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Abstract: Hepatocellular carcinoma (HCC) metabolism is redirected to glycolysis to enhance
the production of metabolic compounds employed by cancer cells to produce proteins, lipids,
and nucleotides in order to maintain a high proliferative rate. This mechanism drives towards
uncontrolled growth and causes a further increase in reactive oxygen species (ROS), which could
lead to cell death. HCC overcomes the problem generated by ROS increase by increasing the
antioxidant machinery, in which key mechanisms involve glutathione, nuclear factor erythroid
2-related factor 2 (Nrf2), and hypoxia-inducible transcription factor (HIF-1α). These mechanisms
could represent optimal targets for innovative therapies. The tumor microenvironment (TME) exerts
a key role in HCC pathogenesis and progression. Various metabolic machineries modulate the
activity of immune cells in the TME. The deregulated metabolic activity of tumor cells could impair
antitumor response. Lactic acid–lactate, derived from the anaerobic glycolytic rate of tumor cells,
as well as adenosine, derived from the catabolism of ATP, have an immunosuppressive activity.
Metabolic reprogramming of the TME via targeted therapies could enhance the treatment efficacy
of anti-cancer immunotherapy. This review describes the metabolic pathways mainly involved in
the HCC pathogenesis and progression. The potential targets for HCC treatment involved in these
pathways are also discussed.

Keywords: HCC; glucose metabolism; oxidative stress; tumor microenvironment;
anticancer-immunoresponse

1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the fourth leading cause of
cancer-related death [1–3]. HCC develops in a multistep process, in the majority of cases arising on a
background of liver damage [1,3–5].

Cancers have an altered metabolism with an increase in glucose uptake and lactate production in
the presence of oxygen. This increased energy supplied by aerobic glycolysis is called “the Warburg
effect” [6,7]. Oxidative stress is an important player in liver carcinogenesis [8–11]. It is caused by an
imbalance between the production of oxidative species and antioxidant molecules in cells. The most
abundant reactive species are the reactive oxygen species (ROS) [11]. The presence of elevated ROS
levels causes damage to DNA with the subsequent production of 8-hydroxy-2-deoxyguanine and the
increase of DNA mutations. Elevated ROS levels also cause damage to RNA; to lipids, with an increase
in cell membrane permeability and cell death; and to proteins, with alterations in their structure and a
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subsequent change or loss of function [11]. ROS promote cellular proliferation, evasion of apoptosis,
angiogenesis, tissue invasion, and metastasis [11].

Alterations in metabolic pathways could generate advantages for tumor proliferation and growth
by ensuring energy and substrates. These alterations could create advantageous reducing conditions
in the tumor microenvironment (TME) that are optimal for cancer survival [7,12].

In the current review, we discuss the role of glucose metabolism and oxidative stress in HCC
pathogenesis and progression and the potential therapeutic targets for new HCC treatments.

2. HCC and Glucose Metabolism

2.1. Glucose Metabolism

HCC cell metabolism (Figure 1) is shifted to an increased glucose uptake through the glucose
transporter 1 (GLUT1) channel [13–15]. GLUT1 expression is significantly associated with HCC
tumorigenicity, tumor invasiveness, and growth. GLUT1 protein expression is increased in HCC
cancer tissues and is associated with an increase in 18F-FDG PET-CT (glucose analogue) uptake [13–15].
Once inside the HCC cells, glucose is converted into glucose-6-phosphate (G6P) by the activity of
proteins belonging to the hexokinase (HK) protein family. It was demonstrated that HK2 is highly
expressed in HCC, and it correlates with poor overall survival (OS) [16,17]. The HK family is formed
by five major isoforms with tissue-specific profiles: HK1 is typical of brain and erythrocytes, HK2 is
found in skeletal muscle and adipocytes, HK3 expression is low in most tissues, HK4 is typical
of liver and pancreas, and the isoform hexokinase domain containing 1 (HKDC1) is typical of the
gestational period [12,18–20]. HK1, HK2, and HK3 have a glucose affinity approximately 250-fold
higher than that of HK4. During liver tumorigenesis, HK4 is silenced, and the high-affinity enzymes
HK2, predominantly, and HK1, to a lesser extent, are activated [21].

At this stage, G6P could continue through glycolysis to produce ATP or can be redirected to
the pentose phosphate pathway (PPP) to contribute to macromolecular biosynthesis [7]. These two
different pathways are alternative and are activated simultaneously.

In the case of the glycolytic pathway, G6P is converted into fructose-6-phosphate, and subsequently
into fructose 1,6-bisphosphate by the phosphofructokinase (PFK) enzyme. There are three PFK isoforms:
PFKM, expressed in skeletal muscles; PFKL, typical of liver; and PFKP from platelets. PFKL gene
expression was found to be increased in HCC tissues compared to adjacent non-tumor tissues [22–24].
The last steps are the conversion into glyceraldehyde-3-phosphate and to 1,3-bisphosphoglycerate
thanks to glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is upregulated in HCC [25,26].
The last step in glycolysis is the production of pyruvate through one of the members of the pyruvate
kinase (PK) family. The PK family groups four isoforms deriving from two paralogous genes: PKL and
PKM [27]. The first one encodes the proteins PKL, expressed in normal liver and kidneys, and PKR,
expressed in red blood cells. Meanwhile, PKM is subjected to splicing and generates two isoforms:
PKM1, expressed in brain, bladder, adult muscle, and fibroblasts; and PKM2, expressed in tissues
during embryogenesis and upregulated in multiple cancers [27,28]. PKM2 mRNA and protein were
found to be overexpressed in HCC samples compared to healthy liver tissue and to be correlated with
aggressive features and poor prognosis [12,27].

Pyruvate subsequently reacts with NADH and H+ in the presence of lactate dehydrogenase (LDH)
to produce NAD+ and lactate [12]. Five LDH isoenzymes are present in human tissues. Each isoenzyme
is a tetrameric enzyme composed of two subunits: M or A and H or B. The M subunit is typical of
skeletal muscle, while the H is predominant of heart muscle. A disequilibrium towards the B chains
(LDHB) causes a conversion of pyruvate into acetyl-CoA, while an increase in the A subunit (LDHA)
drives the conversion of pyruvate into lactate. LDHA is the predominant isoenzyme in cancer cells [29].
The produced lactate is then released in the extracellular compartment through the monocarboxylate
transporters (MCT) [12]. The production of lactate is essential to the glycolytic pathway remaining
activated [7]. LDH is a key factor for HCC tumor proliferation and invasion. Analysis of HCC patients’
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serum samples suggested the use of serum LDH as a prognostic factor [30–35]. High levels of MCT4
and CD147, a transmembrane glycoprotein able to induce matrix metalloprotease (MMP) production
and to interact with MCT4 for lactate secretion, were detected in HCC tissues [36–39].

In the pathway alternative to glycolysis, G6P is redirected towards the PPP for macromolecular
biosynthesis, and it is converted to 6-phosphogluconolactone by the glucose-6-phosphate
dehydrogenase (G6PD), which was found to be upregulated in HCC [7,12,40–42]. The reaction
catalyzed by G6PD produces NADPH, which is then used to reduce glutathione from GSSG form to
GSH [12,43].

Conversely to glycolysis, the gluconeogenesis pathway is downregulated in HCC [12,44].
Fructose-1,6-bisphosphatase (FBP) is a rate-limiting enzyme able to convert fructose 1,6-bisphosphate
into fructose 6-phosphate, the precursor of G6P. Two FBP isoforms are present in mammals: FBP1,
typical of liver and kidneys; and FBP2, initially found in muscle tissues, and recently detected in
all cells [12,45]. A significantly decreased expression of FBP1 was found due to copy number loss
or promoter methylation in HCC cases, suggesting that the related FBP1 protein is crucial for HCC
tumorigenesis [44].

The nuclear receptor Nur77, encoded by the NR4A1 gene, regulates gluconeogenesis by
upregulating the transcription of FBP1 and FBP2 in the liver [46]. It also acts as a tumor suppressor
capable of interacting with phosphoenolpyruvate carboxykinase (PEPCK1), impeding its degradation
and, consequently, promoting the gluconeogenesis pathway and the conversion of oxalacetate to
phosphoenolpyruvate [46]. There are two PEPCK isoforms: PEPCK1 or PEPC-C, which is the
cytoplasmic form, highly expressed in the liver, kidneys, and adipose tissue; and PEPCK-M, which is
the mitochondrial isoform [46]. In HCC samples, Nur77 expression was found to be decreased from
Stage I to III [46]. A similar trend was found for PEPCK1 expression levels [46,47].

Another player that regulates glycolysis and gluconeogenesis is the AMP-activated protein
kinase (AMPK). AMPK is an intracellular energy sensor that exerts a key role in the management of
metabolism and cell growth [48]. In physiological conditions, it regulates the amount of ATP, restoring
its level when necessary [48]. AMPK activation prompts the switch from glycolysis toward oxidative
phosphorylation, and hence the inhibition of “Warburg effect” [49]. AMPK activation represses the
production of DNA, RNA, proteins, and lipids fundamental for cell proliferation and expansion [49].

AMPK can have an impact in HCC tumorigenesis and progression [50]. AMPK activity is
downregulated in malignant regions compared to their non-malignant counterparts. This decreased
activity of AMPK is correlated with worst prognosis [51,52]. AMPK activation stimulates cell cycle
arrest, regulates the survival of cancer cells, and diminishes the metastatic potential of tumor cells [50].
The silencing of AMPK inhibits apoptosis and cell cycle arrest caused by the starvation of glucose [53].
Several AMPK activators were studied for HCC treatment. The most studied is metformin, an AMPK
activator anti-diabetic drug [49]. The activation role of metformin is exerted by impacting the AMP/ATP
ratio and the mitochondrial respiration complex I, and stimulating the activation of liver kinase B1
(LKB1) [54,55]. Several studies demonstrated a reduced HCC incidence in Type 2 diabetic patients
administered metformin [49]. In vitro and in vivo studies demonstrated that metformin can decrease
the proliferation of HCC cells [51]. Three clinical trials are currently evaluating metformin in HCC
(NCT03184493, NCT04033107, NCT04114136).
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Figure 1. Glucose metabolism. Summarized are the most important players of the pathways used by 
cancer cells: glycolysis pathway (green), gluconeogenesis pathway (blue), pentose phosphate 
pathway (brown), and glutathione cycle (purple). Upregulating actions of GPC3 and HIF-1α are 
visualized with a red dotted arrow. Isoenzyme switches are illustrated as wavy arrows. HCC 
metabolism is shifted towards anaerobic glycolysis with an increase in glucose uptake by the activity 
of the GLUT1 transporter. Once inside the cell, glucose is transformed into G6P by HK1/2. Both 
GLUT1 and HK1/2 are positively regulated by HIF-1α, which in turn is upregulated by GPC3. In one 
case, G6P could be redirected towards the PPP, to produce metabolic intermediates useful for cell 
survival, and NADPH essential for glutathione reduction and ROS control. In the other case, G6P 

Figure 1. Glucose metabolism. Summarized are the most important players of the pathways used by
cancer cells: glycolysis pathway (green), gluconeogenesis pathway (blue), pentose phosphate pathway
(brown), and glutathione cycle (purple). Upregulating actions of GPC3 and HIF-1α are visualized with
a red dotted arrow. Isoenzyme switches are illustrated as wavy arrows. HCC metabolism is shifted
towards anaerobic glycolysis with an increase in glucose uptake by the activity of the GLUT1 transporter.
Once inside the cell, glucose is transformed into G6P by HK1/2. Both GLUT1 and HK1/2 are positively
regulated by HIF-1α, which in turn is upregulated by GPC3. In one case, G6P could be redirected
towards the PPP, to produce metabolic intermediates useful for cell survival, and NADPH essential for
glutathione reduction and ROS control. In the other case, G6P could continue through the anaerobic
glycolytic pathway until the transformation of pyruvate into lactate by LDHA. The upregulation of
LDHA enzyme is essential for the glycolytic pathway to remain active. This step could be regulated by
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HIF-1α and GPC3. In this way, cancer cells produce both energy and metabolic intermediates for all
the macromolecular biosynthesis necessary for cell survival and proliferation. Lactate is then released
out of the cell through the MCT4 transporter, ensuring an acidic pH in the extracellular compartment,
which in turn maintains a state of inflammation and can modulate the immune system state of the tumor
microenvironment. Abbreviations: ECM = extracellular matrix; FBP1 = fructose-1,6-bisphosphatase 1;
G6PD = glucose-6-phosphate dehydrogenase; GAPDH = glyceraldehyde-3-phosphate dehydrogenase;
GLUT1 = glucose transporter 1; GPC3 = glypican-3; GPx = glutathione peroxidase; GRd = glutathione
reductase; GSH = glutathione reduced form; GSSG = glutathione oxidized form; GSTs = glutathione
S-transferases; HIF-1α = hypoxia inducible factor 1α; HK1/2 or 4 = hexokinase 1/2 or 4; LDHA = lactate
dehydrogenase A; MCT4 = monocarboxylate transporter 4; PEPCK1 = phosphoenolpyruvate
carboxykinase 1; PFKL = phosphofructokinase L; PKL or M2 = pyruvate kinase L or M2; PPP = pentose
phosphate pathway; X = oxidative stress by-product; X-GSH = oxidative stress byproduct bound
to GSH.

2.2. Hypoxia and Glucose Metabolism

Hypoxia-inducible factors (HIFs) represent important sensors for intratumoral oxygen
concentration. The hypoxia system is based on two groups of HIFs, the α-subunits or HIFα which
includes HIF-1α, HIF-2α, and HIF-3α, and the β-subunits or HIFβ which includes HIF-1β, and the
aryl hydrocarbon receptor nuclear translocator 2 and 3 (ARNT2 and ARNT3) [56]. In normal oxygen
conditions, HIF-1α undergoes prolyl hydroxylation, then it is recognized by the E3 ligase called von
Hippel–Lindau tumor suppressor protein (VHL), and finally it is constitutively degraded by the
proteasome [56]. In hypoxic conditions, the lack of a sufficient oxygen supply causes an impairment in
HIF-1α hydroxylation and degradation. This leads to HIF-1α stabilization and translocation into the
nucleus, where it heterodimerizes with HIF-1β and binds to the core hypoxia-response elements [56].
HIF-1αβ plays crucial roles in angiogenesis, proliferation, invasiveness, and cancer metabolism [57].
One of the major targets of HIF-1αβ is the vascular endothelial growth factor (VEGF). HIF-1αβ also
acts on angiogenesis by producing nitric oxide synthase, endothelin-1, angiopoietin 2, and other
molecules [57]. HIF-1αβ regulates proliferation by inducing Myc proto-oncogene protein (c-Myc),
inhibitor of differentiation 2, and insulin-like growth factor-2 [57].

Hypoxia is a peculiar condition of HCC caused by the fast growth of tumor cells, with the
consequent consumption of oxygen associated with an inadequate vascularization [58]. Studies on HCC
patients’ tissue samples revealed a correlation between HIF-1α and/or HIF-2α and prognosis [59,60].

Data obtained in in vivo HCC models showed a significant correlation between microvessel
density and both HIF-1α and VEGF expressions [61,62].

An in vitro study on HCC cell invasiveness showed that basil polysaccharide can inhibit
CoCl2-based HIF-1α induction in HCC cell lines, rescuing the epithelial–mesenchymal transition (EMT)
phenotype [63].

At low oxygen levels, the electron transport chain has an unbalanced flow of electrons with
the consequent production of ROS which hampers cell survival [64]. To overcome ROS production,
HIFs are activated and allow the transcription of genes that enhance glycolysis in anaerobic conditions,
such as GLUT1, HK2, and LDH [13,58,64–67].

An increase in HIF-1α protein expression and in GLUT1 mRNA expression was shown after
hypoxia induction [13]. Another player of the glycolytic pathway that is regulated by hypoxia is
HK2. HIF-1α can induce HK2 expression in human HCC cells. Treatment with HK2 or HIF-1α
inhibitors suppressed cellular proliferation [65]. HK2 and HIF-1α immunostaining co-localized near
necrotic regions in HCC tissue samples of patients pre-treated with transcatheter arterial embolization
(TAE) [66].

HIF-1α can also be regulated by NANOG. The transcription factor and stem cell marker NANOG
is involved in the sustenance of self-renewal, pluripotency, and the undifferentiated phenotype
of stem cells [68]. NANOG can be activated by hypoxia, via HIF-1α, or by Toll-like receptor 4
(TLR4) [69,70]. In HCC, the induction of NANOG, mediated by TLR4, inhibits mitochondrial oxidative
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phosphorylation and stimulates fatty acid oxidation; these mechanisms prompt an inhibition of oxygen
consumption rate and ROS production [70]. This scenario induces drug resistance and the sustenance
of tumor-initiating stem-like cell self-renewal [70]. The re-establishment of oxidative phosphorylation
and suppression of fatty acid oxidation could abrogate this situation of drug resistance [70].

HIF-1α binds the promoter region of lncRNA RAET1K, increasing its expression under hypoxic
conditions [67]. RAET1K, in turn, is responsible for a decrease of miR-100-5p levels. In this way,
the activity of this miR-100-5p in the decrease of lactate concentration and glucose uptake is diminished.
Silencing of lncRNA RAET1K can suppress HCC cell proliferation and invasion [67].

2.3. Glypican 3 (GPC3) and Glucose Metabolism

GPC3 is a heparansulfate proteoglycan proposed as a target protein for HCC treatment for its
high and specific expression on HCC cell surfaces [71–77].

GPC3 is involved in the reprogramming of tumor cell metabolism by acting on the glucose pathway
(Figure 1) [36,37,78–80]. HCC cells, in presence of high GPC3 protein expression, have a higher glucose
uptake and lactate production [78]. GPC3 can enhance HIF-1α protein expression. Knockdown of
GPC3 expression was associated with tumor growth suppression, which was significantly reversed
forcing the expression of HIF-1α [78]. A significant positive correlation was found between GPC3
expression and GLUT1, LDHA, and HK2 expression [78].

GPC3 may interact with MCT4 and GLUT4 on the cell surface, facilitating the adaption of HCC
cells to the hypoxic environment. In addition, CD147, which is frequently co-localized with MCT4,
might increase tumor invasiveness, inducing expression of MMPs [36,37].

An inverse correlation between GPC3 expression and 18F-FDG-6-phosphate uptake was found in
HCC patients’ samples [79]. This inverse association might be caused by an inverse trend of GPC3 and
GLUT1 expression [79]. A decrease in glucose uptake and GLUT1 protein expression was also found
after GPC3C-terminal domain overexpression [80].

3. HCC and Oxidative Stress

3.1. Oxidative Stress

The oxidative metabolism of aerobic respiration by the mitochondria is the main source of
oxidative stress [11]. The reactive species are ROS (the most abundant), RNS (reactive nitrogen species),
RSS (reactive sulfur species), and RCS (reactive chloride species). When an unbalanced equilibrium
towards ROS formation is present, a series of damages affects DNA, RNA, lipids, and proteins [11].

ROS imbalance can promote tumor development and progression. There are two major pathways
that can be regulated by ROS: the mitogen-activated protein kinase (MAPK) pathway and the
phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR)
pathway (Figure 2) [81,82].

The MAPK pathway regulates cell growth, differentiation, and apoptosis through a
phosphorylation cascade that can start from tyrosine-kinase receptors (TKRs), and activates downstream
protein effectors Ras, Raf, MAP/ERK kinases (MEK1/2), and extracellular regulated kinases (ERK1/2) [81].
Another mode of MAPK pathway activation is represented by cytokine activation with the subsequent
phosphorylation of MAPK kinases (MAP3Ks), and phosphorylation of p38 mitogen-activated protein
kinases (p38) or of c-Jun N-terminal kinases (JNK) [81,83].

ERK1/2 are required for G1/S phase transition after mitogen action. ERK1/2 are involved in the
induction of proliferation, in the suppression of apoptosis, and in the promotion of cell survival [83].
MEK/ERK activation is fundamental for HCC cell proliferation [84,85]. Abnormal activation of the
Ras/Raf/MEK/ERK signaling pathway was detected in HCC patients’ samples [86,87].

JNK has a role in cell cycle progression, cell proliferation, and migration [83]. Immunohistochemical
staining of HCC samples revealed a positive signal for phosphorylated JNK1 (pJNK1) and JNK2
(pJNK2) in the majority of them [88]. JNK1 can promote HCC cell survival by increasing c-Myc
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levels [88]. High expression levels of pJNK/c-Jun (a JNK downstream effector) protein were associated
with a lack of response to sorafenib treatment [89].

Gankyrin is an oncoprotein highly expressed in HCC, with an active role in tumor initiation
and progression [90]. It enhances the production of lactate and glutamate and the employment of
glucose and glutamine in HCC [91]. These activities are exerted through an increased expression of
factors implicated in glutaminolysis and glycolysis. Gankyrin pilots glutaminolysis and glycolysis via
the upregulation of c-Myc caused by β-catenin signaling activation. This metabolic reprogramming
is c-Myc-mediated. It could contribute to tumor initiation, progression, and chemoresistance [91].
The use of c-Myc inhibitors contributed, with sorafenib or regorafenib, to tumor suppression in HCC
patient-derived xenograft models with high levels of Gankyrin [91].

p38α protein regulates the production of pro-inflammatory cytokines, controls differentiation and
apoptosis, and negatively regulates proliferation [83]. Mice presenting deletions in p38α showed an
increase in liver cancer development, which was reduced by JNK/c-Jun inhibition [92]. Downregulation
of p38 and MKK6 activities were associated with HCC lesions with a higher size [93].

The PI3K/AKT/mTOR pathway can be activated by TKRs, cytokines, and hormones or by
Ras [94,95]. Once PI3K is activated it phosphorylates the phosphatidylinositol 4,6-bisphosphate (PIP2)
into phosphatidylinositol 3,4,5-triphosphate (PIP3), which in turn activates both serine/threonine kinase
phosphoinositide-dependent kinase 1 (PDK1) and AKT. AKT inhibits the tuberous sclerosis proteins 1
and 2 complex (TSC1/TSC2). As a consequence, the Ras homolog enriched in brain (RHEB) can be
phosphorylated and can activate mTOR, which is involved in the induction of cell survival, proliferation,
and protein translation [82,94]. AKT inhibits apoptosis by interacting with Bcl-2 associated agonist of
cell death (BAD) and bcl-2-like protein 4 (BAX) or by preventing mouse double minute 2 homolog
(MDM2) phosphorylation, which in turn inhibits cellular tumor antigen p53 (p53) [82,94]. AKT is also
able to increase glycolysis, acting on GLUT1 activation and phosphorylating HK2 [82]. ROS can act
on cell proliferation by increasing PI3K or AKT phosphorylation or by decreasing phosphatase and
tensin homologue (PTEN) levels [82]. In HCC tissues, the PI3K/AKT/mTOR pathway was found to be
upregulated, with PTEN loss and AKT activation correlated with poor differentiation, high proliferation,
and intrahepatic metastasis [96].

The PI3K/AKT pathway is affected by mutations in HCC. One mutated gene is PIK3CA,
which encodes for the catalytic subunit of the PI3K protein. The PIK3CA mutation frequency is
about 7%. PIK3CA mutations can be found in the helical domain (E545K) or in the kinase domain
(H1047R) [97–100]. The mutation H1047R increased the AKT activity in HCC tissue compared
to patients’ normal liver tissue [97–100]. SGK3 is a protein kinase downstream mediator of PI3K
pathway [100]. Its silencing reduced HCC cell proliferation rate based on the overexpression of PIK3CA
E545K, and not on PIK3CA H1047R overexpression. Using an in vivo E545K/c-Met HCC model, a
delayed tumor formation in the presence of SGK3 gene deletion was shown [100]. Activating mutations
in PIK3CA may predict sensitivity to inhibitors of the PI3K/AKT mTOR pathway [99]. RSK2 is a
serine/threonine kinase that regulates PI3K/Ras signaling and acts to provide negative feedback on the
ERK1/2 pathway. A total of 9.6% of HCC samples are mutated in its gene RPS6KA3, and half of these
mutations cause a premature stop codon or an altered splicing. To a lesser extent, missense mutations
were found in close proximity to codons encoding for Ser227 or Thr557 phosphorylation sites required
for RSK2 activation and thus inactivating its function [101,102].

Cancer cells, in order to reduce the overproduction of ROS and the related toxic effects while
maintaining cell proliferation and survival conditions, can activate two major response mechanisms:
the Kelch-like ECH-associated protein 1 (KEAP1)-nuclear factor erythroid 2-related factor 2 (Nrf2)
(encoded by NFE2L2 gene) pathway and GSH metabolism [82]. A minor mechanism able to reduce
oxidative stress takes advantage of aldehyde dehydrogenase (ALDH) [103].
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Figure 2. Oxidative stress pathways. Summarized are the two main pathways of cell proliferation and 
survival subjected to reactive oxygen species (ROS) regulation: MAPK (orange) and PI3K/AKT/mTOR 
(light blue). The shared Nrf2 pathway is highlighted in black, while ROS regulations/interactions are 
visualized in red. Positive regulations are pictured as dotted arrows, and negative regulations are 
pictured as dotted truncated arrows. High oxidative stress is one of the key aspects that in normal 
conditions leads to cell death. HCC cells can manage ROS overproduction by activating the MAPK 
and PI3K/AKT/mTOR pathways. The last effectors of MAPK pathways are ERK1/2, JNK, and p38. 
ERK1/2 and JNK are upregulated and lead to the transcription of genes involved in cell proliferation, 
survival, differentiation, and migration, while p38 is related to apoptosis and in HCC cells is 
downregulated. The PI3K/AKT/mTOR pathway is upregulated in HCC cells leading to cell 
proliferation, survival, differentiation, and migration. ROS can regulate PI3K and AKT activities by 
increasing their phosphorylation or by decreasing PTEN levels. Both MAPK and PI3K/AKT/mTOR 
pathways have a common effector which is Nrf2. Nrf2 is a transcription regulator which is maintained 
at low levels by the KEAP1 protein. In the presence of high ROS levels, KEAP1 dissociates from Nrf2, 
which by this dissociation becomes capable of reaching the nucleus. Once inside the nucleus, Nrf2 
heterodimerizes with Maf. The Nrf2/Maf heterodimer binds the antioxidant-responsive elements for 
the transcription of genes involved in cancer cell survival and growth. Nrf2 is also able to activate 
genes related to oxidant homeostasis such as glutathione S-transferase (GST). Abbreviations: AKT = 
protein kinase-B; ECM = extracellular matrix; ERK1/2 = extracellular regulated kinases 1 and 2; JNK = 
c-Jun N-terminal kinases; KEAP1 = Kelch-like ECH-associated protein 1; GST = glutathione S-
transferase; Maf = musculoaponeurotic fibrosarcoma protein; MAP3K = MAPK kinase kinase ; 
MEK1/2 = MAP/ERK kinases 1 and 2; MKK3/6 and MKK 4/7 = mitogen-activated protein kinase kinase 
3/6 and 4/7; mTOR = mammalian target of rapamycin; Nrf2 = nuclear factor erythroid 2-related factor 
2; p38 = p38 mitogen-activated protein kinases; PDK1 = serine/threonine kinase phosphoinositide-

Figure 2. Oxidative stress pathways. Summarized are the two main pathways of cell proliferation and
survival subjected to reactive oxygen species (ROS) regulation: MAPK (orange) and PI3K/AKT/mTOR
(light blue). The shared Nrf2 pathway is highlighted in black, while ROS regulations/interactions
are visualized in red. Positive regulations are pictured as dotted arrows, and negative regulations
are pictured as dotted truncated arrows. High oxidative stress is one of the key aspects that in
normal conditions leads to cell death. HCC cells can manage ROS overproduction by activating the
MAPK and PI3K/AKT/mTOR pathways. The last effectors of MAPK pathways are ERK1/2, JNK,
and p38. ERK1/2 and JNK are upregulated and lead to the transcription of genes involved in cell
proliferation, survival, differentiation, and migration, while p38 is related to apoptosis and in HCC
cells is downregulated. The PI3K/AKT/mTOR pathway is upregulated in HCC cells leading to cell
proliferation, survival, differentiation, and migration. ROS can regulate PI3K and AKT activities by
increasing their phosphorylation or by decreasing PTEN levels. Both MAPK and PI3K/AKT/mTOR
pathways have a common effector which is Nrf2. Nrf2 is a transcription regulator which is maintained
at low levels by the KEAP1 protein. In the presence of high ROS levels, KEAP1 dissociates from Nrf2,
which by this dissociation becomes capable of reaching the nucleus. Once inside the nucleus, Nrf2
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heterodimerizes with Maf. The Nrf2/Maf heterodimer binds the antioxidant-responsive elements
for the transcription of genes involved in cancer cell survival and growth. Nrf2 is also able to
activate genes related to oxidant homeostasis such as glutathione S-transferase (GST). Abbreviations:
AKT = protein kinase-B; ECM = extracellular matrix; ERK1/2 = extracellular regulated kinases 1 and 2;
JNK = c-Jun N-terminal kinases; KEAP1 = Kelch-like ECH-associated protein 1; GST = glutathione
S-transferase; Maf = musculoaponeurotic fibrosarcoma protein; MAP3K = MAPK kinase kinase;
MEK1/2 = MAP/ERK kinases 1 and 2; MKK3/6 and MKK 4/7 = mitogen-activated protein kinase
kinase 3/6 and 4/7; mTOR = mammalian target of rapamycin; Nrf2 = nuclear factor erythroid
2-related factor 2; p38 = p38 mitogen-activated protein kinases; PDK1 = serine/threonine kinase
phosphoinositide-dependent kinase 1; PI3K = phosphatidylinositol 3-kinase; PIP2 = phosphatidylinositol
4,6-bisphosphate; PIP3 = phosphatidylinositol 3,4,5-triphosphate; PTEN = phosphatase and tensin
homologue; Raf = rapidly accelerated fibrosarcoma protein; Ras = rat sarcoma protein; RHEB = Ras
homolog enriched in brain; ROS = reactive oxygen species; TKR = tyrosine-kinase receptor;
TSC1/TSC2 = tuberous sclerosis proteins 1 and 2 complex. 3.2. Nrf2 and Oxidative Stress.

Nrf2 is part of the basic region leucine zipper transcription factor cap ‘n’ collar subfamily [104].
It binds the antioxidant-responsive elements (ARE) and activates genes involved in oxidant homeostasis
and drug metabolism control, such as glutathione S-transferase (GST), glutathione peroxidase (GPx),
and drug-metabolizing enzymes [11,104,105]. In cancer cells, Nrf2 is involved in the control of oxidative
stress and in maintenance of cell survival and proliferation [104–106]. It can be activated by MAPK
and PI3K pathways or directly by oxidative stress (Figure 2) [105,106]. In the latter case, some KEAP1
cysteines are oxidized and dissociated from Nrf2, which in turn can translocate into the nucleus.
In this subcellular localization, Nrf2 dimerizes with musculoaponeurotic fibrosarcoma (Maf) protein.
The Nrf2/Maf dimer binds ARE sequences in order to activate the transcription of enzymes of the
phase II detoxification and of transporters [105,106]. In cancer, Nrf2 and its downstream genes are
overexpressed, leading to cell survival and growth [106]. In HCC samples, Nrf2 is overexpressed and
localized in the nucleus, suggesting its constitutive activation [106].

Nrf2 can be also activated by a positive feedback made with TRIM25, a member of the tripartite
motif-containing family, which is upregulated during endoplasmic reticulum (ER) stress [107].
Specifically, TRIM25 targets KEAP1 and causes its ubiquitination and degradation. In this way,
Nrf2 can reach the nucleus and activate genes, including TRIM25 itself, to reduce ROS [107].

Somatic mutations that interfere with Nrf2–KEAP1 interaction were identified in HCC
cases [108,109]. These mutations cause an increased transcriptional activity of Nrf2, stimulating
tumorigenesis and cell proliferation [108]. A whole-exome sequencing conducted on 24 HCC cases
revealed that 6.4% of them had mutated NFE2L2 [102]. The DLG and ETGE motifs located within
NFE2L2 harbored these mutations that cause the inhibition of the binding of KEAP1 [102]. Another
whole-exome sequencing analysis performed on 363 HCC cases showed NFE2L2 mutations in 3%
and KEAP1 mutations in 5% of the cases, respectively [110]. A chemically induced HCC rat model
demonstrated that NFE2L2 mutations are very recurrent and they occur in the early stages of
tumorigenesis, suggesting an active role in HCC activation and development [109]. NFE2L2 knockout
mice were able to withstand diethylnitrosamine-induced hepatocarcinogenesis [111]. This resistance to
tumorigenesis was associated with the decreased expression of PPP-associated enzymes. These results
showed that Nrf2 contributes to tumorigenesis, by upregulating the genes related to glucose uptake
and reallocation within PPP [111].

3.2. Glutathione (GSH) and Oxidative Stress

GSH is a natural non-enzymatic and endogenous antioxidan [11,112]. It is composed of three
peptides, L-γ-glutamyl-L-cyteinyl-glycine, and the most common forms are reduced GSH and oxidized
GSSG. GSH is involved in cellular growth functions and it is employed in reactions carried out by
other enzymes to detoxify several substrates in the phase II of detoxification [113–115]. GSH and
some GSH-related enzymes were associated with tumor chemoresistance, given their ability to
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bind or interact with drugs, and their depletion enhanced the cytotoxic effects through oxidative
stress [115,116]. In HCC tissues, GSH levels were found to be increased, making it a possible target for
cancer therapeutics [114,117].

GSH is produced through two steps requiring ATP. One step is the reaction of glutamate
and cysteine catalyzed by γ-glutamylcysteine synthetase (GCS) to produce γ-glutamylcysteine;
the other step is the reaction of γ-glutamylcysteine with glycine catalyzed by GSH synthetase (GS) to
produce GSH [114]. GCS is composed of the heavy catalytic subunit (GCS-HS) and the light subunit
(GCS-LS) [114]. Once GSH is produced, it is used by the GSTs, which are phase II detoxification
enzymes, to detoxify electrophilic xenobiotics and oxidative stress byproducts [117,118]. Other enzymes
involved in the antioxidant machinery are GPx, which is able to convert H2O2 and GSH into H2O, O2

and GSSG, and glutathione reductase (GRd) which reduces GSSG to GSH again [115,117].
Huang et al. detected a 2-fold increase in the GSH protein level, and an increase in GCS-HS

mRNA and protein level and in GS mRNA level in HCC tumor samples when compared to the normal
liver counterparts [114]. This increment of GSH concentration was correlated with enhanced cell
proliferation [114].

In HCC tissues, higher GSH and GPx activity were detected when compared to the adjacent
normal liver counterpart. GSH and GSSG levels detected in pre-operative plasma were low, while after
resection, their concentration increased, suggesting that GSH may be used to decrease the oxidative
stress during carcinogenesis and that tumor tissue may uptake GSH from plasma [117].

3.3. Aldehyde Dehydrogenase and Oxidative Stress

Aldehyde dehydrogenases are a group of enzymes that catalyze the oxidation of endogenous
and exogenous aldehydes, and are also necessary for the production of retinoic acid [103].
ALDH, by metabolizing a broad variety of aldehydes, decreases the levels of oxidative stress. In detail,
reactive aldehydes (such as 4-hydroxy 2-nonenal), which can be produced after alcohol or anticancer
drug catabolism or exposure to UV radiation or environmental pollutants, are converted into
non-reactive species by members of ALDH family [103,119]. The high levels of ALDH expression in
cancer cells, and in cancer stem cells, generate chemoresistance caused by the oxidation of the aldehyde
group of the drug [103]. The administration of ALDH inhibitor sensitizes the cells to the anticancer
treatment [103,120].

4. Immunological Reprogramming of the TME

In the HCC TME, immune system cells can be affected by metabolites released from cancer cells,
in particular lactic acid–lactate [12,121–123]. Tumor-secreted lactate is employed by tumor-associated
macrophages (TAM) to enhance the expression of VEGF and to prompt M2 phenotype [12,124–128].

Another type of immune cells that can be affected by lactate are the myeloid-derived suppressor
cells (MDSCs) [121,129]. In a cancer context, the high expression of inducible nitric oxide synthase
(iNOS), Arginase 1, and the generation of nitric oxide and ROS prompt the population of immature
myeloid cells (IMC) to generate an immunosuppressive population of MDSCs [129]. The deficiency of
LDHA results in lower MDSC presence [121]. NK cells can also be influenced by lactate [121].

Tumors can escape from dendritic cells (DCs) immunosurveillance by responding to several
signals [122,130], including lactic acid, which interferes with differentiation and activation of
monocyte-derived DC [122,131].

Cytotoxic T lymphocytes (CTL) can be affected by lactic acid, which is capable of inhibiting their
cell growth and cytokine secretion [123,132].

Adenosine (ADO) is derived from ATP catabolism [133]. During cancer development, ATP is
secreted at high levels by inflammatory, necrotic, or apoptotic cells [134]. During anti-cancer therapy,
ATP can contribute to the elimination of cancer cells by inducing immunological cell death (ICD) [135].
In physiological conditions, ADO exerts mainly anti-inflammatory functions stimulating immune
suppression and cytoprotection [133,136]. ADO is present at high levels in TME. ATP is secreted in
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response to hypoxia, which in turn induces the expression of HIF-1α, which drives the expression
of CD39 and CD73 on tumor cells and on several immune components of the TME [133]. Adenosine
diphosphate (ADP) and ATP are converted to adenosine monophosphate (AMP) by a reaction catalyzed
through CD39, whereas CD73 catalyzes the conversion of AMP into ADO [133,137,138].

High ADO levels in the TME induce suppression of antitumor activity through the activation of
ADO receptors expressed on immune cells [133]. Four subtypes of G protein-coupled-ADO receptors
have been classified: A1R, A2AR, A2BR, and A3R [133]. T cells express on their surface mainly A2AR
and A2BR [139,140]. By interacting with their receptors, ADO is able to potently inhibit proliferation,
differentiation, cytokine secretion, and T-cell cytotoxic activity [140]. This mechanism is mediated
by the accumulation of intracellular cAMP, which stimulates the activity of protein kinase A and of
exchange protein directly activated by cAMP (EPAC) [140–142]. ADO stimulates regulatory T cells
(Tregs) differentiation [140].

ADO also interferes with the differentiation of monocytes in DCs and with their activation. By the
activity of A2AR and A2BR, it impairs the capability of DC to induce the Th1 immune response, whereas
Th2 and Th17 responses are stimulated. ADO enhances the production of interleukins (ILs) IL-5,
IL-6, IL-10, transforming growth factor- β (TGF-β), indoleamine-pyrrole 2,3-dioxygenase-1 (IDO-1),
arginase 2, programmed cell death ligand 2 (PD-L2), and VEGF whereas it reduces the expression of
tumor necrosis factor-α (TNF-α) and IL-12 [140,143–145].

The interaction between ADO and its receptors compromises the differentiation of monocytes into
macrophages [140,146]. By stimulating the expression of arginase-1, IL-10, and VEGF, ADO prompts
the macrophages toward the M2 phenotype [140,146].

The activation of A2AR by ADO impairs NK cells’ maturation, proliferation, and the secretion
of interferon-γ (IFN-γ) and TNF-α. The stimulation of A2AR decreases the NK cell cytotoxic
capability [140].

A2BR stimulation boosts IMC differentiation toward MDSCs [147]. A2AR-mediated signaling
stimulates IL-10 secretion by MDSC cells [140]. An enhancement in CD73 expression was reported
upon administration of an ADO analog [147].

5. microRNA in HCC Metabolism

microRNA (miRNAs) are small non-coding RNAs that play key roles in many cellular functions,
including metabolism [148]. Several miRNAs have been found to be dysregulated in numerous
malignancies contributing to tumorigenesis [49].

The liver-specific miR-122 exerts a key role in the sustenance of the physiological liver
metabolism [149]. Alterations in its expression are often associated with liver dysfunctions and
the development of liver malignancies [149]. miR-122 is downregulated in HBV-related HCC;
this reduction in miR-122 expression is associated with a decreased mitochondrial metabolism in
HCC and in non-pathological liver tissues [150]. miR-122 can be associated with morbidity and
mortality of HCC patients [150]. miR-122, together with miR-26a and miR-130a, have been found to be
negatively regulated in HCC, and the consequent upregulation of their target genes caused aberrant
cell proliferation [151]. In addition, miR-122 targets PKM2 [149].

The miR-520 family is significantly downregulated by Tat-activating regulatory DNA-binding
protein (TARDBP). High TARDBP levels have been found in HCC, where it regulates the expression of
PFKP [152].

miR-7 acts as a tumor suppressor in HCC. Specifically, miR-7 reduces tumor cell proliferation and
migration through PI3K/AKT/mTOR signaling [153].

Another regulator of the PI3K/AKT/mTOR pathway is miR-125a, which impairs cell proliferation
and migration [154].

MCT4, responsible for lactate efflux, is targeted by miR-145 [155]. The regulation of MCT4 by
miR-145 induces a significant downfall of the intracellular pH with damage of the pH homeostasis
of the TME. Furthermore, the quick pH reduction of the intracellular compartment interferes with
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a wide spectrum of enzymes involved in glycolysis, subsequently hindering HCC proliferation and
metastasis [155].

6. Targeted Therapies for Metabolic Pathways

Molecular pumps that move the pharmacological compounds across the plasma membranes of
tumor cells are the major mechanisms that induce drug resistance [156]. Most of the molecular pumps
belong to the ATP binding cassette (ABC) transporter family [156]. In HCC, permeability-glycoprotein
MDR1, encoded by ABCB1 gene, and breast cancer resistance protein (BCRP), encoded by ABCG2 gene,
need to be briefly mentioned. MDR1 is an ATP-binding cassette able to recognize a broad number of
hydrophobic molecules, such as chemotherapeutic compounds, and extrudes them by ATP hydrolysis
across the extracellular compartment [156]. Upregulation of MDR1 in sorafenib-resistant HCC cells
was correlated with the EMT phenotype, PI3K signaling, and sorafenib-induced hypoxia [157,158].
MDR1 expression was significantly higher in invasive HCC compared to non-invasive HCC [159].
The BCRP mechanism of action for drug efflux is very similar to MDR1 [160]. BCRP mRNA expression
was found to be upregulated in liver diseases and in HCC compared to normal tissues, particularly
in less differentiated HCC [161]. The expression of BCRP is stimulated by HIF-2α, thus inducing
anticancer drug resistance [162].

Disruption of KEAP1 renders HCC cells resistant to regorafenib and lenvatinib, with an increase
in Nrf2 activity [163]. Nrf2 upregulation correlates with Bcl-xL levels [106].

Another drawback of current HCC therapies is the formation of a hypoxic environment [158,164–169].
Sorafenib-resistant HepG2 cells presented higher levels of HIF-1α and HIF-2α with nuclear localization
with respect to sorafenib-responsive HepG2 cells [166]. Sorafenib can induce the activation of the
HIF-2α pathway with the consequent stimulation of EGFR signaling [164]. HCC tissues of patients
resistant to sorafenib showed an increase of HIF-1α levels with respect to HCC tissue samples of
untreated patients. HCC patients still sensitive to sorafenib had a lesser increase of HIF-1α levels [158].
Increased expression levels of HIF-1α, MMP9, and mesenchymal markers were also detected in HCC
tissues of patients previously treated with TACE with respect to the untreated ones [167].

During hypoxia, HIF-1α can also regulate the expression of the MDR1 gene and MDR1 protein [170].
A positive correlation was found between HIF-1α and MDR1 levels in HCC cells subjected to prolonged
administration of 5-fluorouracil. In addition, a negative correlation was detected between apoptosis
index and HIF-1α/MDR1 expression [171]. HIF-1α can act on apoptosis by regulating two anti-apoptotic
proteins: baculoviral IAP repeat containing 3 (BIRC3) and myeloid cell leukemia-1 (MCL-1) [172,173].
In glioblastoma multiforme, HIF-1α signaling stimulates the expression of BIRC3, which could
have an active role in resistance to treatments arresting apoptosis and inducing a pro-inflammatory
phenotype [172]. A similar behavior was detected in HCC cells, where an analysis revealed an
hypoxia-responsive element for HIF-1 localized in the promoter region of MCL-1, which allows HIF-1
to exert its anti-apoptotic role [173,174].

Three main pathways are upregulated in HCC due to a metabolic switch and elevated ROS
production: glycolysis, MAPK pathway, and PI3K/AKT/mTOR pathway, which can interact with one
another to increase their effects in tumor proliferation and survival (Figure 3) [82,94,175]. Combinatorial
treatments targeting both MAPK pathway and PI3K/AKT/mTOR pathway have been proposed to
block tumor proliferation and promoting cellular apoptosis [175–178].
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Figure 3. Crosstalk among glycolysis, MAPK, and PI3K pathways. Summarized are the three main
pathways of cell proliferation and survival and the relevant cross-regulatory network: MAPK (orange),
PI3K/AKT/mTOR (light blue), and glycolysis (green). Three related additional pathways are highlighted:
glutathione cycle (purple), Nrf2 (black), and PPP (brown). Positive regulations are pictured as dotted
arrows, and negative regulations are pictured as dotted truncated arrows. HCC cell survival is a
complex mechanism that involves several cellular pathways which act both in single ways and as
intersected signaling cascades. MAPK and PI3K/AKT/mTOR can be activated by tyrosine-kinase
receptors to upregulate cell proliferation. They also act as inhibitors for cellular apoptosis. Ras protein,
an effector of the MAPK pathway, can positively regulate PI3K, which increases AKT levels. AKT, in
turn, upregulates both HK2 and GLUT1, thus favoring the glycolysis cascade. PI3K and ERK1/2 can
positively regulate Nrf2, thus further increasing the signals for cellular proliferation. The upregulation
of Nrf2 increases the GST levels which, in turn, maintains the ROS balance in a state favoring cell
survival. The GST enzyme is part of the glutathione cycle and it acts with GSH as detoxification agent
against oxidative byproducts. GSH and GSSG levels are regulated by GPx, an enzyme mainly used to
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convert H2O2 into the harmless H2O, and GRd, which uses NADPH to reduce GSSG and refill the
GSH pool. The MAPK pathway, acting through JNK and ERK1/2, positively regulates c-Myc, which
in turn upregulatesGLUT1, PKM2, and LDH expression levels. ERK1/2 can also act through HIF-1α
to upregulate GLUT1, HK2, and LDH. Therefore, both JNK and ERK1/2 have a positive effect on the
glycolytic pathway, favoring glucose entrance and lactate production. Apoptosis is inhibited in several
ways: Nrf2 is positively associated with Bcl-xL, AKT inhibits both BAD/BAX and the dissociation
between MDM2 and p53, p38α is present at low levels in HCC samples. In this proliferative environment,
ROS can act in several ways: favoring MAPK cascade, positively regulating PI3K and AKT, inhibiting
PTEN action, and enabling the dissociation of KEAP1 from Nrf2, which is then able to bind DNA
and act as transcription factor. Abbreviations: AKT = protein kinase-B; BAD/BAX = Bcl-2 associated
agonist of cell death/bcl-2-like protein 4; Bcl-xL = B-cell lymphoma-extra-large protein; c-Myc = Myc
proto-oncogene protein; ECM = extracellular matrix; ERK1/2 = extracellular regulated kinases 1 and 2;
G6PD = glucose-6-phosphate dehydrogenase; GAPDH = glyceraldehyde-3-phosphate dehydrogenase;
GLUT1 = glucose transporter 1; GPx = glutathione peroxidase; GRd = glutathione reductase; GSH
= glutathione reduced form; GSSG = glutathione oxidized form; GSTs = glutathione S-transferases;
HIF-1α = hypoxia inducible factor α; HK1/2 = hexokinase 1/2; JNK = c-Jun N-terminal kinases;
KEAP1 = Kelch-like ECH-associated protein 1; LDHA = lactate dehydrogenase A; MAP3K = MAPK
kinase kinase; MDM2 = mouse double minute 2 homolog; mTOR = mammalian target of rapamycin;
Nrf2 = nuclear factor erythroid 2-related factor 2; p38α = p38 mitogen-activated protein kinase
α; p53 = cellular tumor antigen p53; PFKL = phosphofructokinase L; PI3K = phosphatidylinositol
3-kinase; PIP2 = phosphatidylinositol 4,6-bisphosphate; PIP3 = phosphatidylinositol 3,4,5-triphosphate;
PKM2 = pyruvate kinase isoenzyme M2; PPP = pentose phosphate pathway; PTEN = phosphatase and
tensin homologue; Ras = rat sarcoma protein; ROS = reactive oxygen species; TKR = tyrosine-kinase
receptor; X = oxidative stress byproduct; X-GSH = oxidative stress by-product bound to GSH.

On clinicaltrials.gov, there are some completed trials regarding the efficacy of treatment
combinations using PI3K and MAPK inhibitors as anti-cancer therapies, although without
straightforward results [179–183].

Long-term sorafenib exposure causes chemoresistance with an upregulation in the
PI3K/AKT/mTOR pathway [184,185]. Based on this evidence, different PI3K pathway inhibitors
(PI3Kpi) have been proposed to be used in combination with sorafenib [157,178,184–189].

PI3K and MAPK pathways are regulators of anaerobic glycolysis [190]. The first one upregulates
GLUT1 and HK through AKT activity, while the second activates several transcription factors through
ERK1/2, in particular c-Myc which can increase GLUT1, LDHA, and PKM2 expression, and HIF-1α,
which upregulates GLUT1, HK2, and LDHA [13,65,67,82,190]. Treatment combinations capable
of downregulating PI3K and MAPK pathways can also inhibit cellular proliferation and survival
by reducing the glycolytic rate [190]. Another possibility is to inhibit one of the two pathways
and glycolysis itself, in particular, by glucose deprivation and treatment with PI3Kpi [191–193].
The treatment combination of 2-deoxyglucose (2-DG), G6P competitor, and sorafenib increased
HCC cell death, inhibited colony formation, decreased cell motility and MMP9 expression, and had
tumor-suppression effects [194,195].

An alternative strategy to treat HCC is to increase ROS levels in order to augment oxidative
stress [11]. The sorafenib–diclofenac combination showed interesting results regarding HCC cell
death [196]. In vitro studies on HCC cell lines treated with sorafenib and ethacrynic acid, a GST
inhibitor, suggested GST as a possible co-target [197].

Another possible approach is to act on the hypoxic TME. LS081 was shown to inhibit cell
growth through prolyl hydroxylation of HIF-1α and its degradation [198]. Gefitinib inhibited the
HIF-2α-induced proliferation of HCC cells acting on EGFR. Gefitinib had a synergistic effect with
sorafenib to induce apoptosis [164]. Treatment with a siRNA targeting HIF-2α showed a downregulation
of VEGF, HIF-2α, and TGF-α [164]. EF24, a molecule with a structure like curcumin, was able to
upregulate VHL which, in turn, mediated HIF-1α degradation. HCC cells treated with EF24 showed

clinicaltrials.gov
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an inhibition of cell viability and metastasis, and an increase in sorafenib-induced apoptosis [158].
Short hairpin RNA-HIF-2α in combination with sorafenib was shown to inhibit HCC cell proliferation
in a hypoxic environment [168]. Evofosfamide is a hypoxia-activated prodrug. In normoxic conditions,
evofosfamide is not toxic, while, in a hypoxic environment, it is activated and introduces intra- and
inter-strand crosslinks in DNA [169,199]. In rabbits bearing the HCC VX2 tumor model, the treatment
combination of TACE and evofosfamide showed enhanced antitumor efficacy with respect to TACE or
evofosfamide alone [169]. Evofosfamide was tested in a phase Ib trial in combination with sorafenib
in patients with advanced HCC [200]. A list of the proposed combination treatments tested in vitro
and/or in vivo is reported in Table 1.

Table 1. Treatment combinations tested in vitro in HCC cell lines and in vivo in HCC animal models.

Drug
Combination.

Pathways
Involved In Vitro Results In Vivo Results Reference

Sorafenib +
MK-2206 MAPK + PI3K Reversion of EMT and MDR1. [157]

Sorafenib + PI-103 MAPK + PI3K
Inhibition of proliferation;

blockage of MAPK and PI3K
pathways.

Inhibition of tumor
growth; increase in

apoptosis.
[178,187]

Sorafenib +
LY294002 MAPK + PI3K

Decrease in cell viability; increase
in pro-apoptotic proteins; EMT

inhibition.
[184]

Sorafenib +
copansilib MAPK + PI3K Antineoplastic effect. [185]

Sorafenib + BEZ235 MAPK + PI3K Inhibition of proliferation and
migration; increase in apoptosis. [186]

Sorafenib +
CMG002 MAPK + PI3K Downregulation of pAKT and

pERK.

Inhibition of tumor
growth; increase in

apoptosis.
[188]

Sorafenib +
rapamycin MAPK + PI3K Decrease in proliferation; increase

in apoptosis.
Tumor necrosis and skin

ulceration. [189]

Sorafenib + 2-DG MAPK +
Glycolysis

Massive cell death; inhibition of
colony formation. Tumor suppression. [194]

Sorafenib + 2-DG MAPK +
Glycolysis

Decrease in proliferation; decrease
in motility; decrease in MMP9

expression.
[195]

Sorafenib +
diclofenac MAPK + ROS Increase in cell death; decrease in

GSH and increase in ROS.
Decrease in tumor

burden. [196]

Sorafenib +
ethacrynic acid MAPK + ROS Effect on cell viability. [197]

Sorafenib + EF24 MAPK + HIF-1α Growth inhibition; inhibition of
migration and invasion.

Decrease in metastasis
formation; inhibition of
tumor growth; increase

in apoptosis.

[158]

Sorafenib +
gefitinib MAPK + HIF-2α Inhibition of proliferation and

induction of apoptosis. [164]

Sorafenib + HIF-2α
siRNA MAPK + HIF-2α Decrease of cell viability and

increase in apoptosis.

Inhibition of tumor
growth; increase in

apoptosis.
[164]

Sorafenib + short
hairpin

RNA-HIF-2α
MAPK + HIF-2α Antiproliferative activity. Inhibition of tumor

growth. [168]

To date, on ClinicalTrials.gov, there are several ongoing clinical trials based on small-molecule
tyrosine-kinase inhibitors capable of altering HCC metabolism, and thus inhibiting tumor growth or
recurrence. These trials are listed in Table 2.

ClinicalTrials.gov
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Table 2. Ongoing clinical trials investigating the use of tyrosine-kinase inhibitors for hepatocellular
carcinoma treatment.

Molecule
Name Study Title Status Drugs Phase NCT Number

Sorafenib

YIV-906 (Formerly
PHY906/KD018) With Sorafenib in

HBV(+) Hepatocellular
Carcinoma (HCC)

Recruiting

Drug: YIV-906 plus
Sorafenib

Drug: Placebo plus
Sorafenib

II NCT04000737

Sorafenib Plus TACE Versus
Sorafenib Alone as Postoperative
Adjuvant Treatment for Resectable

Primary Advanced HCC

Recruiting

Drug: Sorafenib
Procedure:

Transarterial
chemoembolization

III NCT04143191

HAIC Plus Toripalimab vs. HAIC
Plus Sorafenib for HCC With

PVTT: a Non-comparative,
Prospective, Randomized Trial

Recruiting

Procedure: Hepatic
arterial infusion
chemotherapy

Drug: Toripalimab
Drug: Sorafenib

II NCT04135690

SBRT+TACE+Sorafenib Vs
Sorafenib in the Treatment of

uHCC With PVTT
Recruiting

Radiation:
SBRT+TACE+Sorafenib

Drug: Sorafenib
III NCT04387695

Sorafenib Combined With
Arsenical in Treating Patients

With Recurrent HCC After Liver
Transplantation

Recruiting Drug: Arsenical
Drug: Sorafenib II NCT04232722

Regorafenib

Regorafenib Followed by
Nivolumab in Patients With
Hepatocellular Carcinoma

(GOING)

Recruiting Drug: Regorafenib
Drug: Nivolumab I and II NCT04170556

Lenvantinib

Efficacy and Safety of Lenvatinib
as an Adjuvant Therapy for
Hepatocellular Carcinoma

Recruiting Drug: Lenvima 4 mg
Oral Capsule II NCT04227808

Immunotherapy With Nivolumab
in Combination With Lenvatinib

for Advanced Stage
Hepatocellular Carcinoma

Recruiting Drug: Lenvatinib
Drug: Nivolumab II NCT03841201

Preliminary Antitumor Activity,
Safety and Tolerability of

Tislelizumab in Combination With
Lenvatinib for Hepatocellular

Carcinoma

Recruiting Drug: Lenvatinib
Drug: Tislelizumab II NCT04401800

A Study of CS1003 in Subjects
With Advanced Hepatocellular

Carcinoma
Recruiting

Drug: CS1003 plus
Lenvatinib

Drug: CS1003 Placebo
plus Lenvatinib

III NCT04194775

HAIC Plus Lenvatinib and
Toripalimab for Advanced HCC Recruiting

Procedure: Hepatic
arterial infusion
chemotherapy

Drug: Lenvatinib
Drug: Toripalimab

II NCT04044313

Systemic Chemotherapy Plus
Lenvatinib and Toripalimab for

HCC With Extrahepatic
Metastasis

Recruiting

Procedure: Systemic
chemotherapy

Drug: Lenvatinib
Drug: Toripalimab

II NCT04170179

PD-1 Monoclonal Antibody,
Lenvatinib and TACE in the

Treatment of HCC
Recruiting

Combination Product:
PD-1 mAb combined

with TACE and
Lenvatinib

II NCT04273100

TACE With Lenvatinib Versus
Lenvatinib Alone in in First-line

Treatment of Advanced HCC
Recruiting Procedure: TACE

Drug: Lenvatinib III NCT03905967

Efficacy and Safety of Lenvatinib
as a Conversion Therapy for HCC Recruiting Drug: Lenvatinib II NCT04241523
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Table 2. Cont.

Molecule
Name Study Title Status Drugs Phase NCT Number

Safety and Efficacy of Lenvatinib
(E7080/MK-7902) With

Pembrolizumab (MK-3475) in
Combination With Transarterial
Chemoembolization (TACE) in

Participants With
Incurable/Non-metastatic
Hepatocellular Carcinoma

(MK-7902-012/E7080-G000-318/LEAP-012)

Recruiting

Drug: Lenvatinib
Biological:

Pembrolizumab
Drug: Oral Placebo
Drug: IV Placebo
Procedure: TACE

III NCT04246177

A Study of E7386 in Combination
With Other Anticancer Drug in
Participants With Solid Tumor

Recruiting Drug: E7386
Drug: Lenvatinib I NCT04008797

Cabozantinib
Cabozantinib toLERANCE Study

in HepatoCellular Carcinoma
(CLERANCE)

Recruiting
Drug: Cabozantinib

group
Other: ECG

IV NCT03963206

Brivanib

MGD013 Monotherapy and
Combination With Brivanib Dose
Escalation and Expansion Study

in Advanced Liver Cancer
Patients

Recruiting

Drug: MGD013
monotherapy

Drug: MGD013 in
combination with

Brivanib Alaninate

I and II NCT04212221

Apatinib

SHR-1210 Combined With
Apatinib Mesylate in the

Perioperative Treatment of
Hepatocellular Carcinoma

Recruiting
Drug: Apatinib
Combined With

SHR-1210 Injection
II NCT04297202

SHR-1210 Plus Apatinib in
Patients With Advanced-Stage

Hepatocellular Carcinoma
Recruiting Drug: SHR-1210

Drug: Apatinib II NCT04014101

A Trial of Hepatic Arterial
Infusion Combined With Apatinib
and Camrelizumab for C-staged

Hepatocellular Carcinoma in
BCLC Classification

Recruiting

Combination Product:
Hepatic Arterial

Infusion combined
with Apatinib and

Camrelizumab

II NCT04191889

Combination Camrelizumab
(SHR-1210) and Apatinib for

Downstaging/Bridging of HCC
Before Liver Transplant

Recruiting Drug: Camrelizumab
plus Apatinib I and II NCT04035876

The Safety and Efficacy of
Thermal Ablation Combined With

Apatinib and Carilimub for
Advanced Liver Cancer

Recruiting
Drug: Apatinib

Mesylate
Drug: SHR-1210

II NCT04204577

RFA Plus Carrizumab and
Apatinib vs Carrizumab and

Apatinib Alone for HCC
Recruiting

Combination Product:
radiofrequency
ablation plus

Carrizumab and
Apatinib

Combination Product:
Carrizumab and

Apatinib

II NCT04150744

A Study to Evaluate SHR-1210 in
Combination With Apatinib as
First-Line Therapy in Patients

With Advanced HCC

Recruiting
Drug: SHR-1210
Drug: Apatinib
Drug: Sorafenib

III NCT03764293

Summarized are the ongoing clinical trials found on ClinicalTrials.gov by searching the keywords “hepatocellular
carcinoma” and “each small molecule name”. The research has been done adding the following filters: “Active, not
recruiting”; “Recruiting”; “Study starts from 06/01/2019”. Trials with the principal small molecule used only as a
comparative drug are not included.

7. Conclusions and Future Perspectives

Despite recent advances in therapeutic options, curative therapies for HCC are still not
available [1,2,201–210]. HCC is a tumor type with a well-known susceptibility to mutate under
selective pressure, such as that exerted by anti-cancer drugs. This implies an associated drug resistance
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based on a plethora of mechanisms [211–218]. One of the peculiar features of cancer is the metabolic
reprogramming [7,219–221]. Thus, targeting of tumor metabolism pathways could represent a
useful therapeutic strategy for HCC treatment [156–158,163,222]. This treatment approach could be of
particular interest if included in the context of chemo- and/or immuno-treatment combinations [223,224].
An example of a treatment combination targeting both immune and metabolic pathways is the
IMbrave150 clinical trial, which showed promising results for unresectable HCC previously untreated
with systemic therapy. The study compared the outcomes of sorafenib treatment versus atezolizumab
(anti-PDL1) plus bevacizumab (anti-VEGF). Combination therapy showed better OS rates at 6 and
12 months: 84.8% and 67.2%, respectively, in comparison to sorafenib group (72.2% and 54.6%,
respectively). Patients treated with combination therapy showed a longer progression-free survival
than the sorafenib arm: 6.8 months versus 4.3 months, respectively. Patients who received combination
therapy had a delayed decline in their quality of life with respect to sorafenib-treated patients:
11.2 months versus 3.6 months, respectively [225].

To extend the impact of immunotherapy to more patients, targeting additional mechanisms
of tumor immune evasion will be critical [226]. The biogenesis of lactic acid could represent an
interesting target for the development of novel therapeutic approaches [227]. The development of
combinatorial strategies that include agents targeting the immunosuppression mediated by adenosine
could significantly increase the efficacy of immunotherapeutic approaches [140].
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