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Females have higher inflammatory tolerance because they have some special

sex-related anti-inflammatory pathways. Andrographolide, a diterpene lactone

compound from Andrographis paniculata (Burm.f.) Nees, has a powerful anti-

inflammatory effect. But whether andrographolide regulates sex-related anti-

inflammatory pathways in females has yet to be reported. A non-targeted

metabonomics method was employed to investigate the metabolic

pathways of andrographolide in LPS-induced inflammatory female rats.

Substances and genes were then selected out of gender-related pathways

discovered by metabonomics experiments and their quantities or expressions

were evaluated. Furthermore, the effects of andrographolide on these

chemicals or genes in non-inflammatory female rats were also examined in

order to investigate the cascade interaction between anti-inflammatory

mechanisms and metabolites. The biomarkers of 24 metabolites in plasma

were identified. Following pathway enrichment analysis, these metabolic

markers were clustered into glycerophosphate, glycerolipids, inositol

phosphate and steroid hormone synthesis pathways. Validation experiments

confirmed that andrographolide lowered post-inflammatory female sex

hormones such as progesterone, estradiol, corticosterone, and testosterone

rather than increasing them. Andrographolide may have these effects via

inhibiting the overexpression of CYP11a1 and StAR. However,

andrographolide had no effect on the expression of these two genes or the

four types of hormones in non-inflamed female rats. Similarly, andrographolide

decreased TNF-α, IL-6 and IL-1β production in inflammatory rats but showed

no effect on these inflammatory markers in non-inflammatory rats. LPS and

other inflammatory cytokines promote hormone production, which in turn will

prevent increased inflammation. Therefore, it may be hypothesized that

andrographolide’s reduction of inflammatory cytokine is what generates its

inhibitory action on sex hormones during inflammation. By blocking the
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activation of inflammatory pathways, andrographolide prevented the

stimulation of inflammatory factors on the production of sex hormones. It

does not, however, directly inhibit or enhance the synthesis of sex hormones.

KEYWORDS

andrographolide, inflammation, metabonomic test, steroid hormone biosynthesis
pathway, steroidogenic acute regulatory protein

1 Introduction

Andrographolide (AG, Figure 1) is a diterpene lactone

compound and widely used in the treatment of infectious

inflammation and other diseases (Yan et al., 2013), which is

anmajor active component ofAndrographis paniculata (Burm.f.)

Nees, a traditional herb medicine using in China, India and Sri

Lanka. AG has many pharmacological effects, among which the

anti-inflammtory effect has drawn more attention. In many in

vivo experiments, it has been reported that AG may alleviate

inflammation caused by different stimuli by regulating the

activation of various signal pathways.

AG protects male BALB/c mice from acute lung injury

induced by lipopolysaccharide (LPS), which may be related to

andrographolide’s significant inhibition of phosphorylation

levels of IKKβ, IκBα and nuclear factor-κB (NF-κB) p65 (Zhu

et al., 2013). And it was also found to decrease the activation of

nuclear factor κB signal induced by Poly I:C in male BALB/c

mice pneumonia model, but did not inhibit IRF3-mediated

immune response (Cui et al., 2020). Similarly, AG significantly

reduces the level of mouse cortical chemokines induced by

LPS also by inhibiting the activation of NF-κB or c-Jun

N-terminal kinase (JNK) (Wong et al., 2016). When

treating complete Freund’s adjuvant-induced arthritis, AG

inhibits a series of molecules related to arthritis, such as

cyclooxygenase-2 (COX-2), NF-κB, p-p38, CD40, TNF-α,
IL-1β, and IL-6 (Gupta et al., 2020). Meanwhile,

accumulative studies have been designed to assess AG’s

anti-inflammatory effect in vitro. In Raw

264.7 macrophages, AG inhibited the LPS-induced

inflammatory response, which was attributed to the

blockage of the NF-κB and MAPK pathway signal

transduction and reduced pro-inflammatory factor release

(Li et al., 2017). In the LPS-induced bovine endometrial

epithelial cell, AG activated the nuclear factor erythroid 2-

related factor 2 (Nrf2) pathway by inhibiting Kelch-like ECH-

associated protein 1 (KEAP1) and upregulating the expression

of Nrf2 mRNA to inhibit the release of pro-inflammatory

factors (Fu et al., 2021). The reseach also reported AG

inhibited NLR family pyrin domain containing 3 (NLRP3)

inflammasome and its downstream targets, such as casp-1

(p20) and IL-1β(Ahmed et al., 2021; Lo et al., 2021).

Early studies have found that women’s tolerance and

survival rate in sepsis caused by Gram-negative bacteria are

significantly better than men’s (Zellweger et al., 1997;

Drechsler.,et al., 2012). In LPS-induced sepsis rats, it was

also observed that female mortality was lower than that of

male (Kosyreva,et al., 2018). This may be due to the possibility

that X-linked genes cause an abnormal gender gap in the risk

of immune-mediated illnesses (Stein,et al., 2021). Another

important reason may be the high level of special gonadal

hormones in female, which has certain anti-inflammatory

effects (Kosyreva,et al., 2018). It may also be based on

these consideration, in order to avoid the influence of

estrogen on the evaluation of anti-inflammatory activity,

most of the in vivo experiments reported so far use male

animals, such as many AG anti-inflammatory experiments

mentioned above. In addition, the interaction between drugs

and sex hormones could not be observed in cell experiments

in vitro. Therefore, it is intriguing to consider if AG has a

unique mechanism that has an anti-inflammatory impact on

females.

Non-targeted metabonomics was employed to investigate the

metabolic pathways of AG in LPS-induced inflammatory female

rats. The contents or expression levels of several chemicals and

genes were then identified from the gender-related pathways. In

order to investigate the cascade link of anti-inflammatory

mechanisms, it was also assessed how AG affected these

FIGURE 1
Chemical structure of Andrographolide (AG).
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substances and genes in uninflamed female rats. The research

procedure is depicted in Figure 2.

2 Materials and methods

2.1 Materials

Andrographolide (AG>99%) was purchased from

Chengdu Manster Biotechnology Co. Ltd. (Chengdu,

China). Lipopolysaccharide (LPS) was purchased from

Sigma-Aldrich Chemical Co. (Shanghai, China).

Sodium carboxymethyl cellulose (CMC-Na) and formic

acid were supplied by Chengdu Kelon Chemical

Reagent Factory (Chengdu, China). Other reagents used in

liquid chromatography were of chromatographic grade.

Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6),

Interleukin-1β (IL-1β) ELISA kits were obtained

from Hangzhou Lianke biotechnology Limited Ltd.

(Hangzhou, China). Corticosterone, total testosterone,

estradiol, and progesterone ELISA kits were all

purchased from Elabscience Biotechnology Co. Ltd.

(Wuhan, China).

2.2 Animal

Adult female SD rats in SPF grade (weighing 220–240 g) were

provided by Spefer Biotechnology Co. Ltd. (Beijing, China). All

rats were housed in the standard rat cage on a 12 h light/dark

cycle from 9:00–21:00, at a temperature of 22°C with 60%

humidity, and free access to standard food and water. Rats

were adaptively maintained for at least 4 days, and beginning

on the second day, the anal temperature was monitored twice

daily for 3 days. The process on rats is strictly in accordance with

the Guidelines for Nursing and Use of Experimental Animals

compiled by the National Academy of Sciences, so as to minimize

the discomfort and pain of animals. This research project was

approved by the Animal Ethics Committee of Chengdu

University of Traditional Chinese Medicine.

2.3 Metabonomic experiment

2.3.1 Determination of the phase of the estrous
cycle

The estrous cycle of adult female rats was ascertained using

vaginal smears stained with Romanovschi-Giemsa (Kosyreva

FIGURE 2
Schematic diagram of tests process.
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et al., 2018). The rats used in the subsequent studies were all in a

stable diestrus phase, which coincided with the estrous cycle’s

lowest blood estradiol concentration.

2.3.2 Metabonomic grouping, model
establishment and administration

Female rats (n = 24) were randomly divided into four groups.

The AGwas freshly suspended in 0.5% CMC-Na solution. Rats in

low dose group (L) and high dose group (M) were orally

administered with AG 20 mg/kg and 40 mg/kg respectively,

whereas rats in the normal (N) and model (M) groups were

only given CMC-Na solution without AG by gavage. After oral

administration for 0.5 h, rats in L, H and M groups received LPS

100 μg/kg by tail vein injection, group received an intravenous

injection of saline. Then, 3.0 h after the LPS injection, blood

samples were taken from the tail vein. Serum was separated from

each blood sample by centrifugation at a speed of 3,500 rounds

per minute (rpm) for 10 min. These serum samples were

immediately stored at −80°C until the metabolomics analysis.

And after LPS injected, anal temperature of rats was measured at

0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, and 12 h respectively.

2.3.3 Sample collection and preparation
Protein precipitation was carried out by adding 100 μl

acetonitrile to 50 μl serum. The mixture was vortexed for 60 s,

then centrifuged at 13,500 rpm at 4°C for 15 min. Finally, the

supernatant was transferred to an auto-sampler vial for further

determination.

2.3.4 UPLC-Q-TOF/MS analysis
All the LC/MS data were obtained by 1260 Series Rapid

Resolution Liquid Chromatography system (Agilent,

United States) and Micro-TOF-QⅡ(Bruker, German).

Chromatographic separation is accomplished by a Zorbax

Eclipse Plus C8 Rapid resolution HT column (3.0 mm ×

100 mm, 1.8 μm, Agilent, United States). Water and

acetonitrile, each containing 0.1% formic acid, were used as

mobile phase A and B respectively. The flow rate of 0.5 ml/

min at 30°C was used in linear gradients as follows: 95–88% A

(0–3 min), 88–25% A (3–20 min), 25–10% A (20–22 min), 95%

A (22–25 min). The standard positive ion mode was selected

under the following conditions: full scan range, 50–1200 m/z;

data recording period: 0–26 min; drying gas flow: 6 L/min; drying

gas temperature: 250°C; nebulizer pressure: 1.0 bar; capillary

voltage: 5 kV; 3 μl sample was injected into the UPLC system.

2.3.5 Identification of potential biomarkers
The rawmass spectrometry data were output toMZmine 2.49 to

obtain a comprehensive matrix composed of ions and their intensity

in all samples (T. Pluskal, et al., 2010). Then, using this matrix, a

series of multivariate data analysis methods, including the principal

component discriminant analysis (PCA-DA), partial least-squares

discriminant analysis (PLS-DA), orthogonal partial least-squares

discriminant analysis (OPLS-DA) (Edoardo, et al., 2013) and

unsupervised cluster analysis (Yu, et al., 2017), were carried out

to get the anti-inflammatory tendency of AG and to find the

potential biomarkers. The information of potential biomarkers

was obtained by searching databases including KEGG (http://

www.genome.jp/kegg/), HMDB (http://www.hmdb.ca/), METLIN

(http://metlin.scripps.edu/), LIPIDMAPS (http://www.lipidmaps.

org/), PubChem (http://pubchem.ncbi.nlm.nih.gov/) and

ChemSpider (http://www.chemspider.com/). The identified

metabolites were enriched bymetaboanalyzer 3.0 (Pang, et al., 2020).

2.4 Verification experiment

2.4.1 Grouping and sample collection
To avoid using too many rats, verification experiments were

conducted only in four experimental groups: normal group (6,

N), normal with AG administration group (6, NAG), model

group (6, M) and high dose (6, H) groups. The procedures for N,

M and H groups of rats were exactly the same as those for the

corresponding groups in the metabonomic experiments, while

NAG group received sequential oral administration of AG

40 mg/kg and intravenous administration of saline. Rats were

euthanized with 3% sodium pentobarbital 3.0 h after the LPS

injection. Laparotomy was performed to collect blood from

abdominal aorta and to separate the ovary. Serum from each

blood sample were isolated by centrifugation at 3,500 rpm for

TABLE 1 Primer sequences used for RT-PCR.

Gene name Primer sequences (59-39) Tm (°C) Product
length (bp)

StAR F GCTGTACCAAGCGTAGAGGT 59.47 103

R GGACCGTGTTCAGCTCTGATG 61

CYP11A1 F TCCTCTACCAACAGTCCTCGAT 60.03 168

R GTTGCCCAGCTTCTCCCTGTA 62.06

Beta-actin F GGACCTGACAGACTACCTCA 51.4 230

R GTTGCCAATAGTGATGACCT 52.1
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10 min. The samples were immediately stored at −80 °C until the

ELISA kits tests were performed.

2.4.2 Real time polymerase chain reaction
The expression of two key enzymes of the enrichment

pathway in metabolomics experiments was determined at the

gene level by quantitative real-time polymerase chain reaction

(qRT-PCR). Total RNA was extracted from ovary with total

RNA isolation kit (Foregene biotechnology Ltd., Chengdu,

China), and then reverse the total RNA to cDNA with RT

EasyTM II kit (Foregene biotechnology Ltd., Chengdu,

China). Quantitative real-time PCR performed using the

Real Time PCR EasyTM-SYBR Green I kit (Foregene

biotechnology Ltd. Chengdu, China) on a PCR machine

(Applied Biosystems, Canada).

The expression of selected genes include steroidogenic acute

regulatory protein (StAR) and cytochrome CYP11A1 enzyme

(P450scc) in the ovary. Primer sequences were obtained from

Sanggon Corporation (Shanghai, China) in Table 1. Reactions

were performed in duplicate. β-Actin was selected as internal

controls. To compute the relative amounts of target mRNA in the

samples, the 2−△△CT method was used.

FIGURE 3
Antipyretic effect of andrographolide on endotoxin-induced inflammation in rats (A) temperature figure; (B) relative basal temperature
difference change figure); *p <0.05 or **p <0.01 versus Normal group and #p <0.05 or ##p <0.01 versus Model group by ANOVA.

FIGURE 4
Overlaid representative UPLC-Exactive Plus Orbitrap Mass TIC chromatograms (positive ion) of the serum samples from the four groups,
including normal (N), model (LPS 100 μg/kg, M), low dose group (LPS 100 μg/kg + AG 20 mg/kg, L) and high dose (LPS 100 μg/kg + AG 40 mg/kg, H)
group.
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2.4.3 Determination of corticosterone, total
testosterone, estradiol, progesterone, TNF-α, IL-
6, and IL-1β concentrations in serum

Metabolomics experiments revealed that LPS significantly

stimulates progesterone biosynthesis, while AG inhibits its

production. ELISA kits were used to measure blood

corticosterone, total testosterone, estradiol, and progesterone in

order to confirm the effects of LPS and AG on the pathways

that produce steroid hormones. Samples were tested according to

the kits manufacturer’s instructions. Serum TNF-α, IL-6 and IL-1β
concentrations were determined by ELISA kits too. All tests were

performed according to the kit instructions.

2.5 Statistical analysis

All results were presented as the mean ± SD. Data were

analyzed using One-way analysis of variance (ANOVA)

for significance comparison. Values of p < 0.05 were

considered statistically significant. The correlation analysis was

conducted by “PerformanceAnalytics 2.0.4” package (Peterson

and Carl., 2020) in R 4.2.1 (R core team, 2022).

3 Results

3.1 Antipyretic action

After injection of lipopolysaccharide for 2 h, the

temperature of rats began to rise rapidly with an increase

of more than 1.6°C. Andrographolide significantly inhibited

the increase of temperature induced by inflammation, and

reached its maximum antipyretic effect at 3 h after LPS

injection (Figure3). However, the antipyretic effects of high

dose AG were the same as that of low dose.

3.2 Validation of UPLC-Q-TOF/MS
conditions

Typical UPLC-Q-TOF/MS TIC chromatograms of serum

samples are shown in Figure 4. Precision, reproducibility, and

system stability were confirmed prior to the analysis of

experimental serum samples. The results showed that this

method could meet the requirements of metabonomics

analysis of the subsequent samples.

FIGURE 5
Metabonomics pattern recognition, metabolite identification and pathway enrichment (A): PCA diagram; (B) PLS-DA diagram; (C) Opls-DA
diagram; (D) cluster analysis diagram; (E) and (F) are Volcanic diagram of peak abundance ofmass-to-charge ratio chromatography in normal vs. model
group and high dose vs. model group, respectively). There are four groups including normal group(N), model group (LPS 100 μg/kg, M), low dose group
(LPS 100 μg/kg + AG 20 mg/kg, L) and high dose (LPS 100 μg/kg + AG 40 mg/kg, H) group, and the number represents the ID in the group.
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FIGURE 6
Metabolite biomarkers including structure, mz, retention time and its concentrion in four groups: normal (N), model (LPS 100 μg/kg, M), low
dose group (LPS 100 μg/kg + AG 20 mg/kg, L) and high dose (LPS 100 μg/kg + AG 40 mg/kg, H) group. #p <0.05 or ##p <0.01 versus Model group by
ANOVA.
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3.3 Pattern recognition and identification
of potential biomarkers

According to the pattern recognize plots (Figures 5 A,B,C),

normal and model rats could be successfully distinguished from

each other, indicating that the activation of LPS dramatically

altered the serum metabolic fingerprint. Furthermore, by

administering AG, the model rats’ biochemical abnormalities

were gradually reversed to normal. Similar results were obtained

through unsupervised cluster analysis (Figure 5D). The findings

imply that AG is considerably effective in reducing metabolic

abnormalities in LPS-induced inflammatory rats.

Furthermore, 24 potential metabolite biomarkers were

identified (Figures 5E,F) and their functional pathways were

evaluated. Figure 6 displays box plots of the biomarker

intensities in rat serum. Progesterone and bile acid, as well as

certain lipids like LysoPA, LysoPE, and PC, were all markedly

elevated in inflammatory model rats, indicating dysregulation of

steroid hormone and glycerophospholipid biosynthesis

metabolism (Figure 7) in LPS-induced inflammatory rats.

When compared to the normal group, the model group’s

biomarker levels were significantly higher (p < 0.01).

3.4 Effect of andrographolide on sex
steroid levels in the serum

As shown in Figures 8A–D, after intravenous injection of

LPS, serum progesterone of female rats increased significantly,

which has potent anti-inflammatory effects. After

prophylactic intragastric administration of AG, LPS

injection did not increase progesterone. Additionally, there

was no discernible change in blood progesterone levels when

rats received AG alone without receiving an injection of LPS.

Similar to testosterone, serum estradiol increased after LPS

injection, and with prophylactic AG treatment, it tended to be

the same as the normal group. Administration of AG alone

without LPS injection did not decrease or increase serum

levels of these hormones in female rats. Serum total

testosterone levels did not differ significantly within each

group due to large intra-group variability in the data, but

there was a similar trend to the other hormones described

above.

3.5 Effect of AG on TNF-α, IL-6, and IL-1β
concentrations in serum

Figures 8E–G demonstrates that after receiving LPS, female

rats’ blood concentrations of TNF-α, IL-6, and IL-1β were

considerably higher than those in the normal group. By

administering AG as a preventative measure, the amounts of

these inflammatory cytokines were brought down to normal

levels. However, serum TNF-α, IL-6, and IL-1β concentrations in
non-LPS-stimulated rats, as well as the impact of AG on sex

hormone levels, did not change substantially from the normal

group in comparison.

3.6 Quantitative Real time polymerase
chain reaction analysis for key enzymes
involved in steroid hormone synthesis
pathway

As shown in Figures 8H,I, StAR and CYP11A1, which are

involved in steroid hormone synthesis, showed significant

upregulation in the ovaries after LPS injection. The gene

expression of both enzymes was downregulated in the AG-

treated group compared to the model group. The data

revealed a small elevation of StAR and CYP11A1 expression

in the non-LPS-stimulated rats treated with AG, but no

appreciable difference from the control group.

4 Discussion

In the present study, we found that the levels of several lipids

in the serum of female rats were significantly increased following

LPS-induced inflammation, which included 12 PC

(phosphatidylcholine), PE (phosphatidylethanolamine), PS

(phosphatidylserine), PG (phosphatidylglycerol), PI

(phosphatidylinositol), PA (phosphatidic acid) or their

FIGURE 7
The metabolic pathway enrichment map showed that after
lipopolysaccharide induced female rats, glycerophosphate and
steroid hormone pathways were more affected by AG.
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hydrolysis products. However, such changes are not sex-specific.

In previous work by our team, numerous markers of

phospholipid metabolism were also identified in the serum of

male rats (Zou, et al., 2017). Recent lipidomic research has

further supported the idea that inflammation brought on by

LPS stimulation can result in visibly altered lipid metabolism in

the plasma or in tissues. (Shan, et al., 2019; Hahnefeld, et al.,

2021).

Enrichment analysis showed that these metabolic markers

were enriched in glycerophosphate, glycerophosphate

metabolism and phosphatidylinositol metabolism pathway.

Wang et al. (2020) applied a HPLC-QTOF/MS method to

screen metabonomic changes in the serum, lung,

bronchoalveolar lavage fluid, spleen and feces of male rats

with intratracheal instillation of LPS to make acute lung injury

(ALI). The result showed that ALI mainly also alters the

metabolic pathways of glycerophospholipids, sphingolipids,

linoleic acid (Wang, et al., 2020). Similarly, He L et al. reported

that changes in plasma metabolites is mainly focused on

sphingolipid, retinol and tryptophan metabolism pathways

in ALI male rats (Hu et al., 2020).

Two factors may contribute to the abnormal phospholipid

metabolism caused by LPS. One is that LPS alters the levels

and functions of a number of phospholipid-related enzymes.

The other is excessive oxidative stress caused by LPS. Serine

palmitoyltransferase (SPT) is the first rate-limiting enzyme in

sphingolipid synthesis, catalyzing the condensation of serine

with palmitoyl-CoA. LPS increases the mRNA expression and

activity of SPT, thereby stimulating two kinds of sphingolipids

synthesis, ceramide, and sphingomyelin (Memon, et al., 1998).

LPS also greatly increases the concentration of secretory

phospholipase A2 in plasma (Dinkla, et al., 2016). Secretory

FIGURE 8
The box plot of sex steroids including progesterone (A), testosterone (B), estradiol (C) and corticosterone (D), inflammatory cytokins including
TNF-α (E), IL-6 (F) and IL-1β (G) concentrations in serums, and the sex hormone synthesis gene expression (H) and (I) in ovories in normal group (6,
N), normal with AG administration group (6, AG 40 mg/kg, NAG), model group (6, LPS 100 μg/kg, M) and high dose (6, LPS 100 μg/kg + AG 40 mg/kg,
AG) groups. *p < 0.05 or **p < 0.01 versus Normal group and #p < 0.05 or ##p < 0.01 versus Model group by ANOVA.
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phospholipase A2 catalyzes the hydrolysis of

glycerophospholipids, which form the outer membrane of

cell membranes, into lysophospholipids and free fatty acids.

In addition, LPS attacks on cells produce an excess of reactive

oxygen species (ROS), which oxidize the cell membrane to

produce more free phospholipids (Raetz, et al., 2006).

However, as described above, abnormalities in lipid

metabolism and oxidative stress-related signalling pathways

were found in both male and female rats following LPS

stimulation.

In our metabolomic studies, an increase in progesterone

and a kind of bile acid derivative--taurallocholic acid, was

found after LPS stimulation. In metabolomic studies on LPS-

stimulated inflammation models, the steroidal substances,

such as pregnenolone (Hu, et al., 2020), calcitriol (Li, et al.,

2020), and cholesterol sulfate (Wang, et al., 2020), were also

found to be significantly increased in serum. An important

cause of sex hormone and bile acids levels during LPS

stimulation may be the elevation of cholesterol synthesis.

The source of biosynthesis of sex hormone and bile acids

in vivo is derived from cholesterol. Bile acids are metabolized

by cholesterol in the liver by metabolic enzymes such as

CYP7A1 and CYP27A1 (Björkhem and Eggertsen., 2001;

Russell., 2003).

The literature reports that not only LPS, but also various

cytokines such as TNF-α, IL-6, and IL-1β, promote elevated

serum levels of cholesterol (Feingold, et al., 1993; Feingold and

Grunfeld., 1987; Feingold, et al., 1991; Nonogaki, et al., 1995).

This may be due to the fact that LPS boosts the transcription rate,

protein quality and activity of HMG-CoA reductase, which in

turn stimulates hepatic cholesterol synthesis (Feingold, et al.,

1993). Like LPS, both TNF and IL-1 can stimulate ad libitum

FIGURE 9
Correlation analysis of four sex steroids (progesterone, testosterone, estradiol and corticosterone), three inflmmatory cytokins (TNF-α, IL-6,
and IL-1β) concentrations in serums, and the two sex hormone synthesis gene expression in ovories in verification experiment. The data name
appears on the primary diagonal line. Data for each type is an aggregate of data of rats in all groups, including normal group (6, N), normal with AG
administration group (6, AG 40 mg/kg, NAG), model group (6, LPS 100 μg/kg, M) and high dose (6, LPS 100 μg/kg + AG 40 mg/kg, AG) groups.
The circles in the sub-boxes below the main diagonal indicate pairs of two kinds data of the same rat, and the red line depicts the correlation trend.
The correlation coefficient is indicated in each box above the main diagonal.
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hepatic cholesterol by increasing HMG-CoA reductase activity

and mRNA expression (Feingold, et al., 1993).

Along with promoting the synthesis of cholesterol--the raw

material for sex hormones, LPS also activates the hypothalamic-

pituitary-adrenal axis (Beishuizen and Thijs., 2003). LPS

contributes to hypothalamic activation through cytokines such

as IL-1β, which upregulates ACTH levels, thereby contributing to

the production of hormones such as cortisol by the adrenal

glands. Correlation analysis of cytokine and sex-related hormone

levels (Figure 9) showed a significant positive correlation

following LPS-inflammation.

Although endotoxin exerts an inhibitory effect on the

hypothalamic-pituitary-gonadal axis, downregulating

GnRH levels (Barabás, et al., 2020), LPS contribute to the

expression and activity of a variety of enzymes that

convert cholesterol to sex hormones in the ovary (Yoo and

Lee., 2016). These hormones are all powerfully anti-

inflammatory. This is a classic negative feedback to maintain

homeostasis.

Steroid hormone synthesis begins with the conversion of

cholesterol to pregnenolone, with the first rate-limiting enzymes

being steroidogenic acute regulatory protein (StAR) and

cytochrome P450scc enzyme (CYP11A1) (Miller and Auchus.,

2011). Pregnenolone is then converted to sex steroid hormones

including progesterone, androstenedione, testosterone and

estradiol in turn (Miller and Auchus., 2011). After endotoxin

challenge, it was found that females showed higher levels of sex

hormone synthesis. Intraperitoneal injection of LPS at 1.5 mg/kg

resulted in increased serum corticosterone, progesterone

and total testosterone levels in females, whereas males

were only found to have decreased total testosterone

concentrations, with no change in other steroid

hormone levels (Kosyreva,et al., 2018). Our results also

showed that LPS markedly increased the serum levels of

corticosterone, estradiol, and progesterone in inflammatory

female rats. The results of qRT-PCR showed that LPS

increased the expression of StAR and CYP11A1 in a stressed

manner.

In post-inflammatory female rats, the results showed that

AG decreased sex hormone levels and prevented the

upregulation of StAR and CYP11A1. However, AG had no

appreciable impact on the hormone concentrations and gene

expression in non-inflamed female rats. Similarly, AG reduced

TNF-α, IL-6 and IL-1β production in LPS-induced rats but did

not change these inflammatory factors’ concentrations in non-

inflammatory rats. AG inhibits a variety of LPS-induced

FIGURE 10
The mechanism of andrographolide (AG) acting on sex hormone production pathways. Red arrows indicate stimulation and blue vertical bars
indicate inhibition. AG acting on sex hormone production may be mediated by anti-inflammatory action, and is an indirect attributes.
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inflammatory cascade signaling pathways, including the

phosphorylation of IKKβ, IκBα, and NF-κB and JNK (Zhu

et al., 2013; Wong et al., 2016). Therefore, administration of

AG resulted in a significant reduction in cytokine production

during inflammation. As mentioned above, LPS and many

inflammatory cytokins stimulate the synthesis of hormones,

and these released hormones can inhibit the aggravation and

deterioration of inflammation, which is a typical negative

feedback mechanism of anti-inflammation. AG significantly

inhibits the production of cytokines, thereby removing

inducers of sex hormone production. In conclusion,

considering the knowledge of the biology of the interaction

between LPS and sex hormones and the observation that AG

does not inhibit or promote sex hormones in non-inflamed

female rats, it can be assumed that the inhibitory effect of AG

on sex hormones during inflammation is mediated through its

inhibition of the synthesis of inflammatory cytokines.

Through the correlation analysis of cytokines, sex hormone

and invertase levels (Figure 9), and combined with the analysis

of the literature of AG, Figure 10 summarizes the possible

mechanism of AG’s action on the production of sex hormone.

It shows that the inhibitory effect of AG on the production of

sex hormone in the inflammatory process is indirectly exerted

by reducing inflammatory factors first, and then blocking the

stimulation of these factors on hormone synthesis.

Although metabolomics can identify potential targets of

drug action through metabolites (Johnson et al., 2016), the

targets it suggests are the results of both drug activity and

illness changes. A drug can either directly interfere with

metabolite production or indirectly alter the

commencement or termination of metabolite synthesis

pathways via other mechanisms. In other words, a drug’s

impact on metabolites in a disease state can be either direct

or indirect. Consequently, to determine the mode of effect of

drugs on metabolites, comprehensive analysis needs to be

conducted in combination with biological experiments or

prior biological knowledge.

5 Conclusion

After prophylactic treatment of andrographolide, the

metabolic pathways in LPS-induced female rats, including

steroid hormone, glycerophosphate, glycerolipids, and

inositol phosphate synthesis pathways, were markedly

reversed. Andrographolide suppressed upregulation of StAR

and CYP11A1 and then decreased sex hormone in post-

inflammatory females rats, whereas andrographolide had no

effect on these in non-inflamed female rats.
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