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Abstract

Motivation: Modeling of Transcription Factor (TF) binding from both ChIP-seq and chromatin

accessibility data has become prevalent in computational biology. Several models have been

proposed to generate new hypotheses on transcriptional regulation. However, there is no distinct

approach to derive TF binding scores from ChIP-seq and open chromatin experiments. Here, we re-

view biases of various scoring approaches and their effects on the interpretation and reliability of

predictive gene expression models.

Results: We generated predictive models for gene expression using ChIP-seq and DNase1-seq data

from DEEP and ENCODE. Via randomization experiments, we identified confounders in TF gene

scores derived from both ChIP-seq and DNase1-seq data. We reviewed correction approaches for

both data types, which reduced the influence of identified confounders without harm to model per-

formance. Also, our analyses highlighted further quality control measures, in addition to model per-

formance, that may help to assure model reliability and to avoid misinterpretation in future studies.

Availability and implementation: The software used in this study is available online at https://

github.com/SchulzLab/TEPIC.

Contact: fschmidt@mmci.uni-saarland.de or mschulz@mmci.uni-saarland.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Elucidating the mechanism of transcriptional regulation is a major,

yet unsolved, task in computational biology. While wet-lab experi-

ments, e.g. knock-outs of Transcription Factors (TFs), can deliver

insights into the transcriptional machinery on a causal level (Geier

et al., 2007), they are laborious, expensive, and may be inconclusive

(Illari and Russo, 2014).

To overcome this issue, several attempts have been made to come

up with interpretable models of gene expression using various features

as input (Budden et al., 2015; Costa et al., 2011; Li et al., 2015;

McLeay et al., 2012; Natarajan et al., 2012; O’Connor and Bailey,

2014; Ouyang et al., 2009; Schmidt et al., 2017; Singh et al., 2016;

Wang et al., 2013). These models not only predict gene expression,

they also identify a subset of features that can be associated to it.

Especially models that are either based on TF ChIP-seq data, or on

predicted TF binding events might deliver insights on the overall im-

portance of TFs both within (Ouyang et al., 2009; Schmidt et al.,

2017) and between samples (Cheng et al., 2012; Durek et al., 2016;

Ouyang et al., 2009). Considering the large amounts of epigenetics

data produced in consortia like ENCODE (Dunham et al., 2012),

Roadmap (Kundaje et al., 2015), and Blueprint (Adams, 2012), in sil-

ico models of transcriptional regulation have become more prevalent.

For example in Ouyang et al. (2009), TF ChIP-seq data is used

to predict gene expression in mouse embryonic stem cells (mESC)
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and to assess differential expression between mESCs and embryoid

bodies. The authors suggested tissue specific regulators and sketched

regulatory roles for several TFs. It was shown that TF-binding sites

(TFBS) computed with Position Weight Matrices (PWMs), describ-

ing the sequence specificity of TFs, are highly predictive of gene ex-

pression and allow close to ChIP-seq quality in terms of model

accuracy (Budden et al., 2015; Costa et al., 2011; McLeay et al.,

2012; Natarajan et al., 2012; Schmidt et al., 2017). As TF-ChIP-seq

data is not available for all TFs in all tissues, these models make use

of epigenetics data such as histone marks (HMs) or chromatin acces-

sibility data, e.g. DNase1-seq (Keene et al., 1981) to derive tissue

specific TFBS (Cuellar-Partida et al., 2012; Gusmao et al., 2016;

Pique-Regi et al., 2011; Schmidt et al., 2017; Sherwood et al.,

2014).

A detailed examination of the inferred models revealed that

chromatin accessibility data (McLeay et al., 2012), HM abundance,

or TF-binding data (Budden et al., 2014) are equally predictive of

gene expression, arguing for the presence of shared information. For

TF-binding data, it was also shown that there is redundant informa-

tion between various TFs (Diamanti et al., 2016; Ramachandran

et al., 2015; Rye et al., 2011; Yan et al., 2013), which might effect

model interpretability and could lead to wrong conclusions about

the biological questions at hand (Bessiere et al., 2018). For example,

Ramachandran et al. (2015) have investigated the redundancy in TF

ChIP-seq data and analyzed how it relates to other kinds of epigenet-

ic data such as DNase1-seq and HMs. They argue that only general

factors, such as TAF1 or POL2, are universal predictors for gene ex-

pression while others do not have more predictive power than

chromatin-accessibility. It might be that a part of this redundancy is

caused by the plethora of known biases influencing various chroma-

tin profiling experiments, e.g. the so called expression bias of ChIP-

seq data (Park et al., 2013) or ChIP-seq antibody quality, PCR

amplification biases, sequencing depth, and outlier samples. These

biases have been investigated in detail and methods have been sug-

gested to account for them (Diaz et al., 2012; Gusmao et al., 2016;

Kuan et al., 2011; Ramachandran et al., 2015; Wang et al., 2017;

Yardimci et al., 2014). However, those approaches do not analyze

data on a gene-centric level and therefore do not account for biases

introduced through data integration, which is the focus of this art-

icle. Here, we review confounders in modeling TF-gene scores from

both TF ChIP-seq as well as DNase1-seq data and study their effect

on gene expression prediction and model interpretation.

2 Materials and methods

2.1 Data
Here, we use seven paired DNase1-seq and RNA-seq samples

obtained from ENCODE and the German epigenomics project

(DEEP). Specifically, we use three primary human hepatocyte sam-

ples (LiHe1, LiHe2, LiHe3) and one HepG2 sample from DEEP as

well as one sample each of K562, GM12878, and H1-hESC cells

from ENCODE. From ENCODE, we downloaded quantified gene

expression data, DNase1-seq BAM files and narrow peak calls of 33

TF-ChIP-seq experiments for K562, 39 for HepG2, and 50 for both

GM12878 and H1-hESCs. We use the hg19 reference genome. A

complete list of all ENCODE accession numbers and DEEP sample

IDs is provided in Supplementary Table S1. DEEP data can be

obtained from EGA (EGAS00001002073). Details on DNase1-seq

and RNA-seq experimental protocols for DEEP samples are pro-

vided in Supplementary Section Experimental Procedures of

Schmidt et al. (2017). Quantification of gene expression from RNA-

seq data and peak-calling on DNase1-seq data were performed as

described in Supplementary Section S1. For computational annota-

tion of TF binding we use a curated set of 726 position specific en-

ergy matrices (PSEMs) obtained from JASPAR (Mathelier et al.,

2016), Hocomoco (Kulakovskiy et al., 2016), and the Kellis

ENCODE Motif Database (Kheradpour and Kellis, 2014).

2.2 Computing TF-gene scores from ChIP-seq data
We compute TF-gene scores aC

g;t for gene g and TF t from TF-ChIP-

seq data in three ways:

First, using an exponential decay formulation proposed by

Ouyang et al. (2009):

aC
g;t ¼

X

p2Pg;50kb

cp;te
�dp;g

d0 ; (1)

where we consider all ChIP-seq peaks p in a window of 50 kb cen-

tered at the most 50 TSS of genes and sum all ChIP-seq scores cp;t

(peak scores computed by the uniform ENCODE processing pipe-

line) weighted by their distance to the TSS dp;g. As suggested in

Ouyang et al. (2009), the parameter d0 is set to 5000. It controls the

intensity of the exponential weight applied to cp;t. Pg;50kb denotes

the set of all peaks around the TSS of gene g in the specified window

of 50 kb. We refer to these scores as ChIP-seq TF-features (C).

Second, we suggest normalized TF-gene scores �aC
g;t (Eq. 2) by

dividing aC
g;t by the total number of ChIP peaks cC

g (Eq. 3) and con-

sider cC
g and peak length lCg , defined as the total length of all peaks in

Pg;50kb (Eq. 4), as two additional features:

�aC
g;t ¼

P
p2Pg;50kb

cp;te
�dp;g

d0

cC
g

; (2)

cC
g ¼

X

t2T

X

p2Pg;50kb

Iðcp;tÞe�
dp;g
d0 ; (3)

lCg ¼
X

t2T

X

p2Pg;50kb

Iðcp;tÞjpje�
dp;g
d0 ; (4)

where T denotes the set of all TFs for which ChIP-seq experiments

are available, jpj denotes the length of peak p, and I is the indicator

function. Note that both cC and lC are distance weighted too.

Normalized scores are denoted by ChIP-seq TF-features normalized

(CN). An example is shown in Supplementary Figure S2.

Third, we consider only cC and lC as features and refer to those

as ChIP-seq peak-features (CPF). By definition (Eq. 3, 4), cC and lC

capture the regulatory activity in the vicinity of a gene measured

with ChIP-seq experiments. Thus, cC and lC can be seen as an aggre-

gated view for the activity of transcriptional regulation. An overview

on the annotation versions is shown in Table 1.

2.3 Computing TF-gene scores from DNase data
The computation of TF-gene scores from DNase1-seq data is con-

ducted with the TEPIC approach that also employs the exponential

decay formulation by Ouyang et al. (2009). Briefly, we compute TF

affinities for 726 TFs using TRAP (Roider et al., 2007) in accessible

chromatin regions. TF affinities are a quantitative measure of TF

binding that can be interpreted as the estimated number of bound

molecules to a target site. TRAP computes a score ap;t, denoting the

TF affinity of TF t in DNase1 peak p by summing up the contribu-

tion of all individual binding sites in p. For details see

Supplementary Section S3 and Roider et al. (2007). In the original
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TEPIC annotation (termed as DNase-Decay(D)), TF-gene scores aD
g;t

are computed as (Eq. 5)

aD
g;t ¼

X

p2Pg;50kb

ap;te
�dp;g

d0 ; (5)

where P is the set of all considered DNase1 peaks.

The DNase-Decay-Scaled (DS) annotation directly integrates the

DNase1 signal sp of peak p into the TF-gene score aDS
g;t (Eq. 6)

aDS
g;t ¼

X

p2Pg;50kb

ap;tspe
�dp;g

d0 : (6)

Here, we propose an extension of the original formulation that

(a) accounts for a bias introduced by the length of the open-

chromatin peak jpj, which is linked to the definition of TRAP affin-

ities, and (b) provides information on chromatin accessibility in

three separate features. The affinities per peak are normalized by the

number of possible binding sites jpj � jmj þ 1 within a peak, where

jmj is the length of TF motif m, leading to normalized TF-gene

scores �ag;t (Eq. 7). Also, we compute three peak-based features per

gene: the number of peaks cD
g (Eq. 8), the length of peaks lDg (Eq. 9),

as well as the aggregated DNase1 signal across all peaks f D
g (Eq. 10):

�aD
g;t ¼

X

p2Pg;50kb

ap;t

jpj � jmj þ 1
e
�dp;g

d0 (7)

cD
g ¼

X

p2Pg;50kb

e
�dp;g

d0 ; (8)

lDg ¼
X

p2Pg;50kb

jpje�
dp;g
d0 ; (9)

f D
g ¼

X

p2Pg;50kb

spe
�dp;g

d0 : (10)

We refer to the feature set DN ¼ f�aD; cD; lDg as DNase-Decay-

Normalized, to DSN ¼ f�aD; cD; lD; f Dg as DNase-Decay-Scaled-

Normalized, to DPF ¼ fcD; lDg as DNase peak-features, and to

DPFS ¼ fcD; lD; f Dg as DNase peak-features and signal.

2.4 Linear regression to predict gene expression
As in Schmidt et al. (2017), we use linear regression with elastic net

penalty implemented in the glmnet R-package (Friedman et al.,

2010) to predict gene expression from either TEPICs TF-gene

scores, or ChIP-seq based TFBS predictions. Elastic net leads to

sparse interpretable models and, due to the grouping effect, pre-

serves correlated features, which naturally occur in the problem sets

at hand due to co-regulation and co-binding events of TFs. The

grouping effect is achieved by combining two regularization terms,

the Ridge and the Lasso penalty:

b̂ ¼ arg min
b
jjy�Xbjj2 þ k½ajjbjj2 þ ð1� aÞjjbjj�: (11)

Here, b represents the feature coefficient vector, b̂ the estimated

coefficients, X the feature matrix, y the response vector, and k regu-

lates the total amount of regularization. The entries of X are com-

posed of the features described above, e.g. in case of C-scores the

rows of X contain genes and the columns the TF scores based on

ChIP-seq data, thus an entry Xg;t corresponds to the TF-gene score

aC
g;t for gene g and TF t. Supplementary Section S4 describes the

schematics of all used feature matrices.timates, are log-transformed,

with a pseudo-count of 1, centered and normalized. Using X, we

learn a model to predict the gene expression hold in y. The param-

eter a controls the trade-off between Ridge and Lasso penalty. It is

optimized in a grid search from 0.0 to 1.0 with a step-size of 0.01.

The coefficients b̂ computed by the model can be seen as indicators

for the explanatory power of TFs for gene expression. The number

of non-zero regression coefficients is denoted with jjbjjmodel
0 . All

results presented in the main figures of this article are based on elas-

tic net regression.

Model performance is assessed on a hold-out test dataset in a

ten-fold outer Monte Carlo cross-validation procedure where 80%

of the data are randomly selected as training data and 20% as test

data. The k parameter regulating the total amount of regularization

is fitted in a six-fold inner cross-validation using the cv.glmnet pro-

cedure. We choose the k achieving the minimum cross validated

error, computed as the average mean squared error (MSE) on the

inner folds (lambda.min). Final model coefficients are determined

according to the selected k and the entire training dataset. The learn-

ing procedure is visualized in Supplementary Figure S14.

2.5 Row-wise permutation of the feature matrix
To evaluate whether the data contains a systematic bias, we shuffled

the original data matrix Xo per gene, i.e. per row, as suggested in

(Bessiere et al., 2018), and obtained a randomized matrix Xr.

Shuffling the data per gene preserves any confounders affecting all

TF scores computed for one gene but eliminates TF specific informa-

tion. Xr is used as input for the regression throughout this work

whenever we refer to permuted data. See Supplementary Section S5

for an example.

2.6 Model evaluation using a gold-standard set of gene

regulation in primary human hepatocytes
To judge the correctness of TFs that are predicted as tissue-specific

regulators, we conduct a comparison against a gold-standard (GS)

set on primary human hepatocytes. To avoid any biases by a litera-

ture defined GS, we considered all TFs that are expressed by at least

five transcripts per million (TPM) in liver RNA-seq expression data

according to the Human Protein Atlas (Uhlen et al., 2015) (www.

proteinatlas.org) and are included in our PSEM collection, resulting

in a gold-standard set of 200 TFs (c.f. Supplementary Table S2). We

compute Precision (Pr) and Recall (Rec) (Supplementary Section S6),

where a True Positive (TP) is a TF retrieved by the model that is con-

tained in the GS, a False Positive (FP) is a TF that is inferred by the

model but not included in the GS, and a False Negative (FN) is a TF

Table 1. Overview on the different score variations of this study

Abbreviation Equation Included

features

ChIP-seq TF features C (1) aC

ChIP-seq TF features

normalized

CN (2) �aC

ChIP-seq peak features CPF (3, 4) cC, lC

DNase Decay D (5) aD

DNase Decay-Scaled DS (6) aDS

DNase Decay normalized DN (7, 8, 9) �aD; cD; lD

DNase Decay-Scaled

normalized

DSN (7, 8, 9, 10) �aD; cD; lD; f D

DNase peak-features DPF (8, 9) cD, lD

DNase peak-features

and signal

DPFS (8, 9, 10) cD; lD; f D

Confounding variables in gene expression prediction 713

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty674#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty674#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty674#supplementary-data
http://www.proteinatlas.org
http://www.proteinatlas.org
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty674#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty674#supplementary-data


that is listed in the GS but not retrieved by the model. Area under

the Precision-Recall(AUPR) curve and PR curves are computed using

the PRROC package (Grau et al., 2015). In PRROC, TFs are sorted

according to their regression coefficients.

3 Results

To investigate potential biases in TF-gene scores, we analyzed pre-

dictive models of gene expression based on either DNase1 or TF-

ChIP-seq data. Both models are commonly applied and therefore it

is of high relevance to understand potential confounders. As illus-

trated in Figure 1, the nature of TF binding information retrieved

from ChIP-seq experiments is distinct from that of DNase1-seq

derived scores in several ways. Firstly, ChIP-seq experiments can be

used to identify TFs forming a complex even in case of indirect-

binding events, i.e. a TF does not bind the DNA itself but binds to

another TF via protein-protein interaction. Such TFs could not be

trivially found using DNase1 based prediction methods (Nagy et al.,

2016; Wierer and Mann, 2016) that solely rely on motif informa-

tion, as there might be no binding motif present in the considered

genomic loci. Secondly, only the presence of a peak and possibly its

intensity are important to compute a TF-gene score from ChIP-seq

data. In contrast to that, usually all possible TFBS within a DHS are

considered, e.g. in TRAP (Manke et al., 2008), therefore the length

of a DHS influences the TF scores as longer peaks can obtain a

higher score by chance. Due to these differences we deal with both

approaches separately.

3.1 Aggregated TF-ChIP-seq signal is predictive for

gene expression
TF-ChIP-seq data has been shown to be predictive for gene expres-

sion (Ouyang et al., 2009; Ramachandran et al., 2015). However, it

was observed by Bessiere et al. (2018) that per-gene permuted TF-

ChIP-seq data has nearly the same predictive power as the original

data. We repeated their experiment in a similar fashion and learned

linear models with elastic net regularization to predict gene expres-

sion in K562, HepG2, GM12878, and H1-hESC cells using

ENCODE TF-ChIP-seq data. Although we find that models based

on randomized data perform significantly worse compared to the

original models (Fig. 2a and Supplementary Fig. S3), their absolute

performance is not indicating that the model is based on an errone-

ous dataset. This suggests that the presence of any TF-ChIP-seq peak

in the vicinity of a gene is predictive for gene expression and is sup-

ported by the work of Yan et al. (2013), who showed that a majority

of TF binding in the genome occurs in dense clusters. Thus it is likely

that a TF-gene score vector for an expressed gene is not sparse,

but holds mostly non-zero values, which might render the scores to

be exchangeable without a loss in model performance. We tested

this hypothesis, using the CPF scoring approach that considers only

peak count and peak length per gene. CPF models perform

worse than the original C models, but also better than the permuted

C models, supporting our hypothesis (Fig. 2a and Supplementary

Fig. S3).

To further understand this observation, we computed the pair-

wise Spearman correlation between all TF-gene scores derived from

TF-ChIP-seq data for K562. As shown in Figure 2b, the median cor-

relation between original scores (0.362) is only marginally higher

than the correlation on randomized data (0.311). This explains both

the good performance of the permuted data and that of the CPF

scores: the high correlation makes a large portion of the data ex-

changeable. Nevertheless, the shuffling leads to an obvious loss of

several highly correlated TF pairs. To learn about whether these are

biologically meaningful correlations, we considered all pairwise cor-

relations as shown in Figure 2c, and indeed found some highly corre-

lated factors to be known interaction partners. For example, CTCF

is known to interact with RAD21 (Gosalia et al., 2014) (Spearman

correlation: 0.862), or GABPA and ELF1 both belonging to the ETS

TF-family (Sharrocks, 2001) (Spearman correlation: 0.776), suggest-

ing that the correlation is at least partially due to cooperativity be-

tween TFs.

Bessiere et al. (2018) raised concerns that models built from

ChIP-seq data might lead to misinterpretations of the regression

coefficients, because the models are not robust in randomization

experiments. Here, we note that the coefficients learned on the ori-

ginal data are spread over a wide range of values (standard deviation

(sd): 0.056), with several coefficients being close to zero. In contrast

to that, regression coefficients inferred on randomized data have a

small value across all factors (sd: 0.0053) (Fig. 2d). As the regression

coefficients are selected stably with low standard deviations across a

ten-fold outer cross validation, a wrong interpretation of the models

is unlikely. Although the original data is highly correlated, only the

coefficients deduced from original data can be meaningfully inter-

preted, e.g. TAF1 has the highest regression coefficient. This factor

is indispensable to initiate transcription (Bhattacharya et al., 2014),

hence it is a good predictor for gene expression.

3.2 Accounting for the number of ChIP-seq peaks

reduces correlation between TFs
To improve the robustness of ChIP-seq derived TF-gene scores

against permutation, we attempted to account for the number of

ChIP-seq peaks around a gene’s TSS using the CN (Eq. 2) scoring.

The new score is motivated by the observation that the feature rep-

resenting the number of peaks (cC) has a large, positive regression

coefficient in CPF models (Supplementary Fig. S1), implying that

this quantity itself covers a large portion of the information con-

tained in TF-ChIP-seq data. As shown in Supplementary Figure S2b,

the value of cC is high if there are (i) many TF-ChIP peaks within the

considered window and (ii) these peaks are close to the 50-TSS of the

Fig. 1. Illustration of the mechanistic differences of TF scores derived from ei-

ther ChIP-seq or DNase1-seq data. Colored bars indicate TF affinities in DHSs

computed with TRAP using the PSEMs Mi. While ChIP-seq data can identify

TFs acting in complexes, motif based prediction methods screening DHSs are

not able to pinpoint these binding events only from sequence data.

Identifying TFs that are part of complexes is especially hard in case of indirect

binding, i.e. a TF does not bind to the DNA but to another TF. For instance,

while the TF colored in orange can be located with ChIP experiments, it

remains hidden using predictions based on DNase1 data. Further, the length

of a DHS influences motif based scores as the random chance to find a motif

hit increases with rising peak length, e.g. although there is no ChIP-seq hit for

M1 in the fourth DHS, we do see a non-zero affinity
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considered gene. Thus, normalizing by cC leads to a general deple-

tion of TF-gene scores if there are many ChIP peaks present around

a gene and simultaneously increases TF-gene scores if there are only

a few peaks located in the gene window (Supplementary Fig. S2a

and c). Intuitively, this normalization renders individual peaks

stronger and weakens peaks within dense clusters.

While the permuted data always leads to significantly worse

model performance than the original data (Fig. 3a), we find that CN

scores lead to a significant loss in model performance on permuted

data compared to the permuted C scores (Supplementary Fig. S3).

This indicates that CN scores are more robust against permutations

than C scores, as essential information is lost through the permuta-

tion. Simultaneously, model performance on original data is increas-

ing significantly for three out of four samples (Supplementary Fig.

S3). The normalization reduces the pairwise correlation between

TF-gene scores significantly for original and permuted data, accord-

ing to a Wilcoxon test (Fig. 3b). Practically, it implies that model

performance and pairwise correlation among TF-gene scores could

be used to spot errors occurring during data handling or processing

rather with CN scores than with C scores, due to the more pro-

nounced reduction of these measures. Interestingly, the normaliza-

tion introduced a negative correlation between several TFs (Fig. 3c),

for instance between TAF1 and CTCF (–0.282) (Supplementary Fig.

S4), which has been reported previously (Kim et al., 2007). Using C

scores, this pair had a correlation of (0.181), illustrating that the

normalization seems to improve modeling the interaction of TFs.

Due to the changed correlation between TF features, the regression

coefficients for some TFs are altered as well (Fig. 3d). Several TFs

that are known to act as a repressor, e.g. E2F6 (Giangrande et al.,

2004), REST (Bruce et al., 2006), and EGR1(Arora et al., 2008)

obtained a negative regression coefficient using CN scores.

3.3 Aggregated ChIP-seq peaks indicate regulatory activity
As stated in Section 3.2, the CPF scoring (Eq. 3, 4) shows reasonable

performance (Fig. 2a). This observation suggests that aggregating

ChIP-seq data across several TFs resembles a measure of regulatory

activity, which is itself highly predictive for gene expression. This

hypothesis can be related to findings by Ramachandran et al.

(2015). They learned predictive models of gene expression consider-

ing only single TF-ChIP seq experiments as input. Additionally, they

trained models on DNase1-seq data. They proposed that only a few

general TFs are highly predictive for gene expression, while

chromatin-accessibility data can replace binding information for

most other TFs. We tested this by computing the fraction of ChIP-

seq peaks that overlap DNase1-seq peaks in HepG2, K562,

GM12878, and in H1-hESCs considering either all, i.e. genome-

wide, ChIP-seq peaks or only ChIP-seq peaks in a 50 kb window

around the 50 TSS of all protein coding genes. As shown in

Supplementary Figure S7, 71% of all genome-wide ChIP-peaks are

covered by a DNase1 peak and even 81% of all ChIP peaks around

the TSS of protein coding genes overlap with a DNase1 peak. This

indicates that the pure presence of a peak can be seen as an equiva-

lent to the presence of a DHS site, arguing for the exchangeability of

TF ChIP-seq data as well as its usage in an aggregated fashion.

3.4 Open chromatin characteristics are confounders in

predicting TF binding
Although ChIP-seq experiments deliver genome-wide insights into

in-vivo TF-binding, it is infeasible to obtain ChIP-seq data for all

TFs in all tissues. Therefore, predicting TFBS in open chromatin be-

came a common way to analyze transcriptional regulation through

TFs. Next, we examine confounders that affect TF-gene scores cal-

culated from predicted TFBS.

Using TEPIC TF-gene scores computed according to the D setup

(Eq. 5), we learned regression models with elastic net regularization

to predict gene expression for seven different samples. As reported

before (Bessiere et al., 2018), we also find that model performance

drops marginally on randomized input (Fig. 4a and Supplementary

Fig. S6a–c) and thus renders performance to be inadequate to judge

model reliability. To elucidate whether chromatin-accessibility data

(a)

(d)

(b) (c)

Fig. 2. (a) The performance of linear regression models predicting gene expression from TF-ChIP-seq data is shown for four different cell lines using the C setup

with original and per-gene permuted data as well as using the CPF scores, which consider only the number and the length of ChIP-peaks aggregated over all TFs.

(b) Pairwise Spearman correlation of TF-ChIP-seq gene scores computed for 33 TF-ChIP-seq assays in K562. A heatmap of pairwise correlation values for C scores

is depicted in (c). Regression coefficients for the original, not permuted data, and for repeated randomizations are shown in (d). Statistical significance in (a) is

computed with a Wilcoxon test, where **** refers to a significance level of 10�4
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itself might be a confounder that is inherently contained in TF-gene

scores, we compared the performance of a model considering only

peak count and peak length per gene as input (PF) (Eq. 8, 9) against

a model using the full feature matrix (D). As shown in Figure 4b

(Supplementary Fig. S6d–f), DPF models show good performance.

Similar observations were made for the DS setup (Eq. 6)

(Supplementary Fig. S5a and b). As noted by others (McLeay et al.,

2012; Ramachandran et al., 2015), this shows that chromatin-

accessibility itself is predictive for gene expression. It also supports

the idea that TF-gene scores might be linked to chromatin specific

features.

In order to follow up on that hypothesis, we computed the pair-

wise correlation between all TF-gene scores across all genes within

each sample. As shown in Figure 4c (Supplementary Fig. S5c for the

DS setup), some TFs are highly correlated, e.g. TFs with a similar

binding motif such as HEY1 and CLOCK, or TEAD1, TEAD3 and

TEAD4. Correlation that is due to similar sequence preferences be-

tween TFs would be lost in a per-gene randomization. However,

correlation that is caused by confounders affecting each gene should

not be removed by a per-gene randomization. Therefore, the

remaining correlation on permuted data, which is shown in

Figure 4c, is likely to be due to confounding variables representing

chromatin context introduced while computing the TF-gene scores.

Indeed, peak length, peak count, and peak signal are highly corre-

lated to TF affinities (Supplementary Fig. S5d). This is exemplified

by Supplementary Figure S10b and c illustrating the correlation be-

tween TF-gene scores of HOXA3 and peak length (0.9568) and

peak count (0.6786), respectively.

3.5 Correcting for confounders improves robustness of

TF-gene scores
Due to the computational strategy of how TF scores are computed

in the D and DS setups, namely by summing all possible binding

sites in a DHS site, peak length is indirectly incorporated in TF-gene

scores. We attempt to correct for this by normalizing TF affinities

per DHS by accounting for the number of TFBS (DN) (Eq. 7). We

apply the same normalization to the DS setup and additionally con-

sider the DNase1-seq signal as a separate feature (DSN), instead of

multiplying it by TF affinities (DS).

As shown in Figure 5a, the normalization leads to a significant

drop in model performance on permuted data for DN and DSN

(median Spearman correlation 0.268 and 0.269, respectively), while

model performance on original data changed only marginally

(Supplementary Figs S8a and S9). This holds for elastic net and

Lasso regularization (Supplementary Figs S8b and S15). The nor-

malization reduces the correlation between TF-gene scores and

chromatin-accessibility features (Supplementary Fig. S10a), e.g. the

correlation between TF-gene scores for HOXA3 in LiHe1 and peak

length decreased from 0.9568 to 0.5808 (Supplementary Fig. S10b

and e). This explains the observed loss in model performance on per-

muted data. We note that additionally normalizing for peak num-

bers is not beneficial (Supplementary Fig. S11).

Further, we compared the number of non-zero features derived

on permuted and not permuted data observing the general trend

jjbjjD0 > jjbjjDS
0 > jjbjjDN

0 > jjbjjDSN
0 (Fig. 5b). Strikingly, elastic net

(a) (b) (c)

Fig. 4. (a) Spearman correlation values of linear regression models based on

TEPIC scores (D) are compared against permuted scores. (b) D scores are

compared against a model using only peak length and peak counts as fea-

tures (DPF). (c) Boxplots showing the pairwise Spearman correlation between

TF-gene scores, for both original and permuted data across all DNase1 sam-

ples using the D setup

(a)

(d)

(b) (c)

Fig. 3. (a) Performance of a linear regression model predicting gene expression exploiting the original (C) scores is contrasted with the normalized (CN) ChIP-seq

scores. (b) Pairwise Spearman correlation of TF-ChIP-seq gene scores computed for 33 TF-ChIP-seq assays in K562 for C and CN. (c) A heatmap of pairwise correl-

ation values for CN scores. Regression coefficients learned for C, and CN scores are depicted in (d). Statistical significance in (a) and (b) is computed with a

Wilcoxon test, where **** refers to a significance level of 10�4
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constantly selects all features in each annotation setup on permuted

data, while Lasso selects only a few representative features

(Supplementary Fig. S12). As shown by Zou and Hastie (2005), the

grouping effect of the elastic net considers all predictors and assigns

them similar regression coefficients if the predictors are part of a

group of highly correlated features. Here, all considered features

from permuted data form one group of correlated predictors with

similar pairwise correlations (Fig. 4c). Therefore, we observe that

elastic net selects all features on permuted input and assigns them

similar regression coefficients (Supplementary Fig. S13).

3.6 Models of gene expression identify expressed TFs

as important regulators
Usually, the purpose of gene expression modeling is to infer key reg-

ulators by interpreting regression coefficients. Therefore, we

checked whether the top 100 TFs selected by the models are

expressed, as this could be seen as support for their regulatory role.

We considered a TF to be not expressed if it could not be mapped to

a gene ID in the expression data. If less than 100 TFs are selected on

original data, we choose the same number of TFs from the permuted

data. According to a Wilcoxon test, the expression of the top 100

selected TFs derived for each annotation setup on original data is

significantly higher than the expression of the top 100 TFs selected

on permuted data (Fig. 5c).

3.7 Confounder adjustment does not affect model

correctness according to AUPR
We performed a detailed evaluation of features for three primary

human hepatocyte samples from DEEP using the annotation setups

D, DS, DN, and DSN. The gold standard set contains all TFs that

are expressed by at least 5 TPM in liver according to RNA-seq gene

expression data obtained from the Human Protein Atlas. As out-

lined in Table 2, the total number of non-zero features varies be-

tween annotation versions and samples, while the area under the

Precision-Recall curve (AUPR) is similar across annotation setups.

In a between sample comparison we do note a drop for LiHe2 with

the DSN annotation. According to in house quality control, the

DNase data for this sample might not be optimal, which could ex-

plain the difference to the other hepatocyte replicates. Notably,

there is a slight advantage for the unnormalized approaches D and

DS (Supplementary Fig. S16). The differences in the number of

selected features could be related to the correlation present in D and

DS scores (Supplementary Fig. S5c and d). As elastic net attempts to

find a balance between sparsity and the inclusion of correlated yet

predictive features, the number of non-zero features might be higher

in D and DS compared to DN and DSN. Overall, this analysis does

not clearly argue in favor of one of the scoring approaches in terms

of biological relevance.

4 Discussion and conclusion

Predictive models of gene expression are widely used in computa-

tional biology. They allow the integrative analysis of diverse datasets

and their interpretation can lead to new hypotheses about molecular

processes. In this article, we characterized confounders in TF-gene

scores potentially affecting the reliability of such models.

While our analysis showed, similar to the work by Bessiere et al.

(2018), that row-wise permutation of TF ChIP-seq data does not re-

move the entire signal, we do find that permuted data leads to mod-

els that cannot be interpreted, because the regression coefficients are

similar for all TFs. This is due to the ridge penalization incorporated

in the elastic net regularization. It distributes the regression weights

across correlated features, a behaviour known as the grouping effect

(Fig. 5b). The widely used Lasso regularization does not show this

useful property on permuted data (Supplementary Fig. S12) and

should therefore be used with caution to avoid wrong interpreta-

tions. To improve model robustness, we suggest to normalize TF-

gene scores by the number of peaks located in the vicinity of a gene’s

TSS (CN). Thereby, performance of models on permuted data can

be lowered, model performance on original data can be increased,

and model interpretability is preserved (Fig. 3 and Supplementary

Fig. S3). To simplify the detection of cell type specific features fur-

ther, it would be necessary to include additional cell-type specific en-

hancer regions, for instance via high-resolution Hi-C data.

Similar to the ChIP-seq data, we find a high pairwise correlation

between TF-gene scores derived from chromatin-accessibility data.

We identified purely chromatin-accessibility based features, namely

peak length, peak count and peak signal as confounding variables

(Fig. 4). By accounting for the number of possible TFBS within a

DHS, the correlation between the confounders and TF-gene scores

could be reduced. Thus, the performance of per-gene randomized in-

put using the normalized data (DN, DSN) dropped compared to the

original scoring (D, DS) (Fig. 5a and Supplementary Fig. S9).

Simultaneously, we find only marginal changes in model perform-

ance on original input, arguing for the validity of the normalization.

Therefore, we suggest to use the normalized scoring, as it helps to

pinpoint errors in data handling and eases model interpretation be-

cause a smaller number of TFs is selected.

Here, we have used TRAP to compute TF affinities. Instead, any

other tool for TFBS prediction could be used as well and would lead

to its own distinct biases and corresponding correction approaches,

e.g. considering only the most significant motif hit per gene (Wilkins

et al., 2016). As explained in Supplementary Section S7, we have

also scaled the feature matrices according to the maximum score per

gene. Although such a general normalization reduces model

Table 2. Number of selected features and AUPRs computed in a

gold standard comparison of primary human hepatocytes using

elastic net regularization

#Selected features AUPR

D DS DN DSN D DS DN DSN

LiHe1 274 210 156 143 0.341 0.360 0.333 0.368

LiHe2 301 145 227 107 0.355 0.346 0.347 0.292

LiHe3 193 297 238 160 0.347 0.333 0.311 0.319

(a) (b) (c)

Fig. 5. (a) This illustrates the performance of gene expression models based

on four different annotation setups (D, DS, DN, DSN) for original and per-

muted data. Part (b) shows the number of selected features for all annotation

variants in original and permuted data using elastic net regularization. Part (c)

compares the expression of TFs selected by the individual models per setup

against the expression of TFs selected on permuted data. According to a

Wilcoxon test, the expression differences are significant in all cases with

P<0.05 denoted by *
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performance on permuted data, it also worsens model performance

on the actual, not permuted, data (Supplementary Figs S17 and

S18), indicating that fine-tuned normalization approaches are

required. One obvious question raised by the presented analysis is

whether non-linear methods would show a behavior similar to the

linear methods. We used Support Vector Regression to answer that

question and found that it does not improve prediction accuracy and

behaved as the linear methods when applied on permuted input

(data not shown).

Notably, no scoring methodology could completely resolve the

correlation in TF-gene scores. As illustrated in Figure 1, a complete

removal of the correlation should not be expected as the correlation

is partially due to biology. For example, ChIP-seq data captures the

signal of TFs forming complexes via protein-protein interactions,

thereby yielding correlated scores. Also, it is known that TFs tend to

bind in clusters (Yan et al., 2013), which is captured by ChIP-seq

data and leads to correlated features too. However, the correlation

can also be of technical nature, e.g. due to similar binding motifs or

open chromatin characteristics. Although we investigated ways how

to reduce this correlation, it is inherent, and thus to some extend un-

avoidable. We like to stress this point and make researchers aware

of the potential pitfalls it is causing.

Aside from these analyses, we have illustrated how the number

of non-zero features, the magnitude of regression coefficients, and

the expression of selected TFs are indicators for model quality and

can pinpoint users to potential flaws in feature design or data han-

dling. Importantly, these measures led to the conclusion that results

presented in earlier studies using TF ChIP-seq (Ouyang et al., 2009)

or predicted TF binding scores (Schmidt et al., 2017) without

accounting for confounders are not necessarily incorrect, but high-

lighted the complexity of prioritizing meaningful TFs due to con-

founders investigated here. From our perspective the only severe

drawback of the earlier scoring methodologies is that potential flaws

in modeling cannot be revealed by simply considering model per-

formance in a per-gene randomization. Therefore, researchers

should use modeling approaches with caution and be aware of po-

tential confounders.

Common sanity checks as applied here and a sensible choice of

the machine learning technique, e.g. elastic net regularization, can

help to avoid a wrong interpretation of the models.
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