 (35) 23/59 (39) 13/54 (24) 9/28 (32) 20/76 (26) 49/107 (46) 10/30 (33) 0.043

B2M� 3.5 mg/L 183/354 (52) 35/59 (59) 21/54 (39) 12/28 (43) 21/76 (28) 81/107 (76) 13/30 (43) < 0.001

B2M > 5.5 mg/L 92/354 (26) 19/59 (32) 6/54 (11) 5/28 (18) 10/76 (13) 45/107 (42) 7/30 (23) < 0.001

Creatinine� 2 mg/dL 16/354 (5) 5/59 (8) 3/54 (6) 1/28 (4) 2/76 (3) 4/107 (4) 1/30 (3) �

Hb < 10 g/dL 134/354 (38) 24/59 (41) 12/54 (22) 6/28 (21) 14/76 (18) 68/107 (64) 10/30 (33) < 0.001

LDH� 190 U/L 73/354 (21) 8/59 (14) 10/54 (19) 5/28 (18) 12/76 (16) 31/107 (29) 7/30 (23) 0.171

Cytogenetic abnormalities 131/345 (38) 17/58 (29) 18/52 (35) 8/27 (30) 22/74 (30) 53/104 (51) 13/30 (43) 0.026

n, number with factor; N, number with valid data for factor.

�Sample size assumption for the χ2 test is not met.
ap-values represent a comparison between groups, not against the overall population.

Abbreviations: B2M, beta-2 microglobulin; Hb, hemoglobin; ISS, International Staging System; LDH, lactate dehydrogenase.

https://doi.org/10.1371/journal.pmed.1003323.t001
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Fig 3. Clinical outcomes and cellular components of microenvironment clusters: Kaplan–Meier curves for pretreatment sample modeling. (A) PFS

for the “low-granulocyte” Cluster 5 (orange; n = 66/106; rmean: 59 ± 5 months) versus Clusters 1–4 (blue; n = 124/248; rmean = 76 ± 3 months). (B) OS for

the “low-granulocyte” Cluster 5 (orange; n = 50/106; rmean: 106 ± 7 months) versus Clusters 1–4 (blue; n = 103/248; rmean = 121 ± 4 months). (C) Average

cytogenetic and clinical characteristic enrichment for patients in each of the 5 clusters. (D) Average deconvolved tumor and stromal cell types present in

each of the 5 clusters. FDRs were calculated using Wilcoxon signed-rank test and Benjamini–Hochberg correction. FDRs> 0.05 are white. (E, F) Univariate

Cox proportional HRs for PFS and OS (respectively). The analysis considered the upper quartile versus the lowest quartile (or high versus low if binary) for
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predict OS and PFS using Cox lasso regression [30]. Even in the presence of these variables,

Cluster 5 was still significantly associated with adverse PFS, but not OS (Fig 3E and 3F).

Microenvironment cluster status was modified by treatment

Microenvironment clusters revealed patient dynamics in 4 settings related to treatment: post-

induction (N = 245 individual patient samples available), post-transplantation (n = 83), post-

consolidation (n = 51), and postmaintenance (n = 134) (Fig 2B). Although the fraction of

patients in each cluster changed during treatment, no new clusters emerged (Fig 2B). The

“high-granulocyte” Cluster 4 was the second most frequent subtype at diagnosis after “low-

granulocyte” Cluster 5 and became the most common TME cluster after transplantation, con-

stituting 41%–58% of patients post-transplantation (Fig 2B). Other smaller clusters showed

different dynamics; e.g., “low-osteoblast” Cluster 1 decreased from 16% in the pretreatment

patient population to 2% after transplantation (Fig 2B).

Finally, “low-granulocyte” Cluster 5 decreased from 30% pretreatment to 28% postinduc-

tion to 12% after transplantation. Fig 2C shows the patient cluster transitions that occurred

between the pre- and post-transplantation phases. Of the 63 patients for whom we have both

pretreatment and post-transplantation paired samples, 18 of 20 Cluster 5 patients (defined by

their pretreatment cluster membership) moved into other TME clusters, with 13 moving into

“high-granulocyte” Cluster 4. Of note, the 69 (28%) of patients in Cluster 5 at the postinduc-

tion time point exhibited significantly worse outcomes when compared with patients whose

postinduction TME was not in Cluster 5 (176 [72%] patients; S2 Fig); estimated mean PFS was

57 ± 6 months (45 events, n = 69) for Cluster 5 compared with 76 ± 4 months (83 events,

n = 176) for Clusters 1–4 (χ2 p = 0.004; S2C Fig); estimated mean OS was 101 ± 8 months (37

events, n = 69) for Cluster 5 compared with 127 ± 5 months (62 events, n = 176) for Clusters 1

−4, χ2 p = 0.002; S2D Fig). Patients who started in Cluster 5 and stayed there did not have sig-

nificantly different PFS or OS than those who left.

When patient samples taken at relapse (within 180 days prior to clinically defined relapse

or up to 30 days after relapse, n = 17) were compared with samples taken during complete

remission (n = 108), all 8 of the significantly different (p� 0.05) TME components (adipo-

cytes, eosinophils, healthy plasma cells, mast cells, monocytes, neutrophils, osteoclasts, and

tumor plasma cells; S3 Fig) were significantly different in and concordant with the “low-granu-

locyte” Cluster 5. In particular, estimated granulocytes were significantly lower for patients

who were about to relapse. Taken together, this implies a diverse array of initial MM microen-

vironment states that tend to respond to treatment and converge on a “high-granulocyte”

Cluster 4 remission state. In contrast, the subset of patients who retain a “low-granulocyte”

Cluster 5 microenvironmental state had impaired outcomes.

The cellular content of the high-risk microenvironment was associated

with outcome

The granulocytes and other depleted cell types typical of Cluster 5 were strong univariate pre-

dictors of both poor OS and PFS across all 354 patients with NDMM (Fig 4A and 4B); e.g.,

eosinophils (OS, log-rank p = 0.02 PFS, log-rank p = 0.05), mast cells (OS, log-rank p = 0.001;

PFS, log-rank p = 0.003), monocytes (OS, log-rank p = 0.006; PFS, log-rank p = 0.006), and

variables in pretreatment samples. Those cell types, ratios, and clinical characteristics marked with an asterisk remain after multivariate Cox proportional

hazards lasso regression, implying that they contain independent information about patient outcomes. CD, cluster of differentiation; del, deletion; FDR,

false discovery rate; GEP-70, 70-gene Prognostic Risk Score; HR, hazard ratio; ISS, International Staging System; NK, natural killer; OS, overall survival;

PFS, progression-free survival; t, translocation.

https://doi.org/10.1371/journal.pmed.1003323.g003
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neutrophils (OS, log-rank p< 0.001; PFS, log-rank p = 0.01) (S4 Fig). This is concordant with

the high correlation between the counts of the myeloid lineage cell types: mast cells are

strongly correlated with eosinophils (Pearson’s r = 0.829), neutrophils (r = 0.828), and mono-

cytes (r = 0.830). We independently verified the granulocyte signature using biclusters [31]

constructed by cMonkey2 [32–34] and functional enrichment analysis using the Gene Ontol-

ogy Biological Process terms (S5 Fig) [35,36]. Biclusters significantly enriched for granulocyte-

annotated genes were also positively correlated with PFS.

Cox lasso regression determined that TME features had not been confounded by tumor

burden or other known high-risk features. Regression models including CD138+ percentage,

ISS stage, GEP-70 risk status, age� 65 years, high-risk cytogenetics, or sex tested whether cel-

lular subtypes would be removed from the model. These models, for both PFS and OS,

Fig 4. Pretreatment regression models for cell-type, clinical, and cytogenetic characteristics. (A, B) Univariate Cox proportional HRs for PFS and OS

(respectively) from 286 pretreatment samples with full cytogenetics and tumor burden data. Those cell types, ratios, and cytogenetic and clinical characteristics

marked with an asterisk remain after multivariate Cox proportional hazard lasso regression, implying that they contain independent information about patient

outcomes. Myeloma refers to the pathologist estimates of tumor cell percentages (rather than the deconvolution estimates). Lenalidomide indicates those 9 patients

who received lenalidomide during treatment, testing whether this was skewing the results. (C, D) Variables added during stepwise Cox regressing using variable

quartiles as predictors. CD, cluster of differentiation; CI, confidence interval; del, deletion; GEP-70, 70-gene Prognostic Risk Score; HR, hazard ratio; ISS,

International Staging System; NK, natural killer; OS, overall survival; PFS, progression-free survival; Q, quartile; t, translocation.

https://doi.org/10.1371/journal.pmed.1003323.g004
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retained tumor burden, mast cells, osteoblast/osteoclast ratio, GEP-70, ISS stage III, del17p,

and age� 65 years as significant predictors of patient outcomes (Fig 4A and 4B).

Stepwise Cox regression similarly demonstrated that granulocytes retained predictive

power after correcting for known prognostic markers. The stepwise regression selected GEP-

70 high risk, age� 65 years, low mast cells (quartile 1 versus other), and ISS stage III as the

most predictive factors for PFS and OS (Fig 4C and 4D). Thus, the deconvolved mast cell

counts add significant information beyond that provided by GEP-70 and ISS stage.

Immunohistochemistry-estimated granulocyte percentages were also predictive of patient

outcomes. Conditional inference decision trees [22,26] built for the 290 patients with immu-

nohistochemistry data (S6A–S6D Fig) revealed that low-granulocyte percentages were associ-

ated with adverse outcomes; e.g., low eosinophil counts as determined by

immunohistochemistry were a significant predictor of outcome (permutation p< 0.001 for

PFS; permutation p = 0.045 for OS) with a mean PFS of 67 ± 4 months (115 events, N = 195)

and OS of 112 ± 5 months (90 events, N = 195) compared with a mean PFS of 97 ± 10 months

(13 events, N = 31) and OS of 131 ± 6 months (34 events, N = 95) for patients with high

counts.

Granulocytes were important for stratifying the 286 pretreatment samples with fully quanti-

fied cytogenetics, GEP-70 high-risk status, ISS stage, and tumor burden. Conditional inference

trees showed that the pretreatment samples can be best divided by GEP-70 (estimated mean

PFS of 42 ± 6 months, 27 events, n = 34), ISS stage III (estimated mean PFS of 54 ± 6 months,

40 events, n = 68), and low mast cells (estimated mean PFS of 61 ± 6 months, 26 events,

n = 40) compared with an estimated mean PFS of 82 ± 4 months (60 events, n = 148) for the

remainder (Fig 5A). Further, patients with tumor-specific high-risk status, as defined by ISS

stage or GEP-70 status, had even worse outcomes if they had low mast cell estimates (Fig 5B).

Tumor gene-expression profiles were associated with depleted granulocytes

To address what tumor-side molecular features may be driving the identification of low mast

cells and thus perhaps the poor outcomes associated with depleted granulocytes, we compared

the pretransplantation gene expression of the 328 patients for whom we had paired purified

CD138+-selected samples and WBM samples. The WBM samples were used to determine the

estimated percentage of mast cells and were divided into 2 groups: those with the lowest quar-

tile of mast cells in the WBM and the remainder with higher mast cells. The top 32 genes in the

CD138+ RNA-expression data that were differentially expressed between these 2 groups, as

measured by a Wilcoxon signed-rank test (FDR� 0.05) and with an absolute log2 fold

change> 0.66, are shown in S7 Fig.

The development of a high-risk microenvironment during MM progression

To understand how the patterns seen in NDMM develop during the multistep progression

from MGUS through SMM to NDMM, we applied the same deconvolution techniques to

investigate WBM samples from 131 premalignant patients (MGUS, n = 55; SMM, n = 76).

This revealed that patients with more advanced SMM have significantly increased tumor

plasma cells (Wilcoxon signed-rank p = 0.004) and plasma cells (p = 0.01) and significantly

decreased monocytes (p = 0.01) and eosinophils (p = 0.018), consistent with the patterns

observed as patients moved toward worse outcomes in the MM cohort. Only 6 of the patients

with MGUS/SMM were known to progress, so no significantly different cell types were

observed. Using our previously defined 5 microenvironment clusters, 97% (127/131) of these

patients (54/55 of MGUS and 73/76 of SMM) were assigned to “high-granulocyte” Cluster 4,

the dominant post-transplantation remission microenvironment cluster.
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Fig 5. Mast cells, patient outcomes, and TME. (A) Cox proportional hazards conditional inference tree that selected an optimal combination of attributes from

the cell types and clinical characteristics for the 290 pretreatment samples with known cytogenetics and tumor burden estimates. The algorithm first selects the

strongest attribute (the cell-type or clinical characteristic with the lowest p-value), in this case, the GEP-70 high-risk flag (p< 0.001). As expected, those 34 patients

(27 of whom had an event) with GEP-70 high-risk tumors have particularly bad outcomes (estimated mean PFS = 42 months), and no other attribute can

significantly split the patient population. The algorithm then selects the attribute that best divides the remaining patient population, which is ISS stage III status

(p< 0.001). These 68 patients (40 of whom had an event) without GEP-70 high-risk tumors but who are ISS stage III cannot be significantly divided by any other

attribute and have relatively poor outcomes (estimated mean PFS = 54 months). The remaining 188 patients (86 of whom had an event) are best divided by

deconvolution-based mast cell estimates (p = 0.001). Those 40 patients (26 of whom had an event) with predicted mast cell levels of 8.97% or lower also have

relatively short PFS (estimated mean PFS = 61 months). The remaining 148 patients had a relatively long PFS of 82 months. Importantly, the model does not select

any more attributes that can pass a cutoff of p = 0.01, implying that of these deconvolved immune cell estimates and clinical characteristics, GEP-70, ISS stage III,

and mast cell estimates are the strongest predictors. Clinically estimated tumor burden, which is inversely correlated with deconvolved mast cell percentages, was

not selected by the tree and is, therefore, less informative. (B) Pretreatment samples with known ISS stage, GEP-70 status, and mast cell signature scores (n = 320).

The 8 rows show all possible combinations of GEP-70 high risk versus not high risk, ISS stage III versus not stage III, and mast cell signature as high versus low

(� 8.97%). GEP-70, 70-gene Prognostic Risk Score; ISS, International Staging System; OS, overall survival; PFS, progression-free survival; TME, tumor

microenvironment.

https://doi.org/10.1371/journal.pmed.1003323.g005
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Unsupervised clustering of those premalignant patients, using the top 10% of genes ranked

by variance, resulted in 3 premalignant microenvironment clusters (pClusters). pCluster 1

comprised 38 patients and 29% (11/38) had SMM; pCluster 2 comprised 64 patients and 63%

(40/64) had SMM; pCluster 3 comprised 29 patients and 86% (25/29) had SMM. As these

pClusters became enriched for SMM, plasma cell percentages increased while the estimated

population of granulocytes and monocytes decreased (Fig 6A). As the disease progressed, the

TME patterns became more like those of the MM patients with the worst outcomes, i.e., “low-

granulocyte” Cluster 5. Notably, patients with NDMM outside Cluster 5 had profiles similar to

patients in pCluster 3, including similar levels of estimated plasma cells, implying that the

Cluster 5 microenvironment is the final step in disease progression (Fig 6B).

The mast cell signature remained relevant in post-treatment patients with relapsed/refrac-

tory MM (RRMM), so we explored the same patterns in 295 patients with RRMM treated with

lenalidomide in the STRATUS (Evaluation of Safety of Pomalidomide in Combination With

Dexamethasone (Low Dose) in Patients With Refractory or Relapsed and Refractory Multiple

Myeloma) trial [37]. As may be expected for patients with poor outcomes, the patients with

RRMM were enriched for a depleted mast cell signature; 70% (207/295) had low mast cell esti-

mates compared with 27% (87/320) of baseline pretreatment patients, as shown in Fig 5B

(Fisher exact p< 0.001).

Discussion

Here, we present an analysis of 867 WBM samples taken during the course of treatment of 436

patients with MM (Fig 1A and 1B) and a follow-up study using samples from predisease

patients (55 with MGUS and 76 with SMM, S1–S3 Tables). Purified tumor samples were used

to isolate the nontumor portion of WBM gene-expression data, which clustered patients by

their microenvironment signatures (Fig 1C). One of the clusters (Cluster 5) stood out both in

terms of patient survival and cellular composition. The “low-granulocyte” Cluster 5 microenvi-

ronment signature was shown to add significant additional prognostic information to standard

tumor-specific risk-stratification tools, including the ISS stage; GEP-70 high-risk status; cyto-

genetic features including amp1q, del17p, adverse translocation t(4;14), and t(14;16); and

“double-hit” disease [38] (Fig 1D). Follow-up studies on predisease SMM and MGUS patients

revealed that this microenvironment developed as the disease progressed (Fig 1E). Machine-

learning techniques identified WBM components that independently impacted survival

beyond known high-risk tumor features, with mast cell percentage being the single most pre-

dictive factor (Fig 1F). This signature was validated in the STRATUS trial, in which patients

with RRMM were significantly enriched for the low-granulocyte phenotype (Fig 1G). The

results of this analysis show that the nontumor composition of the MM microenvironment

independently impacts survival and can be used to refine risk-stratification approaches.

What this study adds to existing research

Existing research in MM has tended to focus on tumor mutations and patient clinical charac-

teristics. This is the first large-scale study of the MM TME (i.e., the WBM). It reveals a low-

granulocyte microenvironment that is associated with negative patient outcomes and shows

how that microenvironment develops during predisease states. This study demonstrates that a

WBM granulocyte (i.e., mast cell) signature may be used to stratify patients and identify an ele-

vated risk population that would be missed by existing high-risk criteria.

It is important that this study implicates mast cells and other innate immune cells because

most TME research focuses on the adaptive immune system (e.g., T cells). This may be because

the deconvolution techniques do a relatively bad job of detecting T cell populations based on
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Fig 6. Progression of immune states through pClusters to elevated risk. (A) Shown are the deconvolved cell-type estimates for 131 samples

progressing through the 3 SMM/MGUS clusters (pCluster 1: MGUS [n = 27], SMM [n = 11]; pCluster 2: MGUS [n = 24], SMM [n = 40]; pCluster 3:

MGUS [n = 4], SMM [n = 25]). Also shown are 354 patients with NDMM in Cluster 5 (n = 106) and in other clusters (n = 248). The cells outlined in

blue in the SMM/MGUS clusters show a significant difference (Wilcoxon FDR� 0.05) between patients with SMM and those with MGUS. The cells

outlined in green show a significant difference between patients with SMM and those with NDMM. The plasma cell estimates outlined in dotted red

show that the overall plasma cell estimates (tumor plasma cells, plasma cells, and B cells) are very similar between SMM pCluster 3 (25.56%) and

NDMM clusters that are not “low-granulocyte” Cluster 5 (27.85%). (B) Shown are the aggregate tumor and microenvironment factors that characterize

the high-risk microenvironment. The top section shows cells whose proportion is elevated (blue) or reduced (red) in the high-risk microenvironment.

The bottom section shows a plausible mechanism of interaction between the tumor and microenvironment involving VCAM1 and other factors shown
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our internal validation data set, indicating room for further improvements in deconvolution

technology (S1I Fig). The WBM samples in this study contain many fewer mature mast cells

than the 4.8% reported in the myeloma literature [27,287]. Although this may be due to differ-

ences in staining methods, it emphasizes the need for additional studies of innate immune

cells in myeloma patients.

Strengths and limitations of this study

This study’s great strength is that it has up to 15 years of follow-up data for a high number of

MM patients (436) sampled at different time points during treatment (867 samples). The pat-

terns observed in this cohort have been validated in 131 high-risk predisease samples and 295

post-treatment relapse samples in the STRATUS cohort.

This study is limited in that the patients were primarily treated with thalidomide rather

than the current front-line drug, lenalidomide (although lenalidomide was used in the STRA-

TUS cohort). This study is also limited by the computational deconvolution used to enumerate

cell types. Deconvolution demonstrates poor ability to differentiate cell types in the same line-

age (S1D Fig). This challenges the identification of mast cells as the cell type best able to predict

patient outcomes. Highly correlated mast cell, eosinophil, neutrophil, and monocyte counts

make it difficult to tell whether mast cell estimates reflect another cell type or even a common

progenitor. Implications of this limitation are presented in S3 Text.

Implications and next steps for research

The importance of nonmacrophage myeloid lineage cells in this study implies several plausible

partial mechanisms that should be tested experimentally in the context of MM. Mast cells have

been shown to play a role in the initiation of antitumor immune response [39], and differential

gene-expression analysis supports this observation. Comparison of tumor gene-expression

profiles from patients with low mast cell signatures with the other patients yields only 2 genes

with significantly lower expression; both are associated with mast cell recruitment and activa-

tion (Fig 6B and S7 Fig). Vascular cell adhesion protein 1 is an adhesion protein, utilized by

circulating premast cells in order to move into a tissue [40]; thus, tumors lacking this protein

likely attract fewer mast cells. Proteoglycan 2 is a mast cell activation protein, the absence of

which renders recruited mast cells less likely to be activated and thereby recruited by other

immune cells [41].

The mast cell signature is the strongest signal in the data set analyzed, but this does not pre-

clude the role of other related cell types in survival; e.g., low levels of eosinophils are associated

with impaired survival and have been previously implicated in the initiation of antitumor

immune responses (Fig 6B) [42]. Furthermore, mast cells, eosinophils, neutrophils, and mono-

cytes have linked functions. Mast cells are known to recruit both eosinophils and neutrophils

[43]; monocytes and mast cells are often co-recruited [44], and eosinophils are believed to

in S7 Fig. APOBEC3B, apolipoprotein B MRNA editing enzyme catalytic subunit 3B; CD, cluster of differentiation; FAM133A, family with sequence

similarity 133 member A; FDR, false discovery rate; GBP1, guanylate-binding protein 1; IFI44L, interferon-induced protein 44-like; IFI6, interferon-

inducible protein 6; IFIT1/3, interferon-induced protein with tetratricopeptide repeats 1/3; ISG15, interferon-stimulated gene 15; MAD2L1, mitotic

spindle assemble checkpoint protein; MGUS, monoclonal gammopathy of undetermined significance; MITD1, microtubule interacting and trafficking

domain 1; NDC80, kinetochore protein NDC80 homolog; NDMM, newly diagnosed multiple myeloma; NK, natural killer; pCluster, premalignant

microenvironment cluster; RASSF6, Ras association domain family member 6; SMAD, homologies to the Caenorhabditis elegans SMA ("small" worm

phenotype) and Drosophila MAD ("Mothers Against Decapentaplegic") family of genes; SMM, smoldering multiple myeloma; VCAM1, vascular cell

adhesion protein 1.

https://doi.org/10.1371/journal.pmed.1003323.g006
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activate mast cells and neutrophils [41]. Thus, it might be profitable for future researchers to

purify these cell types (both individually and combined) from MM patient samples. This could

lead to a more precise biomarker than the mast cell signature.

Beyond biomarker discovery, in vitro investigations of stromal cells highlighted in this

study may be particularly profitable. By illuminating the interactions between these cell types

and the tumor, new findings may suggest treatments for myeloma that complement existing

therapies. One outstanding question is why patients who enter microenvironment Cluster 5

and leave do not have better outcomes than those who stay in Cluster 5. Has the microenviron-

ment suffered some damage that is undetectable by the assays used here? One way to answer

this sort of question would involve reconstructed BM 3D bioassays [45–47]. Models of these

kind have shown improved ability to model tumor cell survival in drug-resistant MM. There-

fore, they might provide a controlled environment to measure signaling as tumor and micro-

environment components interact to determine tumor proliferation and drug resistance.

Implications and next steps for clinical practice

Mast cell estimates derived from WBM gene expression are a potentially useful biomarker to

determine which patients have elevated risk status. As shown in Fig 5 (and S8 Fig), patients

with low mast cell estimates (<8.97%) have worse outcomes than patients with higher mast

cell estimates, whether or not the patient has been identified as having elevated risk by ISS

stage or GEP-70 criteria. Patients who relapse show signs of the same “low-granulocyte” Clus-

ter 5 that develops as MGUS and progresses to MM. If the microenvironment change precedes

the malignant cell changes, then it is possibility that the “low-granulocyte” microenvironment

may indicate patients who are about to relapse. Taken together, this implies that clinicians

should be mindful of the MM WBM tumor microenvironment. WBM gene-expression data

can flag elevated risk patients. Enumerations of the cell types present in the WBM of patients

with MM, particularly of myeloid lineage cells such as mast cells, eosinophils, neutrophils, and

monocytes, could test the conclusions of this study and potentially reveal new ways to treat

patients who would otherwise suffer poor outcomes.

Conclusion

Taken together, the observations in this study provide evidence that the microenvironment is

a significant contributor to tumor behavior and treatment response. Further investigation of

the microenvironment cellular content may have significant impacts on outcome after

immune therapies and, in addition, the role of atypical myeloid cells including granulocytes,

myeloid derived suppressor cells, myeloid precursors, and other myeloid lineage cell types

should be explored further in this context. To summarize, this article should encourage mye-

loma clinicians and researchers to study the TME and pay particular attention to granulocytes;

their presence (or absence) may contribute to patient survival.

Supporting information

S1 Text. STROBE checklist. The STROBE checklist including indications of where in the text

to find the relevant item. STROBE, Strengthening the Reporting of Observational Studies in

Epidemiology.

(DOC)

S2 Text. Supplementary methods. Additional details about the methods, particularly relevant

for replicating the results presented in this publication.

(DOCX)
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S3 Text. Supplementary discussion. Additional discussion about the limitations of deconvo-

lution and the implications for this publication.

(DOCX)

S1 Table. Clinical information for CD138+ purified samples. Clinical information for all

436 patients, including file names for the baseline CD138+ samples. CD, cluster of differentia-

tion.

(CSV)

S2 Table. Clinical information for WBM samples. Clinical information for all WBM sam-

ples, including file names and relevant time point information. WBM, whole bone marrow.

(CSV)

S3 Table. Clinical information for MGUS and SMM samples. Clinical information, includ-

ing file names for the SMM and MGUS samples. MGUS, monoclonal gammopathy of undeter-

mined significance; SMM, smoldering multiple myeloma.

(CSV)

S4 Table. Eosinophil IHC quantifications. Eosinophil estimates by IHC and deconvolution,

including sample IDs. IHC, immunohistochemistry.

(CSV)

S5 Table. Neutrophil IHC quantifications. Neutrophil estimates by IHC and deconvolution,

including sample IDs. IHC, immunohistochemistry.

(CSV)

S6 Table. Mast and premast IHC quantifications. Mast and premast estimates by IHC and

deconvolution, including sample IDs. IHC, immunohistochemistry.

(CSV)

S1 Fig. MGSM27 and deconvolution results. (A) Shown is the signature matrix for 27 cell

types showing all 601 genes. MGSM27 is publicly available as part of the ADAPTS package

(https://cran.r-project.org/web/packages/ADAPTS/index.html). (B) Spillover matrix showing

the average deconvolved percentage of cell types (columns) for the purified deconvolved

samples (rows). Cells are sorted based on hierarchal clustering based on Pearson correlation

coefficient. Also shown are the cell types that were combined to make the 18 cell types used

throughout the study. Note that cell types with very small distances were collapsed unless they

were biologically very different cell types (e.g., macrophages and dendritic cells). (C) Shown is

the comparison between estimated deconvolution and pathologist-determined tumor purity

for 423 patients with gene-expression data from purified CD138+ samples and flow-based

tumor percentages. The left side shows a scatter plot comparing deconvolution and flow-based

purity of CD138+ samples. Boxes drawn at 75%, 80%, and 90% show that both the deconvolved

estimates and clinical estimates indicate high levels of CD138+ purity. The right side shows the

same data if samples that are more than 90% CD138+ are considered “pure.” (D) Comparisons

between estimated deconvolution and pathologist-determined tumor percentages for 247

patients with matched pretreatment WBM and CD138+ gene-expression data, as well as

microscopy and flow-based tumor percentages. (E) Shown is the deconvolved eosinophil esti-

mates and the pathology-estimated percentage for proximal samples taken from 345 patients.

Note the pathology estimates show vertical bands consistent with rounding to the nearest half

a percent, impeding correlation analysis. A blue X denotes the mean deconvolution percentage

of those samples with a pathology estimate of less than 6%, and the dotted blue line shows the

regression line for those samples. A green X denotes the mean deconvolution percentage of
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the remaining samples, and the dotted green line shows their regression line. Importantly, the

predictions are in the correct range: 323/345 (94%) of the samples are less than 8% eosinophils

as predicted by the deconvolution. (F) Deconvolved neutrophil estimates and the pathology-

estimated percentage for proximal samples taken from 356 patients. (G) Deconvolved esti-

mates of PBMC data extracted from E-MTAB-3732: 182 samples. The percentages on the left

side show the expected cell types from pathologist-purified peripheral blood mononuclear

cells, and those on the right show the deconvolved estimates. The ranges on the right show the

mean ± 1 standard deviation. The deconvolved estimates for cell types are calculated by adding

the means of all cells of a particular type, as indicated by the color code; e.g., the pink B cell

estimates (13%) are the sum of 10% MM.plasma.cells, 2% PlasmaMemory cells, and 1% B.cells.

memory. (H) Shows the RMSEs for different deconvolution algorithms to predict the percent-

age tumor in CD138+ purified aspirates and WBM. Some of these samples were replicates that

were not included in the main study. (I) shows the Spearman’s correlation coefficient for dif-

ferent algorithms reconstructing the relative order of neutrophils, NK cells, macrophages, and

CD3+ T cells in a proprietary data set. ADAPTS, Automated Deconvolution Augmentation of

Profiles for Tissue Specific cells; CD, cluster of differentiation; DCQ, digital cell quantifier;

DSA, digital sorting algorithm; MGSM27, myeloma genome signature matrix 27; MM, multi-

ple myeloma; NK, natural killer; PBMC, peripheral blood mononuclear cell; PCC, Pearson

correlation coefficient; RMSE, root mean-square error; WBM, whole bone marrow.

(DOCX)

S2 Fig. Additional patient outcomes based on microenvironment cluster. (A) Pretreatment

PFS for the “low-granulocyte” Cluster 5 (orange) versus the other 4 clusters. (B) Pretreatment

OS for the “low-granulocyte” Cluster 5 (orange) versus the other 4 clusters. (C) Postinduction

PFS for the “low-granulocyte” Cluster 5 (orange) versus Clusters 1–4 (blue). (D) Postinduction

OS for the “low-granulocyte” Cluster 5 (orange) versus Clusters 1–4 (blue). The p-values in the

legend compare each cluster to all others with a χ2 test. Note that for (A) and (B) the Cluster 5

estimated mean (rmean) and χ2 p-values are slightly different from that reported in Fig 3. This

is due to how having 5 clusters instead of 2 changes the calculation. OS, overall survival; PFS,

progression-free survival.

(DOCX)

S3 Fig. Characteristics of patients who will relapse. p-values from Wilcoxon tests for each

cell type, relapse samples versus complete remission samples. Population: 17 patients with a

sample within 180 days prior to relapse or 30 days after relapse, excluding baseline samples

meeting this criterion; 108 samples taken from patients while in complete remission. Rows in

yellow pass an FDR cutoff of 0.20; rows in blue pass an FDR cutoff of 0.05. FDR, false discovery

rate; NK, natural killer; N/A, not applicable.

(DOCX)

S4 Fig. Kaplan–Meier OS and PFS curves showing how the quartiles of 4 highly correlated

cells segment the pretreatment patient population. (A) Eosinophils. (B) Mast cells. (C)

Monocytes. (D) Neutrophils. The 2 middle quartiles are combined into a single red line. OS,

overall survival; PFS, progression-free survival.

(DOCX)

S5 Fig. Gene-set enrichment by bicluster. As an orthogonal approach to validate the biologi-

cal relevance of low-granulocyte populations in the generation of a high-risk microenviron-

ment, we constructed patient-specific clusters of coexpressed genes (i.e., biclusters) [31] using

cMonkey2 separately on WBM and CD138+-selected samples. cMonkey2 generates gene clus-

ters that are often highly enriched in genes of related function and/or in related biochemical or
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regulatory pathways [32–34]. We expected biclusters from this analysis to be enriched for

genes driven by specific processes in cell types that are transcriptionally related. By contrasting

those biclusters between the 2 data sets, we expected to identify processes that were specific to

the high-risk microenvironment. (A) cMonkey2 biclusters significantly correlated with patient

PFS. Shown are GO terms enriched in cMonkey2 biclusters (out of a maximum 9,258 clusters

for CD138+ data and 8,540 clusters for WBM data). The y-axis shows the number of clusters

built on the pretreatment WBM samples; the x-axis shows the number of clusters built on

CD138+ samples. This analysis resulted in 8,540 (potentially redundant) WBM biclusters and

9,258 CD138+ biclusters, each containing an average of 30.0 and 30.3 genes, respectively, from

187.0 and 253.6 patients, respectively. After performing functional enrichment analysis using

the GO terms [35,36], we found that although many common functions (e.g., cell cycle) were

enriched in similar numbers of biclusters between the 2 data sets, many more biclusters gener-

ated from the WBM data (approximately 130 biclusters, or approximately 1.5% of all biclus-

ters) were enriched for granulocyte- and myeloid-related genes (specifically, activation or

degranulation of neutrophils, leukocytes, and/or myeloid cells) than were biclusters generated

from the CD138+ data (approximately 15 biclusters, or approximately 0.15%). (B) shows the

top GO terms enriched in WBM clusters. The greater number of biclusters enriched for granu-

locyte-related functions in WBM is a clear indication of the greater expression from cells in

the TME in the WBM data set, whereas the small but nonzero number of biclusters from the

CD138+ data set could be readily explained by the expected 0%–10% CD138– contamination

in CD138+ samples. In both data sets,>90% of these granulocyte-associated clusters were posi-

tively correlated with PFS (i.e., greater expression of these genes was associated with longer

PFS, on average; average correlation of 0.092) compared with 48% for the remaining WBM

biclusters (average correlation of –0.01; t test difference p< 10−16). Taken together, this biclus-

tering and GO functional discriminatory analysis provides a separate analysis pipeline, which

narrows down the relevant cell types present in Cluster 5 to implicate granulocytes as an

important correlate of patient outcomes. ATP, adenosine triphosphate; CD, cluster of differen-

tiation; DNA, deoxyribonucleic acid; BP, biological process; ER, endoplasmic reticulum; GO,

gene ontology; ncRNA, noncoding ribonucleic acid; PFS, progression-free survival; RNA,

ribonucleic acid; SRP, signal-recognition particle; TME, tumor microenvironment; WBM,

whole bone marrow.

(DOCX)

S6 Fig. IHC. Patient outcomes as determined by IHC for the 290 patients with IHC samples

collected at the same time as samples for microarray. Correlations between deconvolved and

proximal pathologist-estimated eosinophils and neutrophils (segmented cells) were 0.25;

p = 1.6 × 10−5 and 0.36 and p = 2.3 × 10−10, respectively. (A) Shown are conditional inference

trees and permutation p-values using the pathologist-estimated segmented cell percentages to

stratify patients by PFS. (B) Shown are conditional inference trees and permutation p-values

using the pathologist-estimated segmented cell percentages to stratify patients by OS. (C)

Shown are the same measurements as (A) using pathologist-estimated eosinophil density. (D)

Shown are the same measurements as (B) using pathologist-estimated eosinophil density. (E)

shows the comparison between CD117 (c-Kit)-labeled cells for 20 samples in which the tumor

was CD117– and deconvolved cell estimates and ratios. The first column shows the correlated

coefficient with CD117+ cells that morphologically appear to be mature mast cells. The second

column shows the p-value associated with the mature mast cell correlations. The third column

shows the correlated coefficient with CD117+ cells that morphologically appear to be imma-

ture mast cells. The fourth column shows the p-value associated with the immature mast cell

correlations. CD, cluster of differentiation; Eos, eosinophils; IHC, immunohistochemistry;
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NK, natural killer; OS, overall survival; PFS, progression-free survival.

(DOCX)

S7 Fig. Top differentially expressed tumor genes as segmented by deconvolved mast cell

quartiles. p-values were calculated using an FDR-corrected Wilcoxon signed-rank test. DNA,

deoxyribonucleic acid; FDR, false discovery rate.

(DOCX)

S8 Fig. Fig 5A with combined mast cells and eosinophils. (A) Cox proportional hazards con-

ditional inference tree that selected an optimal combination of attributes from the cell types

and clinical characteristics for the 290 pretreatment samples with known cytogenetics and

tumor burden estimates. MastEos is the sum of mast cells and eosinophils. (B) Survival curves

with statistics for the 4 groups identified in S8A Fig. Eos, eosinophils; GEP-70, 70-gene Prog-

nostic Risk Score; ISS3, International Staging System stage III; mo, months; PFS, progression-

free survival.

(DOCX)

S9 Fig. Principal component analysis plot of all microarrays that passed quality control by

process site and batch. Overlapping ellipses generated by ggbiplot show no separation of data

by batch or site.

(DOCX)

S10 Fig. Violin plots of multisampled patients across treatment. “1st Samp” shows the dis-

tribution for patients who had only 1 sample (black). For patients with multiple samples in a

single treatment phase, their sequential time points are colored red (first), light blue (second),

dark blue (third), green (fourth), and orange (fifth).

(DOCX)
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44. Trautmann A, Toksoy A, Engelhardt E, Bröcker E-B, Gillitzer R. Mast cell involvement in normal human

skin wound healing: expression of monocyte chemoattractant protein-1 is correlated with recruitment of

mast cells which synthesize interleukin-4 in vivo. J Pathol. 2000; 190: 100–6. https://doi.org/10.1002/

(SICI)1096-9896(200001)190:1<100::AID-PATH496>3.0.CO;2-Q PMID: 10640999

45. Reagan MR, Mishima Y, Glavey SV, Zhang Y, Manier S, Lu ZN, et al. Investigating osteogenic differen-

tiation in multiple myeloma using a novel 3D bone marrow niche model. Blood. 2014; 124(22): 3250–9.

https://10.1182/blood-2014-02-558007. PMID: 25205118

46. Braham MVJ, Ahlfeld T, Akkineni AR, Minnema MC, Dhert WJA, Öner FC, et al. Cellular immunother-
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