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Myocardial infarction (MI) is a serious heart disease that causes high mortality

rate worldwide. Noncoding RNAs are widely involved in the pathogenesis of MI.

Circular RNAs (circRNAs) are recently validated to be crucial modulators of MI.

CircRNAs are circularized RNAs with covalently closed loops, whichmake them

stable under various conditions. CircRNAs can function by different

mechanisms, such as serving as sponges of microRNAs (miRNAs) and RNA-

binding proteins (RBPs), regulating mRNA transcription, and encoding peptides.

Among these mechanisms, sponging miRNAs/RBPs is the main pathway. In this

paper, we systematically review the current knowledge on the properties and

action modes of circRNAs, elaborate on the roles of the circRNA-miRNA/RBP

network in MI, and explore the value of circRNAs in MI diagnosis and clinical

therapies. CircRNAs are widely involved in MI. CircRNAs have many advantages,

such as stability, specificity, and wide distribution, which imply that circRNAs

have a great potential to act as biomarkers for MI diagnosis and prognosis.
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Introduction

Myocardial Infarction (MI), also called a heart attack, is caused by blocking of blood flow

in coronary arteries. The blockage (atherosclerotic plaque) comprises fat, cholesterol, and

other substances (Lu et al., 2015), where rupture can damage some heart muscles and result in

myocardial ischemia or heart failure (HF) (Lu et al., 2015). Thus, MI can be lethal and

significantly burden families and the general population. Many physiological and pathological

processes are involved in MI, such as apoptosis, autophagy, myocardial ischemia/reperfusion

(I/R), and cardiac fibrosis. MI diagnosis and treatment have dramatically improved over the

past years. However, its incidence and mortality rates continue to increase because of the lack

of effective therapeutic targets. Therefore, efforts should be made to discover and unveil

underlying mechanisms, thus providing new avenues for MI diagnosis and treatment.

Noncoding RNAs are known to participate in MI pathogenesis. MicroRNAs

(miRNAs) have been extensively studied, and the underlying mechanisms have been

well documented (Li et al., 2019; Zhang et al., 2020a). Recently, other noncoding RNAs
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have also been shown to play crucial roles in MI (Zhang M. et al.,

2019; Zhang Y. et al., 2019; Bai et al., 2020; Sun et al., 2021).

Circular RNAs (circRNAs) are a class of circularized RNAs with a

length of ~500bp (Hansen et al., 2013). They were considered

non-functional when first discovered in plant viruses

(Kolakofsky, 1976). However, with advancements of

technology and in-depth research, the biological functions of

circRNAs were uncovered. Most circRNAs are located in the

cytoplasm, with only a small number existing in nucleus (Hansen

et al., 2013), which are consistent with their functional roles.

CircRNAs can bind to miRNAs or RNA-binding proteins (RBPs)

to influence the biological activity of downstream targets (Liu

et al., 2022), thereby modulating a lot of signaling pathways.

Numerous studies have revealed the multifunctional roles of

circRNAs in the pathogenesis of various diseases, including MI

(Deng et al., 2016; Geng et al., 2016; Cai et al., 2019; Garikipati

et al., 2019). CircRNAs are stable under different conditions due

to their covalently closed loop structures. Moreover, circRNAs

are tissue- and developmental-specific and are dynamically

expressed in different pathological conditions (Werfel et al.,

2016; Siede et al., 2017; Gupta et al., 2018). Due to these

characteristics, they can be used as biomarkers for MI

detection (Vausort et al., 2016; Zhao et al., 2017). In this

review, we generalize the available knowledge on circRNAs,

elucidate the roles of the circRNA-miRNA/RBP network in

MI, and explore the potential value of circRNAs in MI diagnosis.

Biogenesis and properties of circular
RNAs

There are three types of circRNAs which are produced via

different mechanisms, namely 1) exonic circRNAs (ecircRNAs or

ecRNAs) (Zhang et al., 2014); 2) exon-intron circRNAs (EIciRNAs)

(Li et al., 2015); and 3) circular intronic RNAs (ciRNAs) (Conn et al.,

2015). EcRNAs can be generated from the lariat-driven

circularization model (Jeck et al., 2013; Jeck and Sharpless, 2014),

intron pairing-driven circularization model (Deininger, 2011; Jeck

et al., 2013), and RBP-dependent model (Ashwal-Fluss et al., 2014;

Conn et al., 2015). EIciRNAs can be produced from intron pairing-

driven circularization model (Deininger, 2011; Jeck et al., 2013) and

RBP-dependent mode (Ashwal-Fluss et al., 2014; Conn et al., 2015).

CiRNAs can be formed via a single pathway, which requires the

binding of introns and back-splicing of the spliceosome (Zhang et al.,

2013). The majority of circRNAs are ecRNAs (Hansen et al., 2013;

Memczak et al., 2013). Notably, ecRNAs are dominantly located in

the cytoplasm (Zhang et al., 2020c). Due to intron sequences,

EIciRNAs and ciRNAs are confined to the nucleus, implying their

different functional mechanisms (Zhang et al., 2020c).

CircRNAs have some common biological properties, such as

high stability (Suzuki et al., 2006), wide distribution (Jeck et al.,

2013; Zheng et al., 2016; Xu et al., 2017; Zeng et al., 2017), and

expression specificity (Jakobi et al., 2016; Li et al., 2017; Xu et al.,

2017). These features indicate the multifunctional roles of

circRNAs in various biological processes.

Functional mechanisms of circular
RNAs

Many studies have illustrated the general mechanisms of actions

of circRNAs (Zhang et al., 2013; Li et al., 2015; Legnini et al., 2017;

Yang et al., 2018; Zhang et al., 2020c). EcRNAs contain miRNA

response elements (MREs) that help ecRNAs absorb miRNAs like

sponges. One ecRNA can bind to differernt number of miRNAs

depending on the MRE number. The sponging effect inhibits the

activity of functional miRNAs and thus upregulates miRNA targets

(Hansen et al., 2013; Garikipati et al., 2019) (Figure 1A). In addition,

ecRNAs can function by sponging RBPs and suppressing RBP

activity, thereby acting on downstream pathways (Zhang et al.,

2021b) (Figure 1B). Moreover, some ecRNAs have been revealed to

encode peptides (Legnini et al., 2017; Yang et al., 2018) (Figure 1C).

CircRNAs lack typical translation initiation structures (5′ cap and 3′
polyadenylated tail). However, some special elements, such as the

internal ribosome entry site and N-methyladenosine, can be used to

facilitate translational initiation of ecRNAs (Wesselhoeft et al., 2018).

CiRNAs and EIciRNAs can serve as transcriptional regulators of the

parental genes (Zhang et al., 2013; Li et al., 2015) (Figure 1D).

CiRNAs directly bind to RNA polymerase II (Pol II) to promote

transcription (Zhang et al., 2013). EIciRNAs indirectly interact with

Pol II through binding to the U1 small nuclear ribonucleoproteins

FIGURE 1
Biogenesis and circRNA action mechanisms. There are three
types of circRNAs. EcRNAs can be transported into cytosol and
account for the majority of circRNAs, while EIciRNAs and ciRNAs
are confined to the nucleus. EcRNAs can act as miRNA/RBP
sponges (A,B) and protein translation templates (C). EIciRNAs and
ciRNAs can function by regulating parental gene transcription (D).
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(snRNPs) (Li et al., 2015). CircRNAs participate in MI mainly by

acting as sponges of miRNAs/RBPs (Garikipati et al., 2019; Si et al.,

2020;Wang Y. et al., 2021; Ye et al., 2021; Zhu et al., 2021) (Table 1).

CircRNAs and MI

CircRNAs deteriorate myocardial
infarction symptoms

Cdr1as
Cdr1as (or CiRS-7) is one of the most studied circRNAs that

functions as a miR-7a/b sponge or inhibitor (Hansen et al., 2011;

Hansen et al., 2013;Memczak et al., 2013). Geng et al. investigated the

role of the Cdr1as-miR-7a pathway in MI-induced apoptosis Geng

et al. (2016). The levels of Cdr1as andmiR-7a increased inMImodels

in vivo and in vitro. Cdr1as upregulation enhanced cell apoptosis,

while miR-7a overexpression reversed the effect. SP1 and PARP were

identified as newmiR-7a targets. SP1 is a transcription factor involved

in hypoxic gene transcription (Eltzschig et al., 2009), while PARP

functions in I/R-induced apoptosis (Li et al., 2014). SP1 and PARP

overexpression inhibited the cell apoptosis induced by miR-7a.

Overexpression of Cdr1as enlarged the cardiac infarct size and

increased SP1 and PARP levels, while miR-7a overexpression

reversed these trends (Geng et al., 2016). In general, Cdr1as can

promote MI via the miR-7a-SP1/PARP axis (Geng et al., 2016).

CircNfix
Superenhancers are active enhancers that are enriched for

binding key master transcription factors (Whyte et al., 2013).

TABLE 1 CircRNAs with MI.

CircRNAs Source Target Action
mechamism

Regulation References

circRNAs that aggravate the syptoms caused by MI

circNfix Mouse heart, CM miR-214 miR-214-Gsk3β Suppressing cardiac regeneration and functional recovery Huang et al. (2019)

circPostn MI patients, CM
mouse heart

miR-96-5p miR-96-5p-BNIP3 Aggravating myocardial injury and cardiac remodeling Cheng et al. (2020)

circPAN3 Rat heart miR-221 miR-221-FoxO3-
ATG7

Promoting cardiac fibrosis induced by MI Li et al. (2020)

circ_0060745 Mouse heart --- NF-κB Promoting CM apoptosis and inflammation, increasing infarct
size

Zhai et al. (2020)

circFASTKD1 HCMEC miR-106a miR-106a-LATS1/
2-YAP

Suppressing cardiac function and cardiac repairment Gao et al. (2021)

circHIPK3 Mouse heart, CM miR-93-5p miR-93-5p-Rac1-
PI3K/Akt<

Enhancing cardiac dysfunction Wu et al. (2021)

circRNA
010567

CM miR-141 miR-141-DAPK1 Deteriorating the CM injury Zhao et al. (2021c)

Rat heart TGF-β1 and
Smad3

TGF-β1 and Smad3 Promoting cardiac fibrosis Bai et al. (2020)

circROBO2 Mouse heart, CM miR-1184 miR-1184-TRADD Promoting myocardial apoptosis Chen et al. (2021)

MFACR MI patients, CM,
mouse heart

miR-125b miR-125b Promoting the apoptosis of CMs Wang et al.
(2021b)

circ-NNT MI patients, CM miR-33a-5p miR-33a-5p-USP46 Promoting pyroptosis and aggravate myocardial I/R injury Ye et al. (2021)

circRNAs that attenuate the symptoms caused by MI

circFndc3b Mouse heart, MCEC,
HUVEC

FUS FUS- VEGFA Attenuating apoptosis, improving the functions of left
ventricular, and promoting neovascularization

Garikipati et al.
(2019)

circ-Ttc3 Rat heart, CM miR-15b miR-15b-Arl2 Inhibiting CM apoptosis and cardiac dysfunction Cai et al. (2019)

circCDYL Mouse heart, CM miR-4793-5p miR-4793-5p-APP Promoting CM proliferation, cardiac regeneration and
repairment

Zhang et al.
(2020d)

circHIPK3 Mouse heart, CM,
HCAEC

miR-133a miR-133a- CTGF Promoting myocardial regeneration and improving myocardial
function

Zhang et al.
(2020d)

CMs, cardiac
endothelial cell

miR-29 miR-29-VEGFA Improving cardiac function and suppressing cardiac fibrosis Wang et al. (2020)

circMACF1 Mouse heart, CM miR-500b-5p miR-500b-5p -EMP1 Attenuating AMI symptoms Zhao et al. (2021a)

circSNRK Rat heart, CM miR-103-3p miR-103-3p-SNRK-
GSK3β

Promoting angiogenesis and improving cardiac functions Zhu et al. (2021)

circ_0001206 CM miR-665 miR-665-CRKL Alleviating H/R-induced CM injury Wang et al. (2022)

circFoxo3 Rat heart, CM KAT7 KAT7 -HMGB1 Ameliorating cardiac dysfunction and attenuating autophagy Sun et al. (2021)

Frontiers in Pharmacology frontiersin.org03

Zhang et al. 10.3389/fphar.2022.941123

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.941123


Nfix circRNA (circNfix) was validated to be a superenhancer-

associated circRNA (SE-circRNA) (Huang et al., 2019). CircNfix

was highly expressed in adult humans, rats, and mice hearts

(Huang et al., 2019). CircNfix overexpression significantly

inhibited cardiomyocyte (CM) proliferation and enlarged the

infarct size, blocking cardiac regeneration. On the other hand,

downregulation of circNfix promoted CM proliferation and

angiogenesis, inhibited post-MI apoptosis, and relieved cardiac

dysfunction (Huang et al., 2019). Analyses showed that circNfix

might interact with Ybx1 whose level could be regulated by

Nedd4l (an E3 ubiquitin ligase). CircNfix promoted the

interaction between Ybx1 and Nedd4l, inducing

Ybx1 degradation by ubiquitination.

These results suggested that circNfix might suppress CM

proliferation by reinforcing ubiquitin-dependent degradation of

Ybx1 (Huang et al., 2019). CircNfix was found to have three

binding sites with miR-214. Dual-luciferase assays, RNA

fluorescence in situ hybridization assays, and RNA pull-down

assays validated the binding of miR-214 with circNfix (Huang

et al., 2019). MiR-214 was then found to interact with the 3′UTR
of glycogen synthase kinase 3β (Gsk3β) in a highly conserved site

among species. MiR-214 overexpression decreased the Gsk3β level.

Gsk3β regulates CM proliferation by degrading β-catenin (D’Uva

et al., 2015). Downregulation of circNfix increased miR-214 levels,

thereby reducing Gsk3β expression (Huang et al., 2019). A miR-214

inhibitor diminished the suppressive effect of circNfix knockdown on

Gsk3β. No apparent relationship was observed between Ybx1 and

miR-214. Thus, circNfix might suppress cardiac regeneration and

functional recovery after MI through two independent pathways:

enhancement of ubiquitin-dependent Ybx1 degradation and

inhibition of miR-124 activity (Huang et al., 2019).

CircPostn
CircPostn was upregulated in MI patient plasma and MI models

(hypoxia and reoxygenation (H/R)-treated cell models and mouse

models) (Cheng et al., 2020). The knockout of circPostn attenuated

myocardial injury and cardiac remodeling caused by MI in mice

(Cheng et al., 2020). CircPostn could alter the expression of

myocardial fibrosis and remodeling markers. Bioinformatic

analysis and the dual-luciferase reporter assay revealed the

interaction between circPostn and miR-96-5p. MiR-96-5p levels

were decreased in H/R-treated CMs. The analysis also validated

that miR-96-5p could interact with BNIP3 (Cheng et al., 2020).

BNIP3 belongs to the Bcl-2 family and mediates non-apoptotic/

apoptotic cell death (Chinnadurai et al., 2008; Burton and Gibson,

2009). BNIP3 plays a critical role in HF, especially during ischemia

(Webster et al., 2005). CircPostn knockdown decreased

BNIP3 expression, whereas miR-96-5p knockdown attenuated this

effect, indicating that circPostn can promote BNIP3 expression via

downregulating miR-96-5p (Cheng et al., 2020). In general, circPostn

can aggravate MI-induced myocardial injury and cardiac remodeling

by the miR-96-5p-BNIP3 axis (Cheng et al., 2020).

CircPAN3
CircPAN3 is produced from the PAN3 gene, which is involved

in the stem cell renewal (Zhu et al., 2019) and drug resistance (Shang

et al., 2019). Li et al. investigated the role of circPAN3 inMI-induced

myocardial fibrosis Li et al. (2020). In the MI rat model, the fibrotic

markers were significantly upregulated, implying the occurrence of

myocardial fibrosis. Notably, circPAN3 levels were increased in MI

heart tissues (Li et al., 2020). CircPAN3 knockdown alleviated

myocardial fibrosis in vivo and in vitro. Bioinformatic analyses

and the dual-luciferase reporter assay validated the interaction

between circPAN3 and miR-221. MiR-221 expression was

markedly decreased in MI tissues. Overexpression of miR-221

inhibited autophagy and myocardial fibrosis.

CircPAN3 overexpression decreased miR-221 level, whereas

circPAN3 downregulation increased the level (Li et al., 2020).

MiR-221 was found to interact with FoxO3 and negatively

regulated its function (Li et al., 2020). FoxO3 was testified to

directly bind to ATG7 and promote its activity. FoxO3 and

ATG7 were highly expressed in MI heart tissues. MiR-221 mimic

suppressed FoxO3 and ATG7 expression. In general,

circPAN3 participates in MI-induced myocardial fibrosis by the

miR-221-FoxO3-ATG7 axis (Li et al., 2020).

Circ_0060745
Zhai et al. reported the role of circ_0060745 in acute MI (AMI)

Zhai et al. (2020). Circ_0060745 expression was increased in the

infarctedmyocardium of AMImice. Particularly, circ_0060745 level

was enriched in myocardial fibroblasts. Knockdown of

circ_0060745 reduced the infarct size of the AMI mouse heart,

whereas circ_0060745 overexpression increased it (Zhai et al., 2020).

Circ_0060745 downregulation partially improved the impaired

cardiac function of AMI mice. These results suggested the

regulatory role of circ_0060745 in cardiac function.

Circ_0060745 knockdown significantly attenuated CM apoptosis

in the infarcted areas and inhibited CM apoptosis under hypoxia. In

cardiac fibroblasts under hypoxia, knockdown of

circ_0060745 lowered the migratory capability of primary

peritoneal macrophages and reduced the expression levels of

proinflammatory cytokines (IL-6, IL-12, IL-1β and TNF-α) (Zhai
et al., 2020). Proinflammatory cytokine levels can be increased by

activating NF-κB (Liu et al., 2017). Subsequent analysis showed that

circ_0060745 knockdown in cardiac fibroblasts under hypoxia

suppressed NF-κB activation. These data suggest that

circ_0060745 may participate in AMI by regulating NF-κB
activation. However, the exact mechanisms remain unclear and

should be explored in further studies (Zhai et al., 2020).

CircFASTKD1
CircFASTKD1 is involved in the pathogenesis of

angiogenesis after MI (Gao et al., 2021). Gao et al. found that

downregulation of circFASTKD1 enhanced HCMEC viability

Gao et al. (2021). CircFASTKD1 overexpression in HUVECs

Frontiers in Pharmacology frontiersin.org04

Zhang et al. 10.3389/fphar.2022.941123

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.941123


exhibited significantly reduced cell viability and led to relatively

weaker angiogenic ability. In addition,

circFASTKD1 overexpression suppressed the migration and

mobility of vascular endothelial cells. These data suggested

that circFASTKD1 might repress angiogenesis in vascular

endothelial cells. Further analyses revealed that

circFASTKD1 could bind to miR-106a and directly suppress

miR-106a expression. Overexpression of miR-106a could reverse

the effects of circFASTKD1 on angiogenesis. Large tumor

suppressor kinase 1 (LATS1) and LATS2, the upstream

kinases of Yes-associated protein (YAP) in the classical hippo/

YAP pathway (Murakami et al., 2011; Li et al., 2013; Yao et al.,

2015), were revealed to be the direct targets of miR-106a.

CircFASTKD1 overexpression elevated LATS1 and

LATS2 levels, hence promoting YAP phosphorylation. The

aforementioned results showed that circFASTKD1 inhibited

angiogenesis through the miR-106a/LATS1/2/YAP pathway

(Gao et al., 2021). The function of circFASTKD1 under

hypoxic conditions was also validated. Under hypoxic

conditions, circFASTKD1 overexpression reduced the

mobility, viability, migration and tube formation of vascular

endothelial cells, whereas circFASTKD1 downregulation

promoted angiogenesis. In vivo experiments showed that

circFASTKD1 knockdown could improve cardiac function and

promote cardiac repair after MI. These findings demonstrate the

inhibitory role of circFASTKD1 in the angiogenesis after MI by

the miR-106a-LATS1/2/YAP axis (Gao et al., 2021).

CircHIPK3
CircHIPK3 is generated from the second intron of the HIPK3

gene (Zhang et al., 2021a). Wu et al. investigated circHIPK3 function

in MI-induced cardiac dysfunction Wu et al. (2021).

CircHIPK3 levels were increased in animals and the MI cell

model. CircHIPK3 knockdown suppressed CM apoptosis after MI

and improved cardiac function (Wu et al., 2021). Further analyses

revealed that circHIPK3 could act as ceRNA to absorb miR-93-

5p. MiR-93-5p could interact with RAS-related C3 botulinum toxin

substrate 1 (Rac1) protein, which has been found to promote CM

injury duringmyocardial I/R (Henninger et al., 2019). PI3K/AKT are

the downstream effectors of Rac1 (Qu et al., 2018; Henninger et al.,

2019; Zhang et al., 2020b), and PI3K/AKT pathway activation is

related to myocardial injury (Hauselmann et al., 2011; Zhang and

Cui, 2018). MiR-93-5p overexpression reversed the detrimental effect

of circHIPK3onMI-inducedCM injury. In general, circHIPK3 could

suppress miR-93-5p levels and activate the Rac1-PI3K/Akt pathway,

thereby enhancingMI-induced cardiac dysfunction (Wu et al., 2021).

CircRNA 010567
Zhao et al. explored the role of circRNA 010567 in hypoxia-

induced MI Zhao Q. et al. (2021). An in vitro MI model was

established with H9c2 cells under hypoxic conditions. CircRNA

010567 levels were increased in hypoxia-induced H9c2 cells (Zhao

Q. et al., 2021). The analytical results showed that circRNA

010567 could bind to miR-141. MiR-141 expression was

downregulated in hypoxia-induced H9c2 cells. CircRNA

010567 silencing increased miR-141 levels. Furthermore, circRNA

010567 knockdown and miR-141 overexpression increased

H9c2 cell viability, reduced apoptosis, and suppressed caspase-3

activity (Zhao Q. et al., 2021). MiR-141 was found to interact with

death-associated protein kinase-1 (DAPK1) which is related to I/R

injury (Yu et al., 2021). DAPK1was upregulated in hypoxia-induced

H9c2 cells. DAPK1 overexpression reversed the miR-141 effect on

cell viability and apoptosis. Therefore, circRNA 010567 may

deteriorate CM injury by the miR-141-DAPK1 axis in the

in vitro MI model (Zhao Q. et al., 2021).

In rats, Bai et al. investigated the role of circRNA 010567 in

MI-induced myocardial fibrosis Bai et al. (2020). In MI rats,

circRNA 010567 knockdown significantly improved cardiac

function. In addition, circRNA 010567 downregulation

decreased myocardial apoptosis, facilitated the orderly

arrangement of myocardial cells, and alleviated myocardial

interstitial fibrosis. TGF-β1 plays a critical role in fibrosis

processes and is positively correlated with the pathogenesis of

myocardial fibrosis (Sun et al., 2015). The expression levels of

TGF-β1 and Smad3 were elevated in MI rat heart tissuess, which

were substantially suppressed by circRNA 010567 knockdown,

indicating its inhibitory role in myocardial fibrosis occurrence.

These results demonstrated that the normal circRNA

010567 level might promote MI-induced myocardial fibrosis

(Bai et al., 2020).

CircROBO2
CircROBO2 levels were increased in MI models both in vivo

and in vitro (CMs under hypoxia treatment) (Chen et al., 2021).

CircROBO2 silencing improved cell viability and suppressed

apoptosis, whereas its overexpressionhad contradictory effects

(Chen et al., 2021). In MI mice, circROBO2 knockdown

decreased the MI area and CK-MB and LDH levels. These

results suggested that circROBO2 might promote MI

pathogenesis. MiR-1184 expression was reduced in MI

models. MiR-1184 acted as a circROBO2 target and could

promote CM viability and repress CM apoptosis.

Downregulation of circROBO2 increased miR-1184 levels and

intensified its effect on CMs. Further analyses showed that miR-

1184 directly interacted with the TNFR1-associated death

domain protein (TRADD) (Chen et al., 2021). TRADD

regulates apoptosis, participates in various signaling pathways,

and plays a vital role in cardiovascular disease (CVD)

(Pobezinskaya and Liu, 2012). TRADD levels were increased

in MI models. MiR-1184 was found to inhibit TRADD

expression. Overexpression of circROBO2 upregulated

TRADD and downregulated miR-1184 levels, indicating that

circROBO2 might upregulate TRADD expression by sponging

miR-1184. These results demonstrat that circROBO2 promotes

MI development by increasing myocardial apoptosis via the miR-

1184-TRADD axis (Chen et al., 2021).
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MFACR
CircRNA MFACR is involved in mitochondrial fission and

cardiac apoptosis (Han et al., 2018). Wang et al. explored the role

of MFACR in MI Wang S. et al. (2021). MFACR expression was

significantly increased in MI patients. In MI mice, MFACR

overexpression significantly aggravated myocardial injuries.

MiR-125b was downregulated in MI mice. In cell models

(CMs under hypoxia treatment), the same expression pattern

was observed. MFACR was negatively correlated with miR-125b.

MFACR was then validated to inhibit miR-125b expression by

increasing the methylation of miR-125b gene. MFACR

overexpression promoted the apoptosis of hypoxia-treated

CMs, which could be reversed by miR-125b overexpression.

In general, MFACR might promote CM apoptosis in MI by

downregulating miR-125b (Wang S. et al., 2021).

Circ-NNT
Pyroptosis is involved inMI development in rodents (Sandanger

et al., 2013). Its role in reperfusion injury in MI has been revealed in

both in vitro (A/R CMs) and in vivo (I/R mice) models (Ye et al.,

2021). Ye et al. studied the functions of pyroptosis inMI patients and

myocardial I/R injury models Ye et al. (2021). In serum of MI

patients, IL-1β and IL-18 (pyroptosis-related pro-inflammatory

cytokines) showed increased concentration. The levels of IL-1β,
IL-18, and pyroptosis-related inflammatory caspases (caspase-1 and

11) were elevated, indicating pyroptosis activation (Ye et al., 2021).

The circRNA microarray revealed that circ-NNT was most

differentially expressed. Circ-NNT was mainly expressed in the

heart, suggesting its heart-specific role. Circ-NNT was

upregulated in MI patients and I/R models. Circ-NNT

knockdown alleviated MI symptoms in I/R mice and reduced the

expression of caspase-1, caspase-11, IL-1β, and IL-18 in A/R CMs.

These results indicated that circ-NNT might promote pyroptosis

progression. Circ-NNTwas found to spongemiR-33a-5p. MiR-33a-

5p could interact with USP46. MiR-33a-5p and USP46 were also

validated to be relevant to pyroptosis. Overexpression of circ-NNT

increased the USP46 level through inhibiting miR-33a-

5p. Therefore, circ-NNT might promote pyroptosis to exacerbate

I/R injury in MI by the miR-33a-5p-USP46 axis (Ye et al., 2021).

Circular RNAs improve the symptoms
caused by Circular RNAs

CircFndc3b
CircFndc3b, a 215-nt circRNA generated from exons two and

three of the Fndc3b gene, exhibited an altered expression in MI

mouse hearts on the third day after MI in a circRNA microarray

analysis (Garikipati et al., 2019). CircFndc3bwas significantly down-

regulated in the post-MI mouse hearts (Garikipati et al., 2019). The

level of circFndc3b continued to decline during a 6-weeks follow-up.

CircFndc3b overexpression led to increased levels of vascular

endothelial growth factor A (VEGFA), a potent cardioprotective

molecule (Piwecka et al., 2017) and a regulator of angiogenesis

(Krishnamurthy et al., 2011). CircFndc3b upregulation reduced the

H2O2-induced MCEC apoptosis and enhanced the tube formation

ability of HUVECs (Garikipati et al., 2019). CircFndc3b

overexpression in CMs of post-MI hearts attenuated apoptosis,

improved left ventricular functions, and promoted

neovascularization. Dual-luciferase reporter gene assays showed

FIGURE 2
CircRNA-miRNA/RBP axies in MI. CircRNAs are widely invovled in MI. They can attenuate or aggravate the MI symptoms by inhibiting various
miRNA/RBP targets.
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that circFndc3b might bind to miR-93-3p, miR-412-3p, and miR-

298-5 (Garikipati et al., 2019). However, circFndc3b did not function

through sponging these miRNAs. In silico analysis, RNA binding

protein immunoprecipitation (RIP), and pull-down assays validated

the interaction between circFndc3b and FUS protein. CircFndc3b

overexpression suppressed the expression of FUS protein and

rescued the inhibitory effect of FUS on VEGFA (Garikipati et al.,

2019). In conclusion, circFndc3b plays a cardioprotective role by

regulating CM apoptosis, neovascularization and infarct size.

CircFndc3b might function by the FUS-VEGFA signaling

pathway (Garikipati et al., 2019).

Circ-Ttc3
The circular RNA-tetratricopeptide repeat domain 3 (Ttc3) is

a highly expressed circRNA in the mouse heart (Cai et al., 2019).

Circ-Ttc3 was upregulated in the ischemic myocardium of rats

with MI (Cai et al., 2019). Circ-Ttc3 silencing aggravated CM

apoptosis and cardiac dysfunction after MI, suggesting that circ-

Ttc3 plays a cardioprotective role (Cai et al., 2019). Circ-Ttc3 was

found to bind to miR-15b-5p. Bioinformatic prediction and dual-

luciferase reporter assays proved that miR-15b directly interacted

with ADP-ribosylation factor-like protein 2 (Arl2) (Cai et al.,

2019), consistent with a previous study (Nishi et al., 2010). MiR-

15b-5p inhibited Arl2 function and Arl2 was relevant to CM

viability. Overexpression of circ-Ttc3 upregulated

Arl2 expression. Arl2 knockdown attenuated the protective

effect of circ-Ttc3 overexpression on CM apoptosis. Thus,

circ-Ttc3 might play a cardioprotective role by the miR-15b-

Arl2 regulatory pathway (Cai et al., 2019).

CircCDYL
CircCDYL expression was decreased in MI mouse hearts and

the MI cell model (Zhang M. et al., 2020). CircCDYL

overexpression promoted CM proliferation and cardiac

regeneration and repairment, whereas circCDYL knockdown

suppressed these processes (Zhang M. et al., 2020).

Bioinformatics analyses and dual-luciferase reporter assays

validated the binding of circCDYL and miR-4793-5p. MiR-

4793-5p has been found to be associated with delayed cerebral

infarction (Lu et al., 2017). Bioinformatics tools revealed that

amyloid precursor protein (APP) might be the target of miR-

4793-5p (Wilkins and Swerdlow, 2017). The APP protein level

was downregulated by miR-4793-5p overexpression. In brief,

circCDYL might improve cardiac function after MI by the miR-

4793-5p-APP pathway (Zhang M. et al., 2020).

CircHIPK3
Si et al. found that circHIPK3 was positively regulated by

the transcription factor Gata4, which has been revealed to

regulate CM proliferation and myocardial regeneration Si

et al. (2020). Overexpression of circHIPK3 promoted CM

and human coronary artery endothelial cell (HCAEC)

proliferation (Si et al., 2020). Moreover,

circHIPK3 overexpression in the MI mouse heart promoted

angiogenesis, reduced the infarcted area size, and elevated

cardiac pumping capacity. Knockdown of circHIPK3 led to

opposite results. All data suggested that circHIPK3 might

promote myocardial regeneration and improve myocardial

function after MI. In HCAECs, circHIPK3 could bind to

miR-133a, which is essential for cardiac development and

protection (Si et al., 2020). MiR-133a could interact with the

connective tissue growth factor (CTGF) which is intimately

related to angiogenesis (Duan et al., 2015; Yang et al., 2017).

Additional analyses validated the possible role of the

circHIPK3-miR-133a-CTGF axis in the HCAEC function

and angiogenesis (Si et al., 2020). However, in CMs,

circHIPK3 did not act through the miRNA-mRNA pathway,

but instead functioned by binding to Notch1 Intracellular

Domain (N1ICD) protein (Si et al., 2020).

In another study by Wang et al., the regulatory role of

exosomal circHIPK3 in cardiac angiogenesis after MI was

investigated (Wang et al., 2020). Hypoxia-induced CMs could

release circHIPK3-containing exosomes (HPC-exos) (Wang

et al., 2020). HPC-exos could improve cardiac function and

suppress cardiac fibrosis. HPC-exos rescued circHIPK3 levels

under H2O2 treatment, induced tube formation, and facilitated

angiogenesis. Under oxidative conditions,

circHIPK3 overexpression stimulated the proliferation and

migration ability of cardiac endothelial cells. CircHIPK3 was

identified to sponge miR-29, which is known to regulate VEGFA

(Domingues et al., 2011; Zhang et al., 2016), indicating that

circHIPK3 functions through inhibiting miR-29 and

upregulating VEGFA. Therefore, HPC-exos played a

cardioprotective role by the miR-29-VEGFA axis (Wang et al.,

2020).

CircMACF1
Zhao et al. explored the role of circMACF1 in AMI for the

first time Zhao B. et al. (2021). CircMACF1 levels were decreased

significantly in the myocardial tissue of MI mice (Zhao B. et al.,

2021). CircMACF1 level was also downregulated in the hypoxia-

induced cell model. Bioinformatics analyses and dual-luciferase

reporter assays revealed that circMACF1 could interact with

miR-500b-5p (Zhao B. et al., 2021). MiR-500b-5p was

upregulated in MI models. Overexpression of

circMACF1 reduced miR-500b-5p levels, whereas knockdown

of circMACF1 elevated miR-500b-5p levels. Subsequent analyses

found that miR-500b-5p could interact with epithelial membrane

protein 1 (EMP1) that has been revealed to regulate CVD

pathogenesis (Xu et al., 2011; Yu et al., 2013). Overexpression

of miR-500b-5p downregulated EMP1 expression (Zhao B. et al.,

2021). Thus, circMACF1 might upregulate EMP1 by sponging

miR-500b-5p in MI. Overexpression of circMACF1 inhibited

CM apoptosis and cardiac dysfunction caused by AMI, which

could be reversed by upregulating miR-500b-5p or

downregulating EMP1. Therefore, these findings indicated that
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circMACF1 could attenuate AMI symptoms by the miR-500b-

5p-EMP1 axis (Zhao B. et al., 2021).

Circular RNAs SNRK
High-throughput sequencing by Zhu et al. revealed that

circSNRK expression was found to be significantly reduced in

the MI rat hearts Zhu et al. (2021), especially in CMs. CircSNRK

upregulation ameliorated the CM function, such as reducing

apoptosis and increasing CM proliferation. Moreover, circSNRK

upregulation enhanced angiogenesis and improved cardiac

functions, implying the cardioprotective role of circSNRK

(Zhu et al., 2021). Bioinformatics analyses and dual-luciferase

assays confirmed that miR-103-3p could interact with circSNRK

and bind to the SNRK gene. MiR-103-3p is implicated in

apoptosis (Leslie et al., 2018) and cell proliferation (Natarelli

et al., 2018). In the myocardium of MI patients, miR-103-3p was

upregulated. MiR-103-3p elevation exacerbated CM apoptosis

and suppressed CM proliferation. SNRK upregulation could

rescue the impaired function of circSNRK overexpression

caused by miR-103-3p mimics. Overall, circSNRK exerted the

cardioprotective role by the miR-103-3p-SNRK regulatory axis

(Zhu et al., 2021). SNRK protein was found to regulate the

phosphorylation of GSK3β, which has been shown to modulate

apoptosis and proliferation (Woulfe et al., 2010).

Immunoprecipitation showed the direct interaction between

SNRK and GSK3β. These results demonstrated that the

protective effects of SNRK in CMs might be dependent on the

GSK3β pathway (Zhu et al., 2021). Hence, circSNRK played a

cardioprotective role through the miR-103-3p-SNRK-GSK3β
axis (Zhu et al., 2021).

Circ_0001206
CRK like proto-oncogene, adaptor protein (CRKL) has been

found to mitigate CM injury induced by hypoxia/reoxygenation

(H/R) in MI (Zhang et al., 2015). In this study, H/R treatment

was used to construct an in vitro MI model (Wang et al., 2022).

Wang et al. found a circRNA produced by the CRKL gene,

circ_0001206 (Wang et al. (2022). Circ_0001206 was

significantly downregulated in H/R-treated CMs and the MI

mouse model. Circ_0001206 overexpression attenuated

H/R-induced cardiac injuries in MI mice, reduced the infarct

size, and promoted CM proliferation. In H/R-treated CMs,

circ_0001206 overexpression enhanced cell viability and

suppressed apoptosis. The results suggested the

cardioprotective role of circ_0001206 (Wang et al., 2022).

Circ_0001206 could bind to miR-665, which was validated to

target CRKL. Circ_0001206 upregulation increased CRKL level,

while miR-665 overexpression reversed this effect. Moreover,

miR-665 overexpression inhibited the protective effect of

circ_0001206. Taken together, circ_0001206 attenuated

H/R-induced CM injury by modulating the miR-665-CRKL

axis (Wang et al., 2022).

CircFoxo3
CircFoxo3 is derived from the Fox O 3 gene and has been found

to participate in cancers and CVD (Zhang et al., 2021b). The

cardioprotective role of circFoxo3 during MI development was

investigated (Sun et al., 2021). CircFoxo3 expression was reduced

inMI rats. Upregulation of circFoxo3 alleviated MI-induced cardiac

dysfunction and cell autophagy. Moreover,

circFoxo3 overexpression repressed CM injury, apoptosis,

autophagy, and inflammation induced by oxygen-glucose

deprivation (OGD). CircFoxo3 inhibited KAT7 expression.

KAT7 knockdown relieved OGD-induced CM injury and

autophagy. In addition, knockout of KAT7 downregulated the

expression of high mobility group box 1 (HMGB1), implying the

positive modulation of KAT7 on HMGB1.

CircFoxo3 overexpression repressed HMGB1 expression, whereas

KAT7 overexpression rescued HMGB1 level. Therefore,

circFoxo3 might suppress HMGB1 expression via inhibiting

KAT7. Conclusively, circFoxo3 might play a cardioprotective role

in MI by the KAT7-HMGB1 axis (Sun et al., 2021).

In summary, circRNAs are important modulators for MI.

Some circRNAs play cardioprotecrive role inMImodels, whereas

other ones play an opposite role to deteriorating MI symptoms

(Figure 2; Table 1).

TABLE 2 Circulating circRNAs as biomarkers of MI.

CircRNA Source Regulation Application References

circRNA_081881 plasma down Diagnostic biomarker Deng et al. (2016)

MICRA whole blood ------ prognostic biomarker for MI risk stratification Salgado-Somoza et al. (2017)

peripheral blood Down Predictive biomarker of ventricular dysfunction in MI patients Vausort et al. (2016)

circRNA_104761 whole blood Down Diagnostic biomarker Yang et al. (2021)

hsa_circRNA_001654 whole blood Up Diagnostic biomarker Zhao et al. (2021b)

hsa_circRNA_405624 whole blood Up Diagnostic biomarker Zhao et al. (2021b)

hsa_circRNA_091761 whole blood Up Diagnostic biomarker Zhao et al. (2021b)

hsa_circRNA_406698 whole blood Up Diagnostic biomarker Zhao et al. (2021b)
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Clinical significance of Circular RNAs
in myocardial infarction

Currently, the most used clinical diagnostic biomarkers for

MI are some proteins, such as troponin, creatine kinase-MB and

myoglobin (Lobbes et al., 2010). However, they cannot be

detected in the early stage of MI and are not sensitive and

specific. Troponin is a biomarker of myocardial injury and

can be observed in various diseases, such as severe heart

failure and chronic kidney failure (Jensen et al., 2007). In

addition, their levels are affected by some factors in patients,

including age, genetic background, medication, and lifestyle

(Chen et al., 2008), leading to poor accuracy. Noncoding

RNAs have been found to have diagnostic value (Zhang et al.,

2020c; Liu et al., 2021), including circRNAs. CircRNAs are highly

stable, widely distributed, and tissue- and developmental stage-

specific. These characteristics are valuable for biomarkers.

Moreover, the levels of circRNAs in circulatory system are not

low and some of them are even highly expressed, leading to easier

and more accurate detection. Studies have found that circulating

circRNAs might be promising biomarkers for MI (Table 2).

PPAR-gamma has been revealed to protect heart from AMI

(Chu et al., 2018). Deng et al. conducted a microarray to explore

PPAR-gamma-related circRNAs in the plasma of AMI patients

Deng et al. (2016). In 160 dynamically expressed circRNAs,

circRNA_081881 was significantly downregulated in AMI

patients compared with the control group. CircRNA_081881 was

found to have seven binding sites for miR-548. According to

bioinformatics analysis, miR-548 might interact with the PPAR-

gamma gene. CircRNA_081881 knockdown suppressed expression

of PPAR-gamma. The results indicated that plasma

circRNA_081881 might be a biomarker for the diagnosis and

therapy of AMI (Deng et al., 2016).

MI-associated Circular RNA (MICRA) has been found to have

clinical importance. Salgado-Somoza et al. assessed the role of

MICRA in the risk stratification after AMI by using whole blood

samples (Salgado-Somoza et al., 2017). The Akaike Information

Criteria (AIC) was analyzed to predict the value of MICRA in a

multi-parameter clinical risk stratification model (Salgado-Somoza

et al., 2017). A lower AIC indicates a better predictive value. The

inclusion of MICRA into standard criteria improved the predictive

ability. Through bootstrap internal validation, MICRA was identified

to be an optimal predictive biomarker. Thus, MICRA might be a

novel prognostic biomarker for the risk stratification of AMI patients

(Salgado-Somoza et al., 2017). In another study, MICRA exhibited

lower expression levels in MI patients than in healthy controls in the

peripheral blood (Vausort et al., 2016). Univariate and multivariate

analyses based on logistic regression were conducted. The results

demonstrated that circulating MICRA has a high predictive value of

left ventricular dysfunction in MI patients (Vausort et al., 2016).

Yang et al. carried out a microarray analysis (GSE169594) in

four AMI patients and fourmild coronary artery stenosis patients by

using whole blood samples Yang et al. (2021). Three circRNAs

(circRNA_068655, circRNA_104761, and circRNA_104765) were

validated to be significantly downregulated (Yang et al., 2021).

Notably, circRNA_104761 was revealed to sponge microRNA-

449 and microRNA-34a that is relevant to AMI (Fan et al., 2013;

Zhang M. et al., 2019). In a larger cohort, circRNA_104761 levels

were the lowest in AMI patients and highest in healthy coronary

artery volunteers, suggesting the abundant expression of

circRNA_104761 in human blood (Yang et al., 2021). ROC curve

analyses showed that circRNA_104761 had high sensitivity and

specificity. These findings suggested the possible diagnostic role of

circRNA_10476 in AMI (Yang et al., 2021).

Zhao et al. performed the circRNA microarray with the

whole blood of AMI patients Zhao et al. (2021b). More than

100 circRNAs were found to be expressed dynamically. The levels

of hsa_circRNA_001654, hsa_circRNA_405624,

hsa_circRNA_091761, and hsa_circRNA_406698 were

significantly upregulated in the blood of AMI patients (Zhao

et al., 2021b). These four circRNAs were then identified to sponge

miRNAs to regulate AMI pathogenesis, indicating their potential

roles as biomarkers in AMI diagnosis (Zhao et al., 2021b).

Taken together, these studies have highlighted that circulating

circRNAs might act as biomarkers for MI diagnosis and prognosis.

Conclusion and future perspective

All findings confirmed that circRNAs play essential roles in

MI mainly by sponging miRNAs. CircRNAs exist in almost all

eukaryotic organisms including plants and animals. They are

considerably more stable than linear noncoding RNAs in

circulatory system. Due to their advantages, circRNAs have

great potential to be biomarkers for MI.

In clinical practice, coronary angiography is the golden standard

for MI diagnosis. But it is invasive and conditional. Compared with

coronary angiography, biochemical markers are non-invasive and

innocuous. However, the current detection method for biochemical

markers is not fast enough and can only be used in hospital or some

labs. There have been some household test strips, such as early

pregnancy and blood sugar rapid test strips. Only a few drops of

urine or blood are needed in the test. These test strip methods cost

only several seconds and the results are easy to estimate. People can

conduct an initial diagnosis by themselves. The test stripmethod has

been applied in COVID-19 diagnosis. Thus, it is expected that

diagnostic strips based on circRNAs can also be prepared to

improve clinical diagnosis efficiency. Moreover, it is faster and

more convenient to use biological probes (gold nanocomposite

probe and bioluminescence probe) compared with RT-PCR.

Therefore, it may be one effective clinical diagnostic practice to

construct composite probes based on circRNAs and produce rapid

test kits or test strips. In addition to being disease diagnostic

biomarkers, circRNAs have some other functions.

CircMAPK14 can encode a peptide that might be used to

prepare targeted anticancer drugs (Wang L. et al., 2021). Some
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patents have revealed that circRNAs can be vectors for RNA vaccine

preparation. In general, circRNAs have high clinical value.

However, the utility of circRNAs as clinical biomarkers or targets

may be premature due to some existing problems. First, the insufficient

samples in many studies might result in deviation of experimental

results, thus leading to inaccurate conclusions. Second, there are no

unified experimental methods for measuring circulating circRNAs,

which makes the conclusions drawn in different studies inconsistent.

Third, the mechanisms of action of circRNAs are still inadequate.

CircRNAs can both mediate and exacerbate MI injury. More efforts

should be taken to unveil whether they are markers or mediators.

In conclusion, circRNAs are closely related to MI and might

be promising diagnostic and prognostic biomarkers for MI.

These findings provide new possibilities for the prevention

and therapeutic intervention of MI in the future.
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