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Abstract: Ochratoxin A (OTA) is a mycotoxin occurring in foods consumed by humans. Recently,
there has been growing global concern regarding OTA toxicity. The main target organ of OTA is
the kidney, but the mechanism underlying renal toxicity is not well known. In this study, human-
derived proximal tubular epithelial cells, HK-2 cells, were used for RNA-sequencing (RNA-seq) and
transcriptome analysis. In total, 3193 differentially expressed genes were identified upon treatment
with 200 nM OTA in HK-2 cells; of these, 2224 were upregulated and 969 were downregulated.
Transcriptome analysis revealed that OTA significantly affects hypoxia, epithelial-mesenchymal
transition (EMT), apoptosis, and xenobiotic metabolism pathways in kidney cells. Quantitative
real-time PCR analysis showed gene expression patterns similar to RNA-seq analysis. Expression
of EMT markers (E-cadherin and fibronectin), apoptosis markers (caspase-3 and Bax), and kidney
injury molecule-1 (KIM-1) was suppressed by inhibiting AhR expression using siRNA, and the
related transcription factors, Smad2/3, and HIF-1α were downregulated. Smad2/3 suppression with
siRNA could inhibit fibronetcin, caspase-3, Bax, and KIM-1 expression. Fibronetcin, caspase-3, Bax,
and KIM-1 expression could be increased with HIF-1α suppression with siRNA. Taken together,
these findings suggest that OTA-mediated kidney toxicity via the AhR-Smad2/3-HIF-1α signaling
pathways leads to induction of EMT, apoptosis, and kidney injury.

Keywords: ochratoxin A; aryl hydrocarbon receptor; Smad2/3; hypoxia-inducible factor-1α;
RNA-sequencing

Key Contribution: Ochratoxin A-regulated DEGs are associated with hypoxia, xenobiotic metabolism,
EMT and apoptosis, and ochratoxin A damages the kidney by inducing hypoxia, EMT, and apoptosis
through AhR-Smad2/3, HIF-1 pathways.

1. Introduction

Ochratoxin A (OTA) is a mycotoxin that occurs naturally in fungi such as Aspergillus
spp. and Penicillium spp. OTA is known to exist in a variety of food groups such as cereals,
cocoa, coffee, nuts, milk, beer, and wine, which are frequently consumed in daily life [1,2].
OTA (C20H18O6NCl, molecular weight: 403.8) is a colorless, odorless, slightly water-
soluble crystalline compound belonging to the para-chlorophenolic group that structurally
contains a dihydroisocoumarin moiety linked by an amide bond to L-phenylalanine [3]. It
is more stable to heat than other mycotoxins and is absorbed into the body through the
gastrointestinal tract with food consumption. Ingested OTA is rapidly absorbed through
the jejunum with a bioavailability of 97% [4]. OTA binds strongly to albumin in serum and
has a very long half-life, eventually accumulating in the body [5]. OTA is one of the most
harmful fungal toxins and is classified in Group 2B as a possible human carcinogen by
the International Agency for Research on Cancer [6]. The nephrotoxicity, hepatotoxicity,
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immunotoxicity, neurotoxicity, and genotoxicity of OTA have been reported in various
animal species [7–9].

OTA has various possible targets such as the liver, immune system, heart and brain;
however, owing to the function of the organ, its main target is the kidneys [10–12]. The
kidneys balance the metabolism of salt and water, regulate the levels of electrolytes in
blood, and play several important physiological roles including maintaining the stable
composition of blood and secretion of hormones [13,14]. The kidneys also receive about
25% cardiac output and function to filter the equivalent volume of extracellular fluid from
plasma. Further, the concentration of toxic substances is increased as water and solutes are
reabsorbed in the process of removing waste from systemic circulation and excretion to
urine. As a result, the risk of renal exposure to toxic substances is increased [15]. Due to the
high renal blood flow per tissue weight, a relatively large amount of OTA is delivered to
the kidneys compared to other organs [16]. Further, OTA accumulation in kidney tissues,
especially through reabsorption, results in the highest concentration of OTA to be detected
throughout the body [17].

Transcriptome sequencing (RNA-seq) technology has been used to evaluate and
analyze the overall response caused by toxic substances or stressors [18,19]. Although there
is a limitation of RNA-seq that not all RNAs have been used to produce proteins, the use of
RNA-seq technology to analyze differentially expressed genes (DEGs) is a reliable method
for understanding the interactions between specific molecules and for conducting research
on the mechanisms that cause toxicity [20,21]. DEG analysis has become a valuable tool for
studying molecular mechanisms in response to toxic substances including mycotoxins [22].
Transcriptome analysis studies on OTA have been performed in a variety of cell lines and
mammalian model systems [23–25]. Therefore, much information about the mechanism of
OTA toxicity in the kidney can be obtained through transcriptional profiles obtained using
RNA-sequencing.

Although much is known about the renal toxicity of OTA such as inflammation,
apoptosis and pyroptosis [26,27], studies on the mechanisms underlying renal toxicity
are still insufficient. Therefore, in the present study, transcriptome analysis was used to
estimate changes in renal damage in response of OTA. In this research, OTA-induced renal
toxicity such as epithelial-mesenchymal transformation (EMT), apoptosis and hypoxia
were investigated in human proximal tubular epithelial HK-2 cells.

2. Results
2.1. Analysis of DEGs

To elucidate the molecular mechanisms responsible for OTA toxicity to the kidneys,
transcriptome sequencing and analysis were conducted in HK-2 cells. Differential gene
expression analysis of HK-2 cells following OTA treatment resulted in a total of 3193 DEGs,
of which 2224 were upregulated and 969 were downregulated (Figure 1). As shown in
the scatter plot, the expression level of certain genes was significantly (p < 0.05) different
between the control group and the OTA-treated group, suggesting that the gene expression
of HK-2 cells was affected by OTA (Figure 2).

2.2. Functional Annotation of DEGs

To further explain the molecular function of DEGs identified in HK-2 cells exposed to
OTA, GO and KEGG enrichment analysis were performed. As shown in Figure 3A–C, in
case of GO analysis for the upregulated and downregulated DEGs, there are three categories,
biological process, molecular function, and cellular component, and the top 15 terms for
each category are shown based on p-values < 0.05 (Figure 3D). Representative subsets in the
biological process include cell–cell adhesion, rRNA processing, and viral process; molecular
functions include protein binding, poly(A) RNA binding, and cadherin binding involved
in cell–cell adhesion. Cellular components include nucleoplasm, membrane, and cytosol.
KEGG pathway analysis also showed the top 15 pathways. As shown in Figure 3D, protein
processing in the endoplasmic reticulum, insulin resistance, thyroid hormone signaling
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pathway, proteoglycan in cancer, renal cell carcinoma, adherent junction, and others were
found. Among the various KEGG pathways, renal cell carcinoma was the pathway with the
highest fold-enrichment value. This is also associated with hypoxia and EMT [28,29].

Toxins 2021, 13, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 1. Statistical chart of showing the number of differentially expressed genes (DEGs) in 
ochratoxin A (OTA)-treated HK-2 cells compared to the control ones. Up represents upregulated 
DEGs, and Down represents downregulated DEGs. Con, control; OTA, ochratoxin A. 

 
Figure 2. The scatter plot of DEGs between Con and OTA treatment groups. The X-axis indicates 
the log2 expression values in Con group, and the Y-axis indicates the log2 expression values in 
OTA group. Each point indicates a particular gene or transcript. Red dots indicate up-regulated 
genes, green dots indicate down-regulated genes, and black dots indicate genes showing nonsig-
nificant changes. 

2.2. Functional Annotation of DEGs 
To further explain the molecular function of DEGs identified in HK-2 cells exposed 

to OTA, GO and KEGG enrichment analysis were performed. As shown in Figure 3A–C, 
in case of GO analysis for the upregulated and downregulated DEGs, there are three cat-
egories, biological process, molecular function, and cellular component, and the top 15 
terms for each category are shown based on p-values < 0.05 (Figure 3D). Representative 
subsets in the biological process include cell–cell adhesion, rRNA processing, and viral 
process; molecular functions include protein binding, poly(A) RNA binding, and cadherin 

Figure 1. Statistical chart of showing the number of differentially expressed genes (DEGs) in ochra-
toxin A (OTA)-treated HK-2 cells compared to the control ones. Up represents upregulated DEGs,
and Down represents downregulated DEGs. Con, control; OTA, ochratoxin A.

Toxins 2021, 13, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 1. Statistical chart of showing the number of differentially expressed genes (DEGs) in 
ochratoxin A (OTA)-treated HK-2 cells compared to the control ones. Up represents upregulated 
DEGs, and Down represents downregulated DEGs. Con, control; OTA, ochratoxin A. 

 
Figure 2. The scatter plot of DEGs between Con and OTA treatment groups. The X-axis indicates 
the log2 expression values in Con group, and the Y-axis indicates the log2 expression values in 
OTA group. Each point indicates a particular gene or transcript. Red dots indicate up-regulated 
genes, green dots indicate down-regulated genes, and black dots indicate genes showing nonsig-
nificant changes. 

2.2. Functional Annotation of DEGs 
To further explain the molecular function of DEGs identified in HK-2 cells exposed 

to OTA, GO and KEGG enrichment analysis were performed. As shown in Figure 3A–C, 
in case of GO analysis for the upregulated and downregulated DEGs, there are three cat-
egories, biological process, molecular function, and cellular component, and the top 15 
terms for each category are shown based on p-values < 0.05 (Figure 3D). Representative 
subsets in the biological process include cell–cell adhesion, rRNA processing, and viral 
process; molecular functions include protein binding, poly(A) RNA binding, and cadherin 

Figure 2. The scatter plot of DEGs between Con and OTA treatment groups. The X-axis indicates the
log2 expression values in Con group, and the Y-axis indicates the log2 expression values in OTA group.
Each point indicates a particular gene or transcript. Red dots indicate up-regulated genes, green dots
indicate down-regulated genes, and black dots indicate genes showing nonsignificant changes.



Toxins 2021, 13, 190 4 of 17

Toxins 2021, 13, x FOR PEER REVIEW 4 of 17 
 

 

binding involved in cell–cell adhesion. Cellular components include nucleoplasm, mem-
brane, and cytosol. KEGG pathway analysis also showed the top 15 pathways. As shown 
in Figure 3D, protein processing in the endoplasmic reticulum, insulin resistance, thyroid 
hormone signaling pathway, proteoglycan in cancer, renal cell carcinoma, adherent junc-
tion, and others were found. Among the various KEGG pathways, renal cell carcinoma 
was the pathway with the highest fold-enrichment value. This is also associated with hy-
poxia and EMT [28,29]. 

 

 
Figure 3. Cont.



Toxins 2021, 13, 190 5 of 17
Toxins 2021, 13, x FOR PEER REVIEW 5 of 17 
 

 

 

 

Figure 3. Functional annotation of DEGs. Functional categories of DEGs, broadly separated into 
(A) biological process, (B) molecular function and (C) cellular component, based on Gene ontology 
(GO). The blue line of the graphs means −log10(p-value); (D) Top fifteen enriched pathways in HK-
2 cells exposed to OTA, analyzed by the KEGG pathway analysis (p < 0.05), the size and color of 
the circle mean −log10(p-value). The position of the x-axis represents the degree of fold enrichment. 

2.3. Gene Set Enrichment Analysis of Genes Related to OTA 
To identify the potential functions of DEGs, GSEA was performed using the MSigDB 

hallmark gene set. As shown in Table 1, 20 gene sets regulated by OTA in HK-2 cells were 
identified. Among them, we focused on hypoxia, EMT, apoptosis, and xenobiotic metab-
olism as pathways for the toxic mechanism of OTA based on the results of KEGG analysis. 

  

Figure 3. Functional annotation of DEGs. Functional categories of DEGs, broadly separated into (A) biological process,
(B) molecular function and (C) cellular component, based on Gene ontology (GO). The blue line of the graphs means
−log10(p-value); (D) Top fifteen enriched pathways in HK-2 cells exposed to OTA, analyzed by the KEGG pathway
analysis (p < 0.05), the size and color of the circle mean −log10(p-value). The position of the x-axis represents the degree
of fold enrichment.

2.3. Gene Set Enrichment Analysis of Genes Related to OTA

To identify the potential functions of DEGs, GSEA was performed using the MSigDB
hallmark gene set. As shown in Table 1, 20 gene sets regulated by OTA in HK-2 cells were
identified. Among them, we focused on hypoxia, EMT, apoptosis, and xenobiotic metabolism
as pathways for the toxic mechanism of OTA based on the results of KEGG analysis.
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Table 1. Gene set enrichment analysis of genes related to OTA.

Gene Set Name # Genes in
Gene Set (K)

# Genes in
Overlap (k) k/K p-Value FDR

q-Value

HYPOXIA 200 57 0.285 1.02 × 10−27 5.09 × 10−26

TNFA_SIGNALING_VIA_NFKB 200 50 0.250 1.05 × 10−21 2.62 × 10−20

EPITHELIAL_MESENCHYMAL_TRANSITION 200 46 0.230 1.60 × 10−18 2.66 × 10−17

GLYCOLYSIS 200 44 0.220 5.26 × 10−17 6.58 × 10−16

MTORC1_SIGNALING 200 43 0.215 2.89 × 10−16 2.89 × 10−15

UV_RESPONSE_DN 144 35 0.243 3.19 × 10−15 2.65 × 10−14

OXIDATIVE_PHOSPHORYLATION 200 40 0.200 4.02 × 10−14 2.87 × 10−13

UNFOLDED_PROTEIN_RESPONSE 113 29 0.257 1.63 × 10−13 1.02 × 10−12

ADIPOGENESIS 200 39 0.195 1.96 × 10−13 1.09 × 10−12

MITOTIC_SPINDLE 199 38 0.191 7.86 × 10−13 3.85 × 10−12

INFLAMMATORY_RESPONSE 200 38 0.190 9.25 × 10−13 3.85 × 10−12

P53_PATHWAY 200 38 0.190 9.25 × 10−13 3.85 × 10−12

INTERFERON_GAMMA_RESPONSE 200 35 0.175 7.99 × 10−11 3.07 × 10−10

ESTROGEN_RESPONSE_LATE 200 34 0.170 3.30 × 10−10 1.18 × 10−9

APOPTOSIS 161 30 0.186 3.65 × 10−10 1.22 × 10−9

TGF_BETA_SIGNALING 54 17 0.315 5.17 × 10−10 1.61 × 10−9

ESTROGEN_RESPONSE_EARLY 200 30 0.150 6.75 × 10−8 1.88 × 10−7

IL2_STAT5_SIGNALING 200 30 0.150 6.75 × 10−8 1.88 × 10−7

COAGULATION 138 24 0.174 8.07 × 10−8 2.12 × 10−7

XENOBIOTIC_METABOLISM 200 32 0.160 1.86 × 10−8 4.05 × 10−8

2.4. Validation of Gene Expression Patterns Using qRT-PCR

To validate the transcriptome results of DEGs, qRT-PCR analysis was performed, and
a total of 11 genes were selected based on the pathway results in the Hallmark gene sets
through GSEA. Gene expression levels from qRT-PCR analysis showed similar trends and
magnitudes of changes compared to the transcriptome analysis (Figure 4). Correlation
analysis of the 11 DEGs yielded an R2 of 0.8097, demonstrating excellent linearity between
the RNA-seq and qRT-PCR results, confirming the reliability of the RNA-seq data.
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Figure 4. Comparison and validation of OTA-induced gene expression changes determined by RNA-seq and qRT-PCR. (A)
Fold change of expression value of OTA compared to control measured by RNA-seq and qRT-PCR in eleven selected genes.
(B) Correlation plot between RNA-seq fold change (FC) compared to qRT-PCR FC. AhR, Aryl Hydrocarbon Receptor; Smad;
HIF-1α, Hypoxia-inducible factor 1-alpha; E-cad, epithelial-cadherin; FN, Fibronectin; Cas, Caspase; Bax, Bcl-2-associated X
protein; Bcl-2, B-cell lymphoma 2; KIM-1, Kidney injury molecule-1.
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2.5. Effects of AhR Knockdown on EMT and Kidney Injury-Related Marker Expression

We have reported that AhR regulated phase I and II reactions leading to OTA-induced
hepatotoxicity [30]. After knockdown of AhR expression in HK-2 kidney cells using
siRNA and OTA treatment, mRNA and protein expression was confirmed by qRT-PCR and
Western blot analysis, respectively, for markers of EMT, apoptosis, and kidney injury. As
shown in Figure 5, E-cad mRNA and protein expression was increased in cells with AhR
knockdown. RNA-seq and qPCR data showed that E-cad expression was decreased by
OTA treatment in HK-2 cells (Figure 4A). In contrast, FN expression was decreased by the
siAhR transfection. The mRNA and protein expression of caspase-3 and Bax, which are
pro-apoptotic markers, was suppressed by AhR knockdown. The kidney injury marker,
KIM-1, was also suppressed in siAhR-transfected cells.
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Figure 5. Effects of AhR knockdown on EMT, apoptosis, and kidney injury-related markers expression. (A) The protein
expression on EMT, apoptosis, and kidney injury-related markers was determined by Western blot after treatment with
OTA on HK-2 cells transfected with Control siRNA or siAhR. (B) The mRNA expression on EMT, apoptosis, and kidney
injury-related markers was determined by qRT-PCR after treatment with OTA on HK-2 cells transfected with scrambled
siRNA (Control siRNA) or AhR-specific siRNA (siAhR). The data are expressed as mean ± S.D. values of three independent
experiments with three replicate wells. Different letters indicate significant differences compared with control siRNA at
p < 0.05 by Tukey’s studentized range test.

2.6. Effect of AhR Knockdown on Smad2/3 and HIF-1α Expression

qRT-PCR and Western blot were performed to identify the transcription factors related
to EMT and hypoxia upon AhR knockdown in HK-2 cells and treatment with OTA. The
expression of Smad2/3, an EMT-related transcription factor, and that of HIF-1α, a hypoxia-
related transcription factor, were also suppressed upon OTA treatment of siAhR-transfected
cells (Figure 6).
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Figure 6. Effects of AhR knockdown on Smad2/3 and HIF-1α expression. (A) The protein expression on Smad2/3 and
HIF-1α was determined by Western blot after treatment with OTA on HK-2 cells transfected with Control siRNA or siAhR.
(B) The mRNA expression on Smad2/3 and HIF-1α was determined by qRT-PCR after treatment with OTA on HK-2 cells
transfected with Control siRNA or siAhR. The data are expressed as mean± S.D. values of three independent experiments
with three replicate wells. Different letters indicate significant differences compared with control siRNA at p < 0.05 by
Tukey’s studentized range test.

2.7. Effects of Smad2/3 and HIF-1α Knockdown on EMT and Renal Injury-Related Markers
Expression

To confirm the association between transcription factors Smad2/3 and HIF-1α and
the processes of EMT, apoptosis, and kidney injury caused by OTA treatment, Smad2/3
and HIF-1α were knocked down with siRNA in HK-2 cells, followed by OTA treatment.
The expression of EMT, apoptosis, and kidney injury-related markers was confirmed
by qRT-PCR and Western blot. E-cad, which showed decreased expression in OTA
treatment, was increased with siSmad2/3 knockdown, whereas siSmad2/3 transfection
decreased the expression of FN, caspase-3, Bax, and KIM-1, which were increased by
OTA (Figure 7A,B). On the contrary, when HIF-1α expression was knocked down, E-cad
expression was decreased further, and the expression of FN, caspase-3, Bax, and KIM-1
was increased at the mRNA and protein levels (Figure 7).
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after treatment with OTA on HK-2 cells transfected with scrambled siRNA (Control siRNA) or Smad2/3-specific siRNA
(siSmad2/3). (B) The mRNA expression on EMT, apoptosis, and kidney injury-related markers was determined by qRT-PCR
after treatment with OTA on HK-2 cells transfected with Control siRNA or siSmad2/3. (C) The protein expression on
EMT, apoptosis, and kidney injury-related markers was determined by Western blot after treatment with OTA on HK-2
cells transfected with scrambled siRNA (Control siRNA) or HIF-1α -specific siRNA (siHIF-1α). (D) The mRNA expression
on EMT, apoptosis, and kidney injury-related markers was determined by qRT-PCR after treatment with OTA on HK-2
cells transfected with Control siRNA or siHIF-1α. The data are expressed as mean ± S.D. values of three independent
experiments with three replicate wells. Different letters indicate significant differences compared with control siRNA at
p < 0.05 by Tukey’s studentized range test.
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3. Discussion

OTA is a mycotoxin found in various foods that are widely ingested by humans
and, owing to its long half-life and thermal stability in food, is highly toxic to humans
and animals. It is absorbed through the small intestine after oral intake of OTA [31,32].
In different animal species and in various organs of such animals, OTA toxicity was
found [30,33–35]. Research on the mechanism by which OTA causes toxicity, however, is
still limited. In this study, by transcriptome analysis using RNA sequencing technique, we
attempted to analyze the OTA-regulated pathways and studied the relationship between
the pathways and the toxicity of OTA. Transcriptome research, by deciphering the structure
and role of the genome, is a tool for studying the pathological processes of disease and
offers valuable knowledge on the range of response to pathogens and environmental
stress [36]. We focused on hypoxia, xenobiotic metabolism, EMT, and apoptosis, along
with the processes that occur in OTA-treated kidney cells, based on previous studies of
OTA-induced toxicity pathways [30,37,38] and our transcriptome outcome (Table 1).

Xenobiotic metabolism refers to the metabolic or detoxification processes occurring in
the liver and kidneys when toxic substances are biotransformed in the body [39]. Aflatoxin
A or benzo(a)pyrene are activated by xenobiotic metabolism [40,41]. During xenobiotic
metabolism, a transcription factor called AhR, which regulates the expression of cytochrome
P450 (CYP) enzymes is activated. Subsequent activation of AhR might produce oxidative
stress and ROS, resulting in cancer induction and immune function suppression [42,43].
Our previous in vitro and in vivo study using HK-2 cells and ICR male mice reported
significantly increased mRNA and protein expression of CYP1A1 and CYP1A2 in the group
treated with OTA compared to the control group, and when HK-2 cells were exposed to
OTA, AhR-activated renal damage was caused by excessive ROS production during the
metabolic processes involving CYP enzymes [35]. Generation of excessive oxidative stress
also causes apoptosis and EMT [44,45].

Apoptosis occurs through two pathways, the intrinsic and extrinsic apoptotic path-
ways, both of which induce the caspase cascade [46]. Apoptosis is considered an important
process in cell cell death [47]. Several studies have documented the induction of cellular
apoptosis via oxidative stress upon OTA exposure [48,49]. Based on our RNA-seq and
qRT-PCR results in HK-2 cells, the expression of Bax and caspase-3 was reduced after
knocking down the expression of AhR indicating that OTA-induced apoptosis is triggered
via AhR (Figure 5).

EMT is an important event in tumor metastasis where epithelial cells lose their
epithelial function and cell–cell adhesion to acquire the mobility and invasive features
of mesenchymal cells [50]. This transformation leads to loss of cell junctions and
separation between cells and the basement membrane, resulting in cancer stem cell-like
properties [51]. Further, instability of adherens junction due to downregulation of
E-cadherin in epithelial cells and upregulation of fibronectin in mesenchymal cells
are the representative features of EMT [52]. Many studies have shown that EMT
progresses by the activation of AhR [53,54]. In this experiment, downregulation of
E-cad and upregulation of FN with OTA treatment were confirmed through RNA-seq
and qRT-PCR, and OTA was found to induce EMT (Figure 4). Upon OTA treatment
after suppressing AhR expression, Smad2/3, an EMT-induced transcription factor, was
suppressed (Figure 6) with E-cad upregulation and FN downregulation, which are
regulated by Smad2/3 (Figure 5). These results indicate that OTA induces EMT through
the AhR-Smad2/3 pathway. Further, studies have shown that apoptosis is induced in
the liver and kidney through the Smad3 pathway [55,56]. Smad2/3 expression was
suppressed to validate the association between EMT and apoptosis, and caspase-3,
Bax, and KIM-1 expressions were decreased on OTA treatment. These results showed
that like EMT, OTA induces apoptosis and kidney injury through the AhR-Smad2/3
pathway (Figure 7).

Hypoxia is a condition in which the oxygen supply in cells and organs is insuffi-
cient. It is expected to occur in kidney tissues due to microcirculation disruption and
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hypoperfusion [57]. In various clinical and laboratory settings, hypoxia is also reported to
occur in both acute kidney injury and chronic kidney disease [58,59]. The role of HIF-1α
in hypoxia-induced apoptosis is controversial, but some studies have shown that under
particular conditions, HIF-1α protects cells against apoptosis [60–62]. It is also known
that HIF-1α protects cells against hypoxic kidney damage by upregulating cell-protective
factors such as VEGF, HO-1, and erythropoietin [63–65]. Moreover, studies in rat models of
renal ischemia/reperfusion have shown that chemical damage is increased when HIF-1α is
inhibited, while accumulation of HIF-1α has a protective effect against damage [66,67]. It is
known that EMT and fibrosis progress after renal ischemia-reperfusion injury [57] [57,68].
HIF-1α plays a protective role against IRI in the kidney [67]. It protects against IRI by
decreasing renal IRI-induced expression of fibrosis and alpha-SMA through increasing
HIF-α alpha levels [69]. In this study, the HIF-1α expression in HK-2 cells was knocked
down using siRNA. The expression of Bax, caspase-3, KIM-1, and FN was found to be
increased, whereas E-cad decreased. These results show that HIF-1α is stabilized due to
an adaptive response to OTA-induced hypoxia and serves to suppress the progression of
apoptosis, EMT, and kidney injury (Figure 7).

In conclusion, EMT and apoptosis in the kidney are triggered by OTA and effectively
lead to kidney injury. In addition, EMT, apoptosis, and kidney damage caused by OTA
can occur in association with the AhR-Smad2/3-HIF-1α pathways. Thus, our findings can
contribute to understanding the mechanism and prevention of renal toxicity of OTA, such
as OTA-induced EMT and apoptosis.

4. Materials and Methods
4.1. Chemicals

Fetal bovine serum (FBS) and Roswell Park Memorial Institute (RPMI) 1640 medium
were purchased from Gibco (Grand Island, NY, USA). Penicillin-streptomycin and
trypsin-ethylenediaminetetraacetic acid (EDTA) were purchased from Hyclone (Logan,
UT, USA). Dextrose, sodium bicarbonate, 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic
acid (HEPES), dimethyl sulfoxide (DMSO), and thiazolyl blue tetrazolium bromide
(MTT) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Bicinchoninic acid
(BCA) kit and SuperSignalTM west Femto chemiluminescent substrate were purchased
from Thermo Fisher Scientific (Waltham, MA, USA). Antibodies against Smad2/3 and
kidney injury molecule-1 (KIM-1) were purchased from Cell Signaling (Denver, MA,
USA). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody was obtained
from Millipore (Temecula, CA, USA). Antibodies against AhR, hypoxia-inducible factor
1-alpha (HIF-1α), epithelial cadherin (E-cad), fibronectin (FN), and Bcl-2-associated
X protein (Bax), caspase-3 were purchased from Santa Cruz Biotechnology (Dallas,
TX, USA). AhR siRNA (5′-GUGACUUGUACAGCAUAAUTT-3′) was purchased from
GenePharma (Shanghai, China), Smad2/3 siRNA (sc-37238) was purchased from San-
tacruz Biotechnology (Santacruz, CA, USA), and HIF-1α siRNA (SASI_HS02_00332063)
was purchased Sigma-Aldrich (St. Louis, MO, USA).

4.2. Cell Culture

HK-2, a human-derived proximal tubule epithelial cell line, was purchased from Korea
Cell Line Bank (Seoul, Korea). HK-2 cells were cultured in RPMI 1640 medium containing
0.11 g/L sodium pyruvate, 2.5 g/L dextrose, 2.383 g/L HEPES, 100 U/mL penicillin, and
streptomycin, 2 g/L sodium bicarbonate, and 10% FBS (v/v), in an incubator at 37 ◦C with
5% CO2. Cells were cultured until the cell density reached 80–90%.

4.3. OTA Treatment of HK-2 Cells

OTA (purity: 99%, Cfm Oskar Tropitzsch GmbH, Marktredwitz, Germany) was dis-
solved in DMSO at a concentration of 200 µM and stored at −20 ◦C until used in experi-
ments. In the experiments, to prepare 200 nM OTA, it was diluted into RPMI1640 media.
In both the OTA treated group and the non-OTA treated control group, the final DMSO
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concentration was 0.1%. In our previous studies, exposure to 200 nM OTA induced kidney
and liver toxicity [30,35]. Therefore, in this study, we used 200 nM OTA in HK-2 cells for
48 h to identify the mechanism of toxicity.

4.4. Cytotoxicity Assay

HK-2 cells were seeded at 1 × 105 cells/well in a 24 well polystyrene plate (Falcon,
Corning, NY, USA). Cell viability was confirmed using the MTT assay [70]. After 24 h
of seeding, the cells were treated with OTA for 48 h. After that, the treated medium was
removed, 200 µL of MTT solution (1 mg/mL) was added, and incubated for 4 h. Then,
100 µL of DMSO was added after removing the MTT solution to dissolve the formazan
crystals formed in living cells. Then, the DMSO with dissolved formazan was transferred
to a 96-well plate at 50 µL per well, and its absorbance at 540 nm was measured using a
multiplate reader (EL-808, BioTek, Winooski, VT, USA). Three independent experiments
(n = 3) with three replicate wells were performed.

4.5. Total RNA Isolation and Quantitative Real-Time PCR (qRT-PCR)

To examine mRNA expression, the treated HK-2 cells were washed twice with ice-cold
PBS, and RNAiso Plus (Takara, Kusatu, Japan) was added to isolate the total RNA. The total
RNA concentration in each sample was determined by a Nanodrop 1000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). Only samples with a Nanodrop A260:280
ratio between 1.8 and 2.1 were used in the experiment. cDNA was synthesized using 2 µg
of total RNA and the cocktail solution according to the manufacturer’s instruction in the
cDNA synthesis kit (Legene Biosciences, San Diego, CA, USA). In order to confirm the
cDNA quality, β-actin, a house keeping gene, was confirmed in agarose gel, and it was also
confirmed that the Ct value appeared at a level of 23 to 25 in qRT-PCR. The sequences of
primers used in this experiment are shown in Table S1. Primers were checked by using
the NCBI tool Primer-Blast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/, accessed
on 10 January 2021). qRT-PCR was performed using 0.5 µL of cDNA, 9.5 µL of primer
cocktail, and 10 µL of SYBR green in a total reaction volume of 20 µL on the BioRad iQ5
thermal cycler according to the manufacturer’s protocols (iQ SYBR Green Supermix, Bio-
Rad, Hercules, CA, USA). The results were analyzed using the comparative Ct method as
described previously [35]. The comparative Ct method was used for relative quantification
and normalized using a housekeeping gene (β-actin) and expressed as 2−44Ct values.

4.6. Isolation of Total Cell Lysate and Western Blot Analysis

To isolate total cell lysate, HK-2 cells were lysed using RIPA buffer (25 mM Tris-Cl pH
7.4, 1% Triton X-100, 0.1% SDS, 0.5% deoxycholic acid, 10% glycerol, 150 mM NaCl, 5 mM
EDTA, 1 mM PMSF, 5 µg/mL aprotinin, leupeptin and phosphatase inhibitor). The lysed
cells were incubated on ice for 30 min and centrifuged at 13,000 rpm and 4 ◦C for 20 min. The
resulting supernatant was used as a total cell lysate. Proteins were separated on 7.5–15% SDS-
polyacrylamide gels and electrotransferred to PVDF membranes. The transferred membrane
was blocked using 5% skim milk, and immunoblotting was performed using monoclonal
AhR (1:200), Smad2/3 (1:1000), p-Smad2/3 (1:1000), HIF-1α (1:200), E-cad (1:1000), FN (1:200),
caspase-3 (1:200), Bax (1:200), KIM-1 (1:1000), and GAPDH (1:4000), and then incubated with
peroxidase-conjugated secondary antibodies (1:4000). Protein bands were detected using
SuperSignalTM West Femto. The intensity of the bands was quantified using Image J program
(National Institutes of Health, Maryland, USA), and the protein expressions were normalized
to the levels of GAPDH. The control group was set to 1 and the other group was compared
with the control group.

4.7. Transfection with Small Interfering RNA (siRNA)

HK-2 cells (2 × 105 cells/well in 6 well plate) were transfected with AhR, Smad2/3
and HIF-1α-specific siRNA using LipofectamineTM RNAiMAX transfection reagent (Invit-
rogen, Carlsbad, CA, USA) by the reverse transfection method as per the manufacturer’s

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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protocol. Briefly, after transfection with 100 pmol siRNA in 500 µL of Opti-MEM and 5 uL
LipofectamineTM RNAiMAX for 48 h, cells were treated with 200 nM OTA for 48 h and
then isolated for experimental purposes such as qRT-PCR or Western blot. The transfection
was repeated 3 times for each siRNA.

4.8. RNA-sequencing

The quality of RNA used for RNA-sequencing was evaluated by Agilent 2100 bioana-
lyzer using the RNA 6000 Nano Chip (Agilent Technologies, Amstelveen, Netherlands),
and RNA quantification was performed using ND-2000 Spectrophotometer (Thermo Inc.,
DE, USA).

An Ion AmpliSeqTM Transcriptome library was constructed with the Ion Transcrip-
tome Human Gene Expression Kit (Thermo Fisher Scientific, Waltham, MA, USA) as manu-
facture’s instruction, and as published [71]. 50 ng of total RNA were reverse transcribed to
make cDNA by random priming. cDNA product was amplified target genes using the Ion
AmpliSeq Transcriptome Human Gene Expression Core Panel with the Ion AmpliSeqTM

Library Kit which is designed for the targeted amplification of more than 20,000 human
RefSeq genes simultaneously in a single primer pool. Short amplicons (~100 base pairs
(bp)) for the target genes are amplified. After primer digestion, adapters and molecular
barcodes were ligated to the amplicons followed by magnetic bead purification. This library
concentration were measured using Ion Library Quantitation Kit (Thermo Fisher Scientific,
Walthan, MA, USA) according to the manufacturer’s recommendation. Multiple libraries
were multiplexed and clonally amplified using the Ion Chef System, and were sequenced
on the Ion Torrent S5XL machine (Thermo Fisher Scientific, Waltham, MA, USA).

4.9. RNA-seq Data Analysis

All sequencing data was processed on Ion S5xl Sequencer (Thermo Fisher Scientific,
Waltham, MA, USA) and transferred to the Ion Proton™ Torrent Server for primary data
analysis with gene-level transcript quantification from sequence read data performed using
AmpliSeq RNA Plug in (ver 5.6.0.3) by Torrent Suite Software (Thermo Fisher Scientific,
Waltham, MA, USA). Identification of up or down-regulated genes was performed using
the Excel-based Differentially Expressed Gene Analysis software (ExDEGA version 1.6.3,
e-Biogen, Seoul, Korea). The DEG list was filtered using a 5% false discovery rate (FDR)
cutoff and |Fold change (FC)| > 2.0 for upregulated and downregulated genes. Gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG, Kyoto, Japan)
Pathway Enrichment analysis for OTA was executed using the database for annotation,
visualization, and integrated discovery (DAVID, Frederick, MA, USA) version 6.8 (https:
//david.ncifcrf.gov, accessed on 10 January 2021) functional annotation system [72]. The
gene set enrichment analysis (GSEA; Broad Institute) software platform (MSigDB version
6.1, Massachusetts, CA, USA) was used to identify different expression pathways from
control cells in OTA-treated cells by comparing them with hallmark gene sets representing
specific well-defined biological states [73].

4.10. Statistical Analysis of Experiments

All experimental values were expressed as the mean± standard deviation. Statistically
significant differences between groups were calculated using Kruskal–Wallis test and non-
parametric Mann–Whitney U-test for non-normal distributed data. All statistical analyses
were performed in IBM SPSS Statistics version 24 (IBM, Armonk, NY, USA). Different
letters indicate significant differences at p < 0.05. The data are expressed as mean ± S.D.
values of three independent experiments (n = 3) with three replicates.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-665
1/13/3/190/s1, Table S1: Human qPCR primer sequences used in the experiments.
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