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Abstract: cis-Splicing of adjacent genes (cis-SAGe) has been involved in multiple physiological
and pathological processes in humans. However, to the best of our knowledge, there is no report
of cis-SAGe in adipogenic regulation. In this study, a cis-SAGe product, BCL2L2–PABPN1 (BP),
was characterized in fat tissue of pigs with RT-PCR and RACE method. BP is an in-frame fusion
product composed of 333 aa and all the functional domains of both parents. BP is highly conserved
among species and rich in splicing variants. BP was found to promote proliferation and inhibit
differentiation of primary porcine preadipocytes. A total of 3074/44 differentially expressed mRNAs
(DEmRs)/known miRNAs (DEmiRs) were identified in porcine preadipocytes overexpressing BP
through RNA-Seq analysis. Both DEmRs and target genes of DEmiRs were involved in various
fat-related pathways with MAPK and PI3K-Akt being the top enriched. PPP2CB, EGFR, Wnt5A and
EHHADH were hub genes among the fat-related pathways identified. Moreover, ssc-miR-339-3p was
found to be critical for BP regulating adipogenesis through integrated analysis of mRNA and miRNA
data. The results highlight the role of cis-SAGe in adipogenesis and contribute to further revealing
the mechanisms underlying fat deposition, which will be conductive to human obesity control.

Keywords: adipogenesis; BCL2L2-PABPN1; chimeric RNA; cis-SAGe; genome-wide analysis; RNA-Seq

1. Introduction

Fat is a major factor affecting pig growth, development, and meat quality. Intramuscu-
lar fat (IMF) content is determinant of pork marbling and closely related to the juiciness,
flavor and tenderness of pork. A suitable IMF content can bring a better taste and is impor-
tant in improving pork quality [1]. However, back-fat thickness is negative related to lean
meat yield [2]. The regulation of fat content and distribution in the body will bring major
economic benefits to pig producers, which need to understand the mechanisms underlying
fat deposition. Additionally, as an important endocrine organ, fat tissue plays key roles in
maintaining body energy balance and glucose homeostasis [3], and is directly associated
with some metabolic diseases, including diabetes and obesity. Pigs are similar to human
beings in anatomy and physiology and have long been used as models in biomedical
research [4–6]. Studies on adipogenesis in pigs will contribute to controlling metabolic
diseases associated with fat.

It has been made clear that various transcription factors [7–9], signal transduction
pathways [10–12], epigenetic factors [13,14], and functional RNAs [15,16] are involved
in adipogenesis. However, adipogenesis is a complicated and precisely orchestrated
process, and there are still many factors remaining to be identified before fully revealing the
molecular mechanisms underlying adipogenesis. Chimeric RNA molecules are composed
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of exons from two independent genes. They can be produced by several mechanisms,
including chromosome rearrangement, cis-splicing of adjacent genes (cis-SAGe), and trans-
splicing [17]. cis-SAGe is cotranscription of adjacent genes coupled with intergenic splicing
and forms read-through fusion transcripts [18,19]. Chimeric RNAs were first identified
in tumor cells and once considered unique to tumors, which has focused researchers on
their roles in carcinogenesis. They are involved in various tumors, and in some cases, can
be used as diagnosis markers [20–22]. As research has progressed, chimeric RNAs have
been found in normal tissues and can produce many fusion proteins, increasing greatly the
complexity and diversity of the proteome. They can regulate gene expression, cell growth,
vitality, and motility in normal physiological processes [23,24]. For example, PAX3–FOXO1
is needed for muscle lineage commitment [25,26], and DUS4L–BCAP29 is involved in
neuronal differentiation [27].

The existing findings highlight the vital importance of chimeric RNAs and more
researchers are paying attention to them. However, there are no studies on chimeric RNAs
in adipogenesis in mammals. Here, we first identified a chimeric RNA produced by cis-
SAGe, BCL2L2–PABPN1 (BP), in pigs and elucidated that it inhibited adipogenesis through
MAPK and PI3K-Akt signaling pathways. The results highlight the role of read-through
fusion transcripts in adipogenesis and contribute to further revealing the mechanisms
underlying fat formation.

2. Materials and Methods
2.1. Animals, Nucleic Acid Isolation and cDNA Synthesis

All pigs were from the Institute of Animal Husbandry, Heilongjiang Academy of
Agricultural Sciences (Harbin, China). The animal study was reviewed and approved
by the Animal Care Committee of Northeast Agricultural University (Harbin, China).
Fat tissues were obtained from 6-month-old Min and Yorkshire pigs raised in the same
condition or from newborn Min pigs. RNA was extracted with TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) and reverse transcribed into cDNA with PrimeScriptTM 1st Strand
cDNA Synthesis Kit (Takara, Dalian, China). In analysis of chimera formation, the reverse
transcription (RT) primer was random 6 mers provided by the kit.

2.2. Hematoxylin and Eosin Staining and Triglyceride Assay

Adipose tissues were fixed in 4% paraformaldehyde solution, dehydrated in ethanol,
and embedded in paraffin. 4 µm thickness section was sliced with HistoCore BIOCUT (Le-
ica, Nussloch, Germany) and stained with hematoxylin and eosin (HE) for morphological
analysis. Tissues from three pigs in each breed were used and more than five fields were
chosen for morphological analysis. Adipocyte size was determined with Leica Application
Suite V4 (Leica). Triglyceride (TG) contents were measured with an enzymatic TG assay kit
(GPO-POD; Applygen, Beijing, China) according to the manufacturer’s protocol.

2.3. Chimeric RNA Identification and cDNA Cloning

We previously obtained high-throughput paired-end RNA-seq data of fat tissues from
Min and Yorkshire pigs [28], from which chimeric RNA was identified using ChimeraScan
program [29] with the reference genome (S. scrofa 10.2) [30] using default parameters.
Only read-through fusion candidates covering neighboring genes on the same strand of
DNA were considered in this study. Other chimera candidates including inter-, intra-
chromosomal, and adjacent ones were discarded.

Reverse transcription-polymerase chain reaction (RT-PCR) was used for validation of
candidate BCL2L2-PABPN1 (BP), produced by B-cell lymphoma 2-like 2 protein (BCL2L2)
and poly(A) binding protein nuclear 1 (PABPN1) genes, with specific primer pair, B1F/P1R,
designed according to result of bioinformatic analysis and cDNA template from fat tis-
sues. Another primer P2R designed according to porcine PABPN1 mRNA (GenBank No.
NM_001243548) was used to extend the chimera with B1F. The 5′ rapid amplification of
cDNA ends (RACE) was used to clone the 5′ sequence using specific primers P1R and BPR,
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which is complementary to the junction of chimera with SMARTer RACE 5′/3′ kit (Takara).
Primer P3F was used in the 3′ RACE reaction together with B1F.

Additionally, the 5′ RACE method was used to replenish the sequence of porcine
PABPN1 mRNA in which the outer and inner primers were P1R and P3R, respectively. P3R
was complementary to exon 1 of porcine PABPN1. RT-PCR was performed with forward
primer, P4F, complementary to the 5′ untranslated region (UTR) obtained and reverse
primer, P4R, complementary to 3′ end of the chimera to verify the cDNA sequence of
porcine PABPN1. Genomic structure was analyzed with BLAT program in UCSC genome
(http://genome.ucsc.edu/, accessed on 9 March 2021). All primer sequences used in this
study are listed in Table S1-1.

2.4. Primary Preadipocyte Isolation and Culture

Subcutaneous fat tissues were obtained after the newborn Min pigs were slaughtered,
washed with sterile phosphate-buffered saline (PBS), and potentially contaminated muscle
and connective tissue was carefully removed. After washing three times in PBS containing
1% penicillin–streptomycin (Invitrogen), fat tissues were cut into small pieces and digested
with 0.1% type I collagenase (Invitrogen) for 40–50 min at 37 ◦C, then mixed with equal
volumes of culture medium supplemented with penicillin–streptomycin and 10% fetal
bovine serum (FBS) (Sigma, St. Louis, MO, USA), and filtered through 400-mesh filters. The
filtrates were centrifuged at 1000 rpm for 5 min. The cell precipitation was resuspended
with Dulbecco’s modified Eagle’s medium/Nutrient Mixture F-12 (DMEM/F12) containing
10% FBS and 1% penicillin–streptomycin. The medium was changed every 2 days until
cells were grown to a desired density.

2.5. Preadipocyte Differentiation and Oil Red O Staining

To induce differentiation, DMEM/F12 was supplemented with 10% FBS, 0.5 mmol/L
3-isobytyl-1-methylxanthine, 1 µmol/L dexamethasone and 5 µg/mL insulin in which cells
were incubated for 2 days. The cells were cultured with DMEM/F12 containing 10% FBS
and 5 µg/mL insulin to maintain their differentiation until further analysis. The medium
was changed every 2 days.

The differentiated adipocytes were stained with Oil Red O kit (Leagene, Beijing, China).
The stained lipid droplets were viewed under a light microscope and photographed (Carl
Zeiss AG, Jena, Germany). For quantification analysis, cellular Oil Red O was extracted
with isopropanol and measured with optical absorbance at 510 nm.

To evaluate effects of BP on preadipocyte differentiation, overexpression vector of BP
(pCMV-HA-BP) was constructed with pCMV-HA backbone at sites of EcoR I and Kpn I and
transiently transfected with Lipofectamine 2000 (Invitrogen) according to manufacturer’s
protocol. At 24 h after transfection, cells were subjected to differentiation inducement.

2.6. Real-time Quantitative PCR

Real-time quantitative PCR (qPCR) was performed with TB Green® Premix Ex TaqTM

reagent kit (Takara). The PCR volume and reaction program were set strictly according to
the manufacturer’s instructions. β-Actin was used as a reference and the relative expression
level was analyzed with the 2−∆∆Ct method [31].

2.7. Cell Counting Kit-8 Assay

Porcine preadipocytes were transiently transfected with pCMV-HA-BP or empty
vector pCMV-HA for 24 h and further cultured until the CCK-8 assay was performed.
In CCK-8 assays, cells were incubated with 10% CCK-8 (Beyotime, Shanghai, China) in
complete medium for 2 h at 37 ◦C. The absorbance of cells was measured at 450 nm using a
Tecan Microplate Reader Infinite F50 (Tecan GENios, Mannendorf, Switzerland).

http://genome.ucsc.edu/
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2.8. Flow Cytometry

Porcine preadipocytes were inoculated in six-well plates at a density of 1 × 106 cells
per well and cultured for 24 h. Cells were transfected with pCMV-HA-BP or empty vector
and cultured for another 24 h. After digested with trypsin, cells were washed with PBS,
and stained with cell cycle staining Kit (MultiSciences, Hangzhou, China). Then the cell
cycle was analyzed with FACSCalibur Flow Cytometer (Becton Dickinson, Franklin Lakes,
NJ, USA).

2.9. Illumina-Seq Library Construction and Sequencing

The recombinant adenoviruses were constructed using the AdEasy system (Han-
bio, Shanghai, China) as described by He and colleagues (1998). BP CDS were inserted
into the shuttle plasmid containing an enhanced green fluorescent protein (EGFP) and
cytomegalovirus promoters using Kpn I and Xho I sites, and homologous recombination
was performed in Escherichia coli BJ5183 with adenoviral backbone pAdEasy 1. The recom-
binant adenovirus plasmid was packaged in HEK-293A cells after linearized with Pac I.
Preadipocytes were infected with adenovirus virions at multiplicity of infection (MOI) of
300. At 48 h post-infection, cells were collected for RNA-Seq with Illumina NovoSeq 6000
platform (Illumina, San Diego, CA, USA) by Geneseeq Technology (Nanjing, China) using
pair-end sequencing strategy according to the manufacturer’s protocols. Cells treated with
empty adenovirus were used as a control. A total of six Ribo-Zero RNA-sequencing libraries
including overexpressing and control groups were constructed, each with three replicates.

2.10. Genome-Wide mRNA Analysis

The raw reads were processed as described elsewhere [32]. High quality reads were
mapped to reference genome of S. scrofa (11.1) using HISAT2 program [33]. Transcript
abundances were quantified with StringTie software [34], and normalized with FPKM
(Fragments per kilobase of transcript per million mapped reads) method across libraries.
DESeq2 [35] was used to identify differentially expressed mRNAs (DEmRs) with an absolute
log2-fold change ≥ 1 and p < 0.05. To functionally annotate DEmRs, Gene Ontology (GO)
analysis was performed with Blast2GO with a cutoff E-value of 10−5; Kyoto Encyclopedia
of Genes and Genomes (KEGG) [36] pathway analysis was done using KEGG Orthology
Based Annotation System (KOBAS 3.0) [37] with default parameters. Protein-protein
interaction (PPI) network was constructed with STRING database (https://string-db.org,
accessed on 3 August 2021) and visualized with Cytoscape software (version 3.8.2).

2.11. Genome-Wide miRNA Analysis

The raw reads were filtered as described elsewhere [32]. Briefly, clean reads were first
obtained, and then non-coding RNA (rRNA, tRNA, scRNA, snRNA, snoRNA, etc.) and
those reads aligned to exon, intron, and repeat sequences were removed. The remained
clean reads were searched against miRbase database (Release 22.1) to characterize known
miRNAs in S. scrofa. Furthermore, novel miRNAs were predicted with MiRDeep2 [38]. The
miRNA expression level was normalized to transcripts per million (TPM), and the DESeq2
software [35] were used to characterize differentially expressed miRNA (DEmiRs) with
absolute log2-fold change ≥ 1 and p < 0.05. Target genes were predicted with miRanda
program [39,40].

2.12. Statistical Analysis

All experiments were performed at least three independent times, each with three
repeats. Representative data of one experiment were given as mean ± standard error
(SE). Data were analyzed with SPSS19.0 software (SPSS; Chicago, IL, USA) and Student’s
t-test was used to analyze differences between two groups. p < 0.05 (indicated with *) was
considered statistically significant, and p < 0.01 (**) was considered very significant.

https://string-db.org


Genes 2022, 13, 445 5 of 16

3. Results
3.1. Identification of Read-through Chimeric RNA Associated with Fat Content

Three subcutaneous fat tissues from neck, back, and hip were analyzed. Morphological
analysis showed no difference between these tissues of Min and Yorkshire pigs (Figure 1A).
There is significant difference in the average adipocyte area (p < 0.05) and TG content (p <
0.05) in subcutaneous tissues between Yorkshire and Min pigs except for TG content in hip
fat, indicating that the subcutaneous fat deposition is different between Min and Yorkshire
pigs (Figure 1B,C). Thus, backfat tissues from Min and Yorkshire pigs were used to screen
chimeric RNAs related to fat deposition.
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Figure 1. Comparison of subcutaneous adipose tissues between Yorkshire and Min pigs. (A) Mor-
phological analysis with HE staining. (B) Adipocyte area of subcutaneous adipose tissues. The bar is
200 µm. (C) Triglyceride contents in subcutaneous adipose tissues. The data are shown as mean ±
standard error. * and ** indicate p < 0.05, and p < 0.01, respectively.

The bioinformatic analysis of data obtained previously [28] called 77 read-throughs
that presented in all of the four samples by ChimeraScan (Table S2). Most of them had
low score values which mean total fragments supporting chimera, indicating humble
expression levels of read-throughs (Figure 2A). Among the read-throughs identified, one
tag named BP presented with differential score between fat tissues of Min and Yorkshire
pigs. Furthermore, fragments spanning breakpoint junction accounted for a very large
proportion in the total fragments of BP (Figure 2B). Through RT-PCR and sequencing
analysis, the existence of BP was confirmed (Figure 2C).
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identified. (B) Fragment distribution of BP in Min and Yorkshire pigs determined by ChimeraScan.
(C) Confirmation of BP with RT-PCR and sequencing.

3.2. cDNA Cloning of BCL2L2–PABPN1

RACE analysis showed that porcine BP cDNA (V1) was 2097 bp in length and con-
tained a complete CDS of 1002 bp, a 5′ UTR of 205 bp and a 3′ UTR of 890 bp. There was
a typical poly(A) signal, AATAAA, at the 3′ end. It was located on chromosome 7 and
composed of nine exons as revealed by BLAT program. The CDS spanned exons 3–9 with
the first two exons and 8 bp of exon 3 comprising the 5′ UTR.

Seven alternative splicing (AS) variants of BP, named V2–V8, were obtained using
5′ RACE methods. V2 and V3 were formed by alternative 5′ splice sites (SSs) of exon
1, resulting in partial sequences of intron 1 being retained and having the same CDS as
isoform V1. V4–V8 were absent of the start codon owing to the use of alternative 3′ SSs
of exon 3 and thus could not be translated into a polypeptide. There were abundant
alternative SSs in the first three exons of BP (Figure 3A). The sequences were deposited in
GenBank under accession Nos. MH795109 for V1, and MW654158-64 for V2–V8.

Additionally, there was only an CDS sequence of porcine PABPN1 deposited in Gen-
Bank (No. NM_001243548) with a small 3′ UTR of 63 bp, 5′ UTR of 8 bp, and absence of
poly(A) signal (Figure 3A). Through cloning the cDNA of BP, a fusion product of BCL2L2
and PABPN1 genes, we have obtained the complete 3′ sequence of porcine PABPN1 mRNA.
Using 5′ RACE, the 5′ UTR of PABPN1 was obtained and subsequent RT-PCR with primers
complementary to 5′ UTR of PABPN1 and the end of the last exon of BP, respectively,
confirmed the sequence of PABPN1.

The PABPN1 cDNA was 1997 bp in length with 186 bp of 5′ UTR, 921 bp of CDS
encoding a polypeptide of 306 aa, and 890 bp of 3′ UTR (GenBank accession No. MH795126).
The porcine PABPN1 protein was completely identical to that in humans (NM004643), and
thus contained three major domains as its counterpart in humans [41]: an acidic N-terminal
domain containing a stretch of 10 alanines and a coiled-coiled domain (CCD, spanning
119–146 aa), a single ribonucleoprotein-type RNA recognition motif (RRM, 161–257 aa),
and a basic arginine-rich C-terminal region (258–306 aa).
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Figure 3. Characterization of porcine BCL2L2-PABPN1 (BP). (A) Genomic and mRNA structure
of porcine BP. Boxes and lines indicate exons and introns, respectively. Dotted boxes in PABPN1
indicate that the sequences are first obtained here. Figures over the boxes indicate the length of the
corresponding exons, while those in the boxes indicate exon No. Primer locations are shown with
arrows. E, exon. I, intron. # indicates the position of poly(A) signal. Start and stop codons are shown
under the boxes. (B) Motifs in the polypeptide of BP. (C) Identification of mechanisms underlying BP
formation with RT-PCR. Templates were showed below. No RT, no reverse transcriptase control.

Porcine BP is an in-frame fusion product with a molecular weight of 37.2 kDa and a
pI of 8.58. The predicted polypeptide was composed of 333 aa with the first 144 aa from
BCL2L2 (1–144 aa of BCL2L2) and the last 189 aa from PABPN1 (118–306 aa of PABPN1).
Porcine BCL2L2 was composed of 193 aa and contained a functional BCL2 domain in the
46–144 aa as revealed by Blastn program. Thus, BP has all functional domains of both
parents except for a stretch of 10 alanines in the N-terminal region of PABPN1 (Figure 3B).

3.3. Mechanisms Underlying BCL2L2–PABPN1 Formation

BP comprised nine exons with exons 1–3 from the first three exons of BCL2L2 and 4–9
from the last six exons of PABPN1. BLAT analysis showed that BCL2L2 and PABPN1 were
composed of four and seven exons, respectively. The configuration of BP, involving the
second-to-last exon in the former gene joining to the second exon in the latter gene, was
the most common type of cis-SAGe [42–44]. Additionally, BCL2L2 was adjacent to PABPN1
on porcine chromosome 7 with a distance smaller than 10 kb (~9 kb) and had the same
transcription direction, which is another characteristic of the formation of cis-SAGe [45].
These make BP a candidate for cis-SAGe.

To confirm its transcriptional read-through nature, RT-PCR was used to detect primary
mRNA as described by Qin and coworkers [43] in which RT primer (P1R) was annealed
to the second exon of PABPN1, and PCR primers (B3F/R) were complementary to the last
intron and the last exon of BCL2L2, respectively (Figure 3A). To avoid DNA contamination,
total RNA was digested with DNase I and no reverse transcriptase control was used. The
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fragment was successfully amplified (Figure 3C), indicating that the transcript ran from
BCL2L2 to PABPN1 and BP was a product of cis-SAGe.

There is a read-through product (NM_001199864) of BCL2L2 and PABPN1 in humans.
Both the human and pig sequences had very high identities in aa, CDS, even in the complete
cDNA. Additionally, there were also homologs in various orders of Mammalia including
Primates, Cetacea, Even-toed ungulates, Chiropter, Carnivora, and even in Ornithorhynchus
anatinus, one of the oldest mammals. Except for in humans, no sequences were described
as read-through origin, but the identities were more than 95% between the polypeptide
of porcine BP and any of the homologs (Table S1-2). These indicated that BP was highly
conserved in evolution and might have critical roles in life.

3.4. Effects of BCL2L2–PABPN1 on Preadipocyte Proliferation and Differentiation

BP mRNA level had a tendency to increase during preadipocyte proliferation but the
changes were not significant (p > 0.05) (Figure 4A). During preadipocyte differentiation, the
expression of BP was increased significantly (p < 0.05) since 4 days after induction compared
with non-induced cells (Figure 4B). Real-time PCR and Western blot analysis showed that BP
expression was increased effectively in preadipocytes transfected with the plasmids pCMV-
HA-BP. CCK-8 assay showed that BP overexpression increased cell number compared to
the cells transfected with empty vector, with the highest level (p < 0.01) at 4 days post-
transfection (Figure 4C). Flow cytometry analysis showed that the number of G2-phase
preadipocytes was increased significantly (p < 0.01) in groups overexpressing BP (Figure 4D).
Overexpression of BP resulted in a decrease of lipid droplets compared to the control cells at
6-, 8- and 10-days post-induction as revealed with Oil Red O staining (Figure 4E). The results
indicated that BP promoted proliferation and inhibited differentiation of preadipocytes.

3.5. Genome-Wide Identification of mRNAs Involved in BCL2L2-PABNP1 Regulation

RNA-Seq technology was used to explore mechanisms of BP on adipogenesis in
cells transfected with adenoviruses expressing BP at a condition of MOI 300 and 48 h
which was predetermined with fluorescence microscope and qPCR analysis (Figure S1).
An average number of 104,791,770 and 128,873,418 raw reads were obtained in control
and treatment groups, respectively. After removal of low-quality and adaptor containing
reads, 103,766,967 and 127,695,699 clean reads were obtained. In these clean data, the Q30
content was more than 92.67%. A total of 3074 DEmRs were obtained by RNA-Seq analysis,
among which 1476 were upregulated and 1598 were downregulated in cells overexpressing
BP compared with control groups (Figure 5A, Table S3-1). Eleven DEmRs were selected
randomly to validate RNA-Seq data with qPCR, and consistent results were obtained
(Figure 5B).

To highlight the function of DEmRs, GO and KEGG analysis were performed. GO
analysis revealed that the DEmRs were involved in multiple categories in molecular func-
tions, cellular component, and biological processes (Figure 5C). The major biological pro-
cesses enriched included fatty acid beta-oxidation, 2-oxoglutarate metabolic process, and
2-oxoglutarate metabolic process, etc. KEGG analysis performed on all DEmRs revealed
that various fat-related pathways, such as MAPK, TGF-β, Wnt, PI3K-Akt, and Fatty acid
metabolism, etc. were significantly enriched. When the up- and downregulated DEmRs
were subjected to KEGG analysis separately, the pathways enriched suggested different
roles between them. The upregulated DEmRs were mainly involved in fat metabolism-
related pathways including fatty acid metabolism, fat digestion and absorption, arachidonic
acid metabolism, butanoate metabolism, propanoate metabolism, and steroid biosynthe-
sis; additionally, two signaling pathways associated with adipogenesis, PPAR and FoxO,
were enriched by upregulated DEmRs. Downregulated DEmRs were enriched in some
adipogenesis-related signaling pathways including MAPK, PI3K-Akt, Wnt, TGF-beta, in-
sulin, Hippo, and cAMP signaling pathways, with MAPK and PI3K-Akt being the top two
enriched pathways except for human papillomavirus infection whose enrichment might be
associated with adenovirus infection (Figure 5D,E). These results indicated that DEmRs
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induced by BP overexpression were involved in fat deposition, which confirmed the role of
BP in adipogenesis and highlighted the underlying mechanisms.
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The above 15 fat-related pathways involved 212 DEmRs of which 73 were upregulated
and 139 were downregulated in response to BP treatment (Figure 6A, Table S3-2). PPI
network analysis showed that these DEmRs were grouped into two separate modules. In
module 1 the top three key nodes were PPP2CB, EGFR, and Wnt5A with a degree of 11, 9,
and 9, respectively. Both PPP2CB and EGFR are involved in MAPK and PI3K-Akt signaling
pathways. In module 2, EHHADH, ACAA 2, and ALDH6A1 were the top three key nodes
with a degree of 10, 6, and 5, respectively (Figure 6B).
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3.6. Genome-Wide Identification of miRNAs Involved in BCL2L2-PABNP1 Regulation

To further characterize the mechanisms underlying the regulation of BP on adipo-
genesis, transcriptomic miRNA alteration induced by BP was analyzed using Illumina
RNA sequencing. An average number of 25,583,601 and 18,115,912 clean reads (96.01%
and 95.51% of raw reads) of which the average percentage of miRNAs was 63.72 and 65.80
were obtained from control and BP-treated groups, respectively. On the basis of S. scrofa
genome (11.1), a total of 1987 unique miRNAs were identified (Table S4-1). The lengths
of the miRNAs were mainly distributed in 19–24 nt in all six groups, with a maximum of
22 nt (Figure 7A). The expression level and count distribution of the total miRNAs in each
sample was shown in Figure 7B. Compared with control groups, 44 known miRNAs were
identified as differentially expressed miRNAs (DEmiRs) including 35 upregulated and nine
downregulated during BP treatment (Figure 7C, Table S4-2). The expression of six DEmiRs
were validated by real-time PCR, and consistent results were obtained between qPCR and
RNA-Seq (Figure 7D).
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Figure 7. Characterization of differentially expressed miRNAs (DEmiRs) induced by BCL2L2-
PABPN1. (A) Length distribution of miRNAs among six samples. (B) Barplot profiling the expression
levels of the miRNAs in each sample. (C) Heatmap cluster of known DemiRs. (D) Validation of
Illumina data with real-time PCR. (E) GO enrichment of target genes of DEmiRs. 1, detection of
chemical stimulus involved in sensory perception of smell; 2, G-protein coupled receptor signaling
pathway; 3, homophilic cell adhesion via plasma membrane adhesion molecules; 4, small GTPase
mediated signal transduction; 5, integral component of plasma membrane; 6, RNA polymerase II
core promoter proximal region sequence-specific DNA binding. (F) KEGG enrichment of target genes
of DEmiRs. (G) Fat-related miRNA-mRNA interaction network.
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A total of 4064 putative target mRNAs were predicted for these DEmiRs (Table S4-3),
and top 10 target mRNAs of each DEmiRs were selected according to total score for GO and
KEGG analysis. GO enrichment analysis showed that target genes were enriched in some
categories of biological process such as positive regulation of GTPase activity, regulation
of gluconeogenesis, and positive regulation of JNK cascade (Figure 7E). Two of the top
three KEGG pathways enriched by target genes of DEmiRs were PI3K-Akt and MAPK
signaling pathways both of which are important regulators of adipogenesis. Additionally,
phospholipase D, Rap 1, and regulation of actin cytoskeleton signaling pathways were also
significantly enriched (Figure 7F).

3.7. Integrated Analysis of mRNA and miRNA Data

To highlight DEmiRs involved in the regulation of BP on adipogenesis, integrated
analysis was performed between known DEmiRs and 212 DEmRs involved in 15 fat-related
pathways, in which those DEmRs identified as target genes of known DEmiRs and had a
negatively correlated expression levels with the paired DEmiRs were selected for further
analysis. A total of 11 differentially expressed target mRNAs (DETmRs) and four paired
DEmiRs were obtained (Table S4-4). These fat-related DETmRs and the paired DEmiRs
constituted a network in which ssc-miR-339-3p was critical (Figure 7G). Five of the 10 genes
regulated by ssc-miR-339-3p, MYC, VEGFA, MAP3K11, HSPB1 and ECSIT, are involved in
MAPK signaling pathway.

4. Discussion

Chimeric RNAs were traditionally believed to be produced by chromosome rear-
rangement and unique to carcinogenesis until recent discoveries of RNA trans-splicing
and cis-SAGe. It has been found that chimeric RNAs are expressed in noncancerous cells
and tissues and involved in normal physiological process such as muscle lineage commit-
ment [25,26] and neuronal differentiation [27]. However, there is no report on chimeric
RNAs in fat formation in mammals.

Here, through analyzing our previous paired-end high-throughput sequencing data
from backfat tissues of Min and Yorkshire pigs [28], chimeric RNA BP was characterized
and the full-length cDNA was cloned in pigs using RT-PCR and RACE. Additionally, BP
formation was identified as cis-SAGe. To the best of our knowledge, this is the first report
on cis-SAGe in pigs. Min pig is a local breed in Northeast China with abundant fat content,
while Yorkshire pigs have high lean meat percentage owing to long extensive breeding. BP
was differentially characterized between fats from the two breeds. The role of BP in fat
formation was thus expected and confirmed. The results extend the function of chimeric
RNAs to adipogenesis, a normal physiological process that chimeric RNAs have not been
involved in.

During cloning, we obtained seven AS variants of BP; some of which occurred in the
5′ UTR. The AS patterns identified here include exon skipping, alternative 5′ and 3′ SSs.
It has been shown that exons closer to the intergenic region of two parental genes have
lower conservation than those farther from the region and tend to be alternatively spliced
in the formation of read-through chimeric RNA [44,46]. In the present study, AS variants
were by-products in 5′ RACE cloning of BP and we did not focus on AS characterization.
Additionally, the reverse primer of 5′ RACE was complementary to the junction of the
two parents, resulting in inability to identify variants alternatively spliced in this region.
Thereafter, there should be more AS variants remaining to be identified and more AS
patterns might be present in BP. In a previous report analyzing formation and structures of
cis-SAGe chimeric RNA [46], 20 and 23 transcript variants were obtained from ZNF343–
SNPRB and COX17–POPDC2, respectively. These indicate that cis-SAGe is also rich in AS
like regular pre-mRNAs.

As a nuclear poly(A) RNA binding protein, PABPN1 plays a key role in polyadeny-
lation. It can directly interact with poly(A) polymerase (PAP) through the CCD domain
leading to stimulation of the processivity of PAP [47], while binding to poly(A) RNA via the
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single RRM domain with a contribution from the C-terminal region [48]. BP contained all
the functional domains of PABPN1 including CCD, RRM and C-terminal region implicated
in polyadenylation, which provides a structural basis for polyadenylation. This suggests a
role of BP in post-transcriptional regulation through mediating poly(A) tailing.

Because BP was identified in fat tissues, we focused on its role in adipogenesis and
found that it can promote preadipocyte proliferation and inhibit differentiation. Mecha-
nisms underlying the regulation of BP on adipogenesis were then analyzed with RNA-Seq,
and genome-wide DEmRs and DEmiRs were characterized in preadipocytes overexpress-
ing BP. Both DEmRs and target genes of DEmiRs were significantly involved in MAPK and
PI3K-Akt, two of the important signaling pathways regulating adipogenesis. Various re-
cent studies showed that PI3K-Akt pathway positively regulated the adipogenesis [49–51].
However, the role of MAPK signaling pathway in adipogenesis was bi-directional. Some
reports demonstrated that activation of the MAPK pathway phosphorylates PPARγ, an
adipogenic marker, and thus opposed adipogenesis [52–54]. While studies on effects of
genes such as pigment epithelium-derived factor, a newly identified adipokine, miR-145
and lncRNA 332443 on adipogenesis revealed a positive role of MAPK signaling pathway
during differentiation process [55,56]. These indicates that the role of MAPK in adipogene-
sis is complicated and versatile. Nevertheless, we showed that MAPK and PI3K-Akt were
important for the regulation of BP on adipogenesis.

5. Conclusions

In this study, a read-through fusion transcript BP was first characterized in pigs. The
deduced polypeptide contains the main functional domains of both parents, BCL2L2 and
PABPN1, and highly conserved among species including Ornithorhynchus anatinus. BP
was found to inhibit differentiation of primary porcine preadipocytes, and MAPK and
PI3K-Akt were identified as the key signaling pathways affected by BP in which PPP2CB
and EGFR were the hub genes. Additionally, ssc-miR-339-3p was critical for BP regulating
adipogenesis. The results highlight the role of chimeric RNA in adipogenesis in mammals.
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identified in this study.
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