
Complete Genome Sequence of Mycobacterium marinum ATCC
927T, Obtained Using Nanopore and Illumina Sequencing
Technologies

Mitsunori Yoshida,a Hanako Fukano,a Yuji Miyamoto,a Keigo Shibayama,b Masato Suzuki,c Yoshihiko Hoshinoa

aDepartment of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo,
Japan

bDepartment of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
cAntimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan

ABSTRACT Mycobacterium marinum is a slowly growing, broad-host-range myco-
bacterial species. Here, we report the complete genome sequence of a Mycobacte-
rium marinum type strain that was isolated from tubercles of diseased fish. This se-
quence will provide essential information for future taxonomic and comparative
genome studies of its relatives.

Mycobacterium marinum is a major nontuberculosis mycobacterium, which was first
isolated from diseased fish (1) and later shown to be a human pathogen (2). The

pathological features of the granuloma are similar to those caused by M. tuberculosis,
and the two share many orthologous genes, which is why M. marinum has been used
as a surrogate model for tuberculosis (3–6). Another important aspect is that M.
marinum is a close relative of M. ulcerans, which produces a macrolide toxin called
mycolactone and results in Buruli ulcer (7, 8). Genomic studies indicated that M.
ulcerans was diverged from a M. marinum progenitor (9–11). In addition, M. marinum-
related mycolactone-producing mycobacteria (MPMs) were also isolated from frogs and
fish (12–15). Hence, detailed genomic information of M. marinum will be helpful for
understanding evolutionary pathways of these MPMs. Here, we present the complete
genome sequence of the first isolate of M. marinum, registered as ATCC 927T.

The strain was grown in Middlebrook 7H9 medium, and DNA was extracted by a
phenol-chloroform method. Sequence reads (100,513 reads) were obtained with the
MinION nanopore sequencer (Oxford Nanopore Technologies, Oxford, UK). Genomic
DNA sequencing was performed with the Nanopore SQK-RAD003 rapid sequencing kit
in accordance with the manufacturer’s protocol. The library was loaded on a SpotON
Mk I (R9.4) flow cell and sequenced using MinKNOW version 1.7.14, and raw sequence
data (FAST5 format) were base-called using Albacore Sequencing Pipeline version
2.0.2 software. The reads were de novo assembled into two contigs (6,456,544 bp
and 173,286 bp) with Canu version 1.5 (15, 16, 17), and the assembled genome was
circularized by manually trimming the repeated sequences. Illumina paired-end (2 �

150-bp) reads (266,781,451 reads) were obtained with the MiniSeq system (Illumina,
San Diego, CA, USA) and mapped to the assembly using the Burrows-Wheeler aligner
(15, 17, 18) for sequence and assembly error correction with Pilon (15, 17, 19). The
resulting sequences (chromosome and one plasmid) were annotated using DFAST-core
(20). Orthologous gene clusters were identified using Cd-hit (21). Average nucleotide
identity (ANI) was calculated by JSpeciesWS (15, 17, 22).

The chromosome of M. marinum ATCC 927 is 6,451,936 bp (65.7% G�C content).
The average nucleotide identities to two reported genomes of M. marinum were 98.2%
(strain M) and 99.48% (strain E11). The number of predicted coding sequences (CDSs)
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in the genome (n � 5,906) was more than the number of CDSs for strain M (n � 5,593)
and strain E11 (n � 5,383). The numbers of rRNA operons (n � 6) and tRNAs (n � 51)
were equivalent to those of strain E11 but more than those of strain M. We also found
a phage-like plasmid (127,216 bp, named pMMRN), whose size is different from that
of the plasmid pRAW in strain E11 (114,229 bp) and the plasmid pMM23 (23,317 bp)
in strain M. Plasmid pMMRN contains 123 CDSs, whereas 97 and 29 CDSs were
present in pRAW and pMM23, respectively. We identified 4,330 orthologous gene
clusters among the three strains, whereas 1,223, 714, and 287 gene clusters were
specific to ATCC 927, M, and E11, respectively. The complete genome sequence of
M. marinum ATCC 927T comprises essential data for future taxonomic and compar-
ative genome studies.

Accession number(s). The chromosome and plasmid sequences reported here
were deposited in DDBJ/ENA/GenBank under the accession no. AP018496 and
AP018497, respectively.
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