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New windows into retroviral RNA 
structures
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Abstract 

Background:  The multiple roles of both viral and cellular RNAs have become increasingly apparent in recent years, 
and techniques to model them have become significantly more powerful, enabling faster and more accurate visuali-
zation of RNA structures.

Main body:  Techniques such as SHAPE (selective 2’OH acylation analysed by primer extension) have revolutionized 
the field, and have been used to examine RNAs belonging to many and diverse retroviruses. Secondary structure 
probing reagents such as these have been aided by the development of faster methods of analysis either via capil-
lary or next-generation sequencing, allowing the analysis of entire genomes, and of retroviral RNA structures within 
virions. Techniques to model the three-dimensional structures of these large RNAs have also recently developed.

Conclusions:  The flexibility of retroviral RNAs, both structural and functional, is clear from the results of these new 
experimental techniques. Retroviral RNA structures and structural changes control many stages of the lifecycle, and 
both the RNA structures themselves and their interactions with ligands are potential new drug targets. In addition, 
our growing understanding of retroviral RNA structures is aiding our knowledge of cellular RNA form and function.
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Background
A recent wave of RNA-structure related techniques has 
brought new and different ways in which we can view ret-
roviral RNAs in two and three dimensions, both inside 
and outside cells. Such technical power has shown us that 
retroviral RNAs are physically and functionally flexible 
and multidimensional, and insights that emerged from 
these studies initially are now enabling wider under-
standing of cellular RNA form and function.

Techniques to map two‑dimensional structures in RNA
Less than a decade ago most RNA structure probing was 
performed using enzymes and chemicals with limited reac-
tivity, specific for particular bases and structural motifs. 
These reagents were used to cleave or modify RNAs that 
were either radioactively end-labelled, or subsequently 
reverse transcribed into radiolabeled cDNAs, to map the 

modification sites (Fig. 1) [1, 2]. For example, RNase T was 
frequently used to target single-stranded guanosines, and 
low concentrations of RNAse A were used to cleave 3’ of 
single-stranded pyrimidines. Double-stranded RNA could 
be probed with CV1 enzyme, which tends to cleave only 
towards the middle of longer, more stable helices; and so 
more often, double-stranded regions were detected by 
the absence of reactivity of a combination of several of the 
single-strand targeting reagents [3]. These, however, all 
displayed substantial nucleotide or specific structural bias, 
thus necessitating the use of a number of different reagents 
to examine one RNA structure. The resolution of such 
experiments was similarly time-consuming, using dena-
turing sequencing gels onto which radioactive cDNAs or 
end-labeled RNAs were loaded. This was technically chal-
lenging and laborious, rendering the study of an RNA as 
long as the retroviral genome prohibitively slow. However, 
major advances in probing reagents and sample resolution 
techniques reformed the field, making RNA secondary 
structural analysis on the viral genome scale, or analysis of 
multiple mutants or conditions possible.
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Finer resolution mapping of RNA structures: SHAPE 
reagents
SHAPE (selective 2’OH acylation analyzed by primer 
extension) reagents selectively acylate the ribose 
2’hydroxyl, where the backbone is flexible [4]. This cor-
responds mainly with single-stranded regions. One major 
advantage of using SHAPE reagents is that they react with 
each nucleotide irrespective of base; they are far more 
sensitive to the structural context the base is in [5]. These 
reagents quickly helped to refine various retroviral RNA 
structures that had previously been characterized by 
enzymatic probing [6, 7]. Reverse transcription of SHAPE 
reagent-modified RNAs leads to a truncated cDNA as 
the RT enzyme cannot polymerise past the acylation 

site under standard conditions [4]. Users can thus probe 
RNA with just one reagent, instead of a combination of 
several different reagents, which quickly builds a more 
accurate picture of RNA secondary structure. Single-
stranded nucleotides are reactive to SHAPE reagents 
unless the backbone is constrained through stacking or 
noncanonical interactions. As these sorts of interaction 
tend to be limited to individual or small stretches of con-
tiguous nucleotides, longer stretches of the RNA that 
lack acylation sites can signal base-paring that was not 
predicted computationally using standard minimal free 
energy modeling algorithms [8]. Such algorithms don’t 
take into account higher-order structures such as pseu-
doknots and intermolecular interactions. These potential 

1. RNA is modified with an enzyme/ chemical that targets a particular structure

Example: RNase T1 cleaves ssGs

2. RNAs are reverse transcribed to make cDNAs which terminate at the modification site

3. cDNAs are separated by electrophoresis and relative proportions of each species determined
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Fig. 1  The basic principle of RNA structure probing
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interactions can be further examined by mutation to dis-
tinguish whether the lack of SHAPE reactivity is indeed 
due to higher-order interactions, or whether the original 
model on which they were based needs to be modified. 
The signal coverage achieved by SHAPE reagents also 
decreases the number of experiments necessary in order 
to inform structural modeling effectively. Thus, users are 
able to screen for the structural effects of mutations on 
the native RNA structure quickly and more accurately 
than before. This is particularly useful when working 
with multiple lengths of RNA [8, 9] or with large RNAs 
like the Rev Response Element (RRE). Using SHAPE rea-
gents, Legiewicz and co-workers were able to investigate 
the RRE structures that were resistant and susceptible to 
Mov10, an inhibitor of RNA export [10]. Analyses of the 
dynamics of the Rev–RRE interaction also became pos-
sible because the RNA structure could be examined at 
multiple points during the refolding process [11]. When 
probing large cellular or virion RNAs that are not overly 
abundant the coverage given by SHAPE reagents is also 
very important as it requires fewer experiments in order 
to ascertain the structural environment of each nucleo-
tide, and hence requires less RNA to be made and puri-
fied. This enabled the structural mapping of the entire 
HIV-1 genome isolated from virions [12].

Faster mapping of RNA structures: capillary 
electrophoresis
Resolving techniques for cDNAs made during primer 
extension assays have also changed the field. Users have 
moved from manually pouring sequencing gels and run-
ning radioactively labeled samples, followed by analy-
sis by densitometry or by eye, to separation by capillary 
using fluorophore-labelled cDNAs and more integrated 
analysis [13]. This allows higher-throughput, less mar-
gin for human error and a more automated alignment 
and measurement of amount of cDNA at each position 
(Fig.  2). This analysis method has revolutionized the 
study of RNA secondary structure not only by SHAPE 
reagents but also other probing reagents such as RNases, 
DMS and hydroxyl radicals [14]. The real strength of this 
method is the ability to run multiple samples (commonly 
96) at once, meaning that if the RNA to be probed is 
abundant, multiple replicates can be performed in paral-
lel, sampling different experimental conditions.

What have these techniques shown us 
for retroviruses?
The functionality of both SHAPE and capillary elec-
trophoresis have enabled analyses of many distinct ret-
roviral RNA structures, from lentiviruses like HIV-1, 
HIV-2 [8], SIV [15] and FIV [7], to MPMV [16], MMTV 
[17], MoMLV [18] and foamy virus [19]. In some cases, 

SHAPE reagents have helped to identify specific long 
range interactions and dimerization initiation sites [7, 17] 
that are hallmarks of retroviral RNA folding and behavior 
[20].

Perhaps the most important and surprising property 
of retroviral RNA structures that has been uncovered 
by the new wave of RNA secondary structure probing 
techniques is the degree of their flexibility. Where RNA 
sequences are duplicated within the genome or between 
genomic and spliced RNAs, it is becoming apparent that 
the different RNA structures formed by the same RNA 
sequence give it completely different functional proper-
ties. For example, polyadenylation and splice donor site 
choice between 5’ and 3’ ends of the retroviral genome 
have been observed to be due to the formation of differ-
ent RNA structures for foamy viruses [21]. RNA tran-
scribed from the 5’LTR folds to expose the major splice 
donor (mSD) site to the U1snRNP, which suppresses 
polyadenylation at this site, whereas at the 3’UTR the 
RNA fold sequesters the mSD from binding to the U1sn-
RNP, leading to RNA cleavage and polyadenylation. The 
authors were able to gain a more in-depth understanding 
of the biological roles of each part of the RNA structure 
by examining the RNA structures of mutants in addition 
to wild-type viral sequences;  such comparisons would 
have been prohibitively slow using previous technology. 
SHAPE data have also been used to show a link between 
the structural context of the 5’ mSD site in HIV-1 and 
the efficiency of genome dimerization [22]. Within one 
specific retroviral RNA sequence, though, it appears that 
there can be considerable structural variation. The many 
different models for HIV-1 dimerisation, some observed 
even within the same group, may be a reflection of the 
ability of this RNA to remodel multiple times [23, 24]. 
Indeed, it was recently shown that it is nearly impossi-
ble to introduce mutations into the RNA leader that have 
no effect on its structures, even in the single stranded 
regions [25]. Many groups have examined RNA struc-
tural changes using mutational analyses; stabilizing or 
preventing predicted structures from forming. However, 
as the number of plausible structural models for each 
individual RNA sequence increases it is becoming likely 
that many retroviral RNAs exist in a fine balance between 
several different structures, and that introduced muta-
tions may have unpredictable off-target effects on some 
of these, making it harder to identify all structures within 
the population. We recently developed a technique that 
avoids this concern by examining RNA structures within 
a native gel matrix [26]. In-gel SHAPE separates con-
formers of differing electrophoretic migration by native 
acrylamide gel electrophoresis. The gel piece containing 
each conformer is then physically isolated and soaked 
in SHAPE reagent, before recovering the RNA. Using 
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this technique a structural switch between monomeric 
and dimeric HIV-1 packaging signal RNA was instantly 
apparent, as the   dimerisation initiation site (DIS) was 
unreactive in monomeric RNA as well as in dimeric 
RNA. In-gel SHAPE has subsequently been used to 
examine two conformers of the HIV-1 RRE that had been 
structurally inseparable using atomic force microscopy 
[27]. The authors of the SHAPE study then used the in-
gel SHAPE results to design mutations that disrupted 
the Rev–RRE interaction [28]. Even when probing in 
solution SHAPE reagents can indicate the presence of 
multiple structures. Although the structure of Moloney 
murine sarcoma virus RNA derived using SHAPE prob-
ing was very similar to previous models, in one region 
a number of partially reactive nucleotides signified the 
presence of multiple structures, which the authors were 
then able to model [29]. The relatively even reactivity of 

SHAPE reagents with all four ribonucleotides can also 
help to distinguish and model alternative structures 
more accurately when probed in solution, by taking into 
account the proportion of RNA in each conformation 
and separating the overall SHAPE signal coming from all 
structures in the population into theoretical individual 
signals coming from the individual structures [11], on the 
basis that these must add up to give the overall SHAPE 
reactivity value. The more global mutagenesis technique 
mutate-and-map [30] may also prove useful for under-
standing the balances of structures present, as it has been 
applied to the study of riboswitches.

The flexibility of retroviral RNA does not necessarily 
limit it to a finite number of distinct structures, but also 
enables it to remodel during interactions with proteins 
or other ligands. The fast-acting SHAPE reagent ben-
zoyl cyanide has been used to study the folding pathway 
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of the RRE as it interacts with increasing amounts of the 
Rev protein [31]. Conversely, by identification of RNA 
sequences or regions with low SHAPE acylation sensi-
tivity and low Shannon entropy, SHAPE reagents have 
also been used to pinpoint retroviral RNAs that adopt 
a single, stable fold. This has been observed for various 
regions of the HIV-1 genome [32] and for the RNA leader 
of HIV-2 in the loose dimer state [8].

Functional mapping of RNA structures
The study of RNA structures is incomplete without an 
understanding of their functions. Retroviral RNAs inter-
act with host and viral RNAs and proteins, and several 
techniques to map and model interaction sites have been 
recently developed and applied to retroviruses. CLIP 
data will be discussed elsewhere in this edition and hence 
will not be discussed here. MIME (mutational interfer-
ence mapping experiment) is an in vitro approach, using 
protein ligand to capture mutated RNAs and Illumina 
sequencing to determine which mutated sequences 
retain the ability to bind to the ligand, and which muta-
tions prevent binding [33]. This approach highlighted the 
structural importance of SL1 to the Gag-binding process 
in HIV-1, as well as the defining the region containing the 
optimum RNA structures for Gag interaction as being 
nucleotides (nts) 227–337.

RNAs, and particularly those of retroviruses, often 
have the ability to switch structure in order to inter-
act with different cognate ligands. One disadvantage 
of using chemical or enzymatic probing agents to ‘foot-
print’ RNA-ligand interactions is that the disappearance 
of signal could indicate the presence of ligand blocking 
the access of the reagent, or it could indicate an RNA 
secondary or tertiary structural change, which may be 
distant from the ligand binding site. XL-SHAPE com-
bines identification of RNA structural changes using 
N-methylisatoic anhydride (NMIA), with protein binding 
site identification using cross-linking [34]. The technique 
has been used to model the Gag binding sites and ensu-
ing RNA structural changes in the HIV leader RNA dur-
ing the packaging process. Of course, neither MIME nor 
XL-SHAPE techniques provide direct information on the 
RNA–protein interactions necessary to form a mature, 
infectious virion, and data from in vivo techniques such 
as CLIP may not capture each of the RNA–protein inter-
actions that occur during virion formation and matura-
tion as some of these may be transient. It may be that the 
greatest achievements in understanding retroviral RNA 
structure–function relationships will come from a com-
bination of in vitro and in vivo techniques.

SHAPE has also been combined with evolutionary anal-
yses to identify conserved RNA structures of unknown 
function: low acylation sensitivity of a region indicates 

that it is likely to be structured. Zanini et  al. [35] used 
published SHAPE data and structural models to show 
that synonymous mutations that would destabilise the low 
SHAPE-reactivity RNA helices flanking the variable loops 
of HIV-1 gp120 are selected against, indicating the pres-
ence of an important RNA structural signal, and further 
structures exist elsewhere in the HIV-1 genome [36]. Evo-
lutionary and SHAPE analyses have also been combined 
to pinpoint conserved RNA structures with greater accu-
racy than using computational methods alone. A com-
parison of HIV, SIVmac and SIVcpz genomes identified 
previously known functional elements, alongside many 
that were previously unidentified [37].

RNA structures identified can be examined function-
ally by mutation and viral replication assay. In many 
cases, such mutations have provided confirmation of 
their importance to the viral lifecycle. For example, a sta-
ble RNA stem-loop observed by SHAPE in Rex-depend-
ent but not in Rex-independent human T-lymphotropic 
virus RNAs was subsequently found to promote nuclear 
retention and mRNA degradation, aiding the virus to 
temporally control its gene expression [38]. However, 
sometimes RNA structures that have been modeled 
using both SHAPE data and evolutionary analyses are not 
found to have an important role in viral replication, at 
least in cell culture [39].

In‑cell and in‑virion mapping of secondary structures
SHAPE reagents, alongside some of their longer-estab-
lished counterparts, diffuse across membranes and 
can thus be used to probe RNA structures inside liv-
ing cells. Such data are then examined by various next-
generation sequencing methods, and have begun to 
show fascinating insights into the cellular regulation of 
RNAs, and cellular regulation by RNAs. The structures 
of retroviral RNAs inside living cells have not yet been 
established, perhaps because of their enormous struc-
tural flexibility and low abundance, but technology to 
enable this has developed so rapidly that it is likely to 
be a relatively short time before we begin to see these 
results [40–42].

Several studies exist however that examine the struc-
tures of retroviral RNAs inside virions (in virio). An early 
study using RNAs prepared in different ways found lit-
tle structural difference between in vitro transcribed, ex 
virio and in virio structures of the HIV-1 leader [13]. Seif 
and colleagues examined the structures of wild-type and 
protease defective virions, and detected differences in 
SHAPE reactivity in the upper PBS stem and PBS internal 
stem-loop, enabling them to propose that Gag promotes 
partial annealing of tRNA to the HIV-1 PBS, with Ncp7 
then catalyzing a more extensive annealing as the virion 
matures [43].
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In virio and ex virio data are also beginning to be used 
to inform different aspects of retrovirology. Such data 
have been used to provide evidence for new models of 
HIV-1 dimerisation [44] as well as to understand the 
driving force for positive selection in HIV. Relative to 
other determinants, such as evasion of antibody or T cell 
responses, the maintenance of RNA structure was found 
to be the dominant factor [45].

RNA modifications such as 6-methyl adenosine (m6A) 
have recently been linked to control of RNA function. In 
HIV-1, m6A deposition was shown to be vital for viral 
RNA expression and function [46], although the role of 
RNA structure in modified RNAs is yet to be determined.

Structural routes to new therapies
The ability to examine RNA structure and structural 
changes so quickly has had knock-on effects on the 
development of therapeutics. Recently, SHAPE has been 
used to identify structural effects of small molecules that 
bind specifically to HIV-1 TAR RNA [47] and to SL3 (J 
Kenyon, unpublished data). Monitoring the structural 
perturbations caused by RNA binding drugs helps to 
understand their mechanism of action and also helps to 
ensure their specificity. When working with therapeutic 
RNAs rather than drugs, understanding the structure of 
the target HIV-1 RNA has proved to be extremely valu-
able. The efficacy of inhibitor shRNAs was found to cor-
relate with high SHAPE reactivity in both the seed region 
and a downstream flanking sequence, and the authors 
were able to apply this knowledge to their shRNA design, 
choosing targets in which these sequences were struc-
turally accessible, and resulting in improved success of 
this strategy [48]. The cellular process of trans-splicing 
has also recently been harnessed to couple an inducible 
lethality gene onto HIV-1 transcripts [49]. Trans-splicing, 
in which the splice donor and acceptor sites are initially 
on separate RNAs which are subsequently joined occurs 
naturally within cells, albeit to a much lesser extent than 
the constitutive cis-splicing process. Once again, the 
authors used published SHAPE reactivity information to 
identify RNA sequences whose structures would be most 
likely to promote trans-splicing. This approach resulted 
in a high degree of success, with proof of principle that 
multiple sites in the retroviral genome are targetable 
using this approach.

Three dimensional techniques
Structural analysis of retroviral RNA is a compelling 
necessity while designing synthetic drugs against specific 
molecular targets within it. And with steady RNA struc-
tural changes adopted to suit different functions through-
out the viral life cycle it is important to understand 
the spatial orientation of the various RNA structural 

domains, and their structural flexibility. Single molecule 
FRET (smFRET) can be performed on long RNAs but 
requires only small quantities of sample to predict native 
sequences in their physiological conditions [50]. It relies 
first on SHAPE data to predict 2D stuctures, which are 
then interpreted in 3D using smFRET-derived distance 
constraints. It works on the principle of energy transfer 
through dipole–dipole interactions between the donor 
and acceptor fluorophores conjugated to the RNA at spe-
cific locations. It can help to predict the intramolecular 
interactions with high resolution and helps to understand 
the complicated design of 3D conformational changes. 
The technique, coupled with molecular modeling, has 
been used to visualise the PBS and packaging signal 
domains of HIV-1 [51]. This showed a conserved kink 
turn motif, revealing a potential protein binding site that 
may facilitate Gag binding during RNA genome packag-
ing and subsequent tertiary structural changes. Small 
Angle X-ray Scattering (SAXS) also models large biomo-
lecular structures. As it does this based on their electron 
density it can be done without coupling fluorophores 
to the RNA, although it, too, relies on prior secondary 
structural prediction using SHAPE or similar techniques 
[52].

A SAXS study of the HIV-1 5’ UTR revealed that the 
PBS fold displays molecular mimicry of tRNA [53]. 
SAXS has also been employed to elucidate the tertiary 
structure of the RRE and to understand the dynam-
ics of Rev binding, showing a two-step model involving 
initial sequestration of some Rev binding sites until the 
RRE has bound Rev at a group of exposed sites, causing 
it to switch structure and exposing a further binding site 
[31]. SAXS has also been used to throw more light on the 
RRE’s nuclear export role of transporting unspliced and 
partially spliced RNAs [54]. Hydroxyl radical cleavage 
experiments have also been used to investigate the three-
dimensional architecture of retroviral RNAs, showing 
that secondary structural elements pack together rather 
than acting independently [55].

Of the methods that provide the greatest structural 
detail, enhancements in experimental NMR techniques 
have recently expanded the size of retroviral RNA struc-
tures able to be visualized. This is partly due to the imple-
mentation of 1H–13C correlated HMQC NMR, whereby 
short stretches of 13C-edited RNA are ligated to non-
edited RNA, allowing the observation of signals that 
can be assigned to the 13C edited RNA segment. Using 
this technique along with Adenosine interaction detec-
tion, the Summers lab proposed the monomer–dimer 
structural switch that was subsequently seen using in-
gel SHAPE [56]. Although not performed on as large 
a section of RNA, 2H-edited NMR was also used by 
the same laboratory to assign NMR signals to specific 
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residues and identify a three-way junction that the RNA 
is able to adopt, flattening SL2 [57]. 2H editing was also 
recently used to show that the dimerization contacts 
between strands are much more extensive than previ-
ously thought, extending beyond SL1 and to the U5: 
AUG region [58]. This raises intriguing possibilities about 
the structural maturation of the RNA after dimeriza-
tion is initiated. X-ray crystallography examines static 
RNA structures, hence this technique has been used to 
examine the structural basis of nucleic acid- protein com-
plexes, rather than large and flexible RNA molecules [59]. 
Although cryo-electron microscopy has so far been used 
in the retrovirus field mainly for the study of capsids [60] 
the incredibly fast moving nature of this field, as well 
as the success of current studies on large RNA–protein 
assemblies such as the spliceosome [61] suggests that this 
technique may soon provide RNA structural models for 
retroviruses.

Working with structure probing reagents: which 
to choose?
SHAPE reagents will all react with the ribose 2’OH 
according to backbone flexibility, and are similarly insen-
sitive to the base composition. The reaction kinetics vary 
between reagents, with the time the reagent is active for, 
before it is hydrolysed from milliseconds (benzoyl cya-
nide [62]) to hours (2-methyl-3-furoic acid imidazolide 
(FAI) [42]), and this is where the user must consider 
the experiment: for in vitro experiments in solution fol-
lowing dynamic changes in the RNA, BzCn will be the 
most informative reagent, when used to perform a series 
of timed snapshots of the RNA conformation. How-
ever, when probing inside cells the reagents with longer 
half-life have been shown to enable better probing, par-
ticularly with less abundant transcripts [63]. 1-methyl 
7-nitroisatoic anhydride (1M7) and NMIA have interme-
diate half-lives and are often used to probe in vitro tran-
scribed structures. Finally, if users wish to map structure 
on a finer level, including noncanonical interactions, the 
acylation profiles of NMIA and 1-methyl-6-nitroisatoic 
anhydride (1M6) can be compared. This can be useful not 
only for de novo analyses of retroviral RNA structure, but 
also to verify that experimental conditions used have not 
altered RNA structure, as was performed when exam-
ining the HIV-1 frameshift RNA structure [64]. Other 
biochemical or enzymatic probes can be used to further 
examine the RNA structure, with DMS able to identify 
some noncanonical interactions, and hydroxyl radical 
probing used to examine solvent accessibility of the back-
bone regardless of secondary structure [65]. A recent 
observation that there is substantial nucleotide bias in 
single- stranded regions of retroviruses, such as the pres-
ence of more than 50% As in single-stranded regions of 

HIV-1, means that if probing with a second type of rea-
gent, an appropriate one can be chosen- in the case of 
HIV-1, DMS would seem appropriate [66]. Whichever 
reagent(s) are chosen, they should first be titrated to 
ensure that the concentration the user is working with 
results in approximately one modification per RNA mol-
ecule, and not more.

Overcoming the limitations of SHAPE reagents
Although SHAPE reagents provide detailed information 
on the flexibility of the RNA backbone, interpretation 
of which nucleotide base pairs with which is generally 
inferred computationally, using minimal free energy 
modeling and programs such as RNAstructure [67]. To 
gain further insight into long-range interactions or alter-
native foldings of the RNA, techniques designed to per-
turb possible interactions can be employed. Antisense 
interfered SHAPE uses modified oligonucleotides such as 
LNAs that have higher affinity than their natural coun-
terparts for the native RNA. The antisense oligos are 
designed to outcompete a proposed native intermolecu-
lar interaction, rendering one side single-stranded. This 
is seen as an increase in backbone flexibility by enhanced 
SHAPE reagent binding, and was applied  to HIV-2 [8] 
and alternative foldings in HIV-1 [22], to identify differ-
ent types of long-range interactions in the murine musD 
retrotransposon transport element, [68], as well as to 
identify a long-range interaction formed from nonca-
nonical pairings in the Rev Response Element [31]. All 
of these accomplishments would have required prohibi-
tively laborious experiments if done using conventional 
probing reagents. The natural sequence variation found 
in retroviral RNAs can also guide structural modeling 
and the design of mutants that will not perturb the over-
all RNA structure [69].

Resolving and analyzing cDNAs by capillary 
electrophoresis: designing an experiment around available 
equipment
The limiting factor in capillary electrophoresis is likely 
to be the availability of an appropriate capillary sequenc-
ing machine and experiments may have to be tailored 
around the make and model to be used. Several pro-
grams are available for analysis; some of these necessi-
tate the use of particular fluorophores. The first of the 
analysis programmes to be established, SHAPEfinder 
software is Mac-specific and is rigid in its interpretation 
of each wavelength, necessitating the use of sets such as 
6FAM, VIC, NED and PET on an Applied Biosystems 
instrument, to run experimental and control samples 
and two sequencing ladders respectively [70]. However, 
by using four different fluorophore channels per capil-
lary experiment, fewer sequencing wells can be used. In 
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contrast, alternative software packages such as QuSH-
APE use only two fluorophore channels per capillary 
experiment, separating the SHAPE-modified cDNA and 
the unmodified control cDNA into two separate wells, 
each including one fluorophore channel as a ladder [71]. 
This enables the user to work with fewer fluorophore-
labelled oligonucleotide primers at the expense of per-
forming more capillary separations. This is particularly 
beneficial when examining a large RNA using multiple 
different primers, as users normally work with around 
one primer per 300 nt. A third recently developed anal-
ysis programme, RiboCAT, uses MS Excel and is thus 
more adaptable to different hardware [72]. Alternative 
programs are aslo available [73, 74]. When it comes to 
preparing the ladders for alignment of cDNA fragments 
with the nucleotide sequence they represent, several dif-
ferent strategies can be used. If RNA is abundant, lad-
ders can be manufactured by reverse transcription, 
incorporating a small proportion of defined ddNTPs 
[13]. When RNA concentration is limiting however, a 
sequencing ladder can be performed from a DNA tem-
plate using cycle-sequencing [7]. If the cycle sequencing 
ladder uses 7-deazadGTP to eliminate G-compressions 
which would otherwise distort the ladder, 7deazadGTP 
can also be incorporated during cDNA manufacture 
from SHAPE reagent probed RNAs [7]. Alternatively, it 
is possible to work with standard size markers for cap-
illary electrophoresis [72]. Although the great beauty 
of this technology is in its wide applicability due to the 
relative abundance of standard capillary sequencers, it is 
possible to adapt the sequencing equipment so that it is 
ultra-sensitive and can be used to examine femtomolar 
quantities of RNA [75]. Using this equipment, the same 
group examined differences in MoMLV gRNA struc-
ture inside immature and mature virions, showing that 
the immature virion contains RNA in the structure of a 
dimerization intermediate.

Drawbacks of capillary electrophoresis experiments
Capillary electrophoresis is commonly used to study 
molecules of over 50 nt in length. This is particularly if 
using primer extension, as is used to map acylation sites 
of SHAPE reagents. However, techniques exist to map 
SHAPE reagent binding to smaller RNAs also, such as 
SHAMS, which uses mass spectrometry to pinpoint 
acylation sites on small RNAs [76] and selective 2’OH 
acylation analysed by protection from exoribonclease 
[77].

Conclusions
The understanding of both viral and cellular RNA 
structures is becoming more vital for our understand-
ing of retrovirology in general, as the viral roles of RNA 

structure become more apparent. These disruptive tech-
nologies give retrovirologists the power to investigate 
and visualize such structures with relative ease. From 
distinct types of retrovirus it is clear that RNA structures 
are as vital to the lifecycle as protein structures, with viral 
protein function often dependent on viral RNA structure. 
The TAR-Tat interaction of HIV-1 has been understood 
for many years, but the disruptive technologies discussed 
in this article have established the importance of further 
interactions across retroviral genomes and genera.

Moreover, as the multiple roles of RNA in both viral 
and cellular processes become apparent, our growing 
knowledge of retroviral RNA behaviour helps to under-
stand their cellular counterparts. For example, an RNA 
stability element (RSE) in Rous sarcoma virus that maps 
to a region downstream of the Gag stop codon was exam-
ined by SHAPE and by mutational analyses, to determine 
the mechanism by which it prevents nonsense mediated 
decay (NMD) of the viral genomic RNA. The authors 
found that the RNA structures mediating this effect were 
separated at defined distances from one another within a 
155 nt region of the RNA, and proposed that this over-
all RSE structure acts as an insulator from the NMD 
machinery. Their results added weight to the argument 
that the exon junction complex is not required in order to 
identify a premature stop codon [78], and were followed 
up by an analysis of cellular binding partners of the RSE, 
identifying polypyrimidine tract binding protein 1 as the 
factor shielding both retroviral and cellular RNAs from 
the NMD machinery [79]. Such interesting windows into 
cellular RNA function are likely to widen as we pursue 
structural studies of retroviral RNAs.
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