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Abstract

Along with the rapid development of Intelligent Transportation Systems, traffic data collec-

tion technologies have progressed fast. The emergence of innovative data collection tech-

nologies such as remote traffic microwave sensor, Bluetooth sensor, GPS-based floating

car method, and automated license plate recognition, has significantly increased the variety

and volume of traffic data. Despite the development of these technologies, the missing data

issue is still a problem that poses great challenge for data based applications such as traffic

forecasting, real-time incident detection, dynamic route guidance, and massive evacuation

optimization. A thorough literature review suggests most current imputation models either

focus on the temporal nature of the traffic data and fail to consider the spatial information of

neighboring locations or assume the data follow a certain distribution. These two issues

reduce the imputation accuracy and limit the use of the corresponding imputation methods

respectively. As a result, this paper presents a Kriging based data imputation approach that

is able to fully utilize the spatiotemporal correlation in the traffic data and that does not

assume the data follow any distribution. A set of scenarios with different missing rates are

used to evaluate the performance of the proposed method. The performance of the pro-

posed method was compared with that of two other widely used methods, historical average

and K-nearest neighborhood. Comparison results indicate that the proposed method has

the highest imputation accuracy and is more flexible compared to other methods.

Introduction

Along with the rapid development of Intelligent Transportation Systems (ITS), traffic data col-

lection technologies have been evolving dramatically. [1, 2]. On the one hand, the emergence

of innovative data collection technologies such as remote traffic microwave sensor (RTMS),
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Bluetooth sensor, and GPS-based floating car method have made traffic data collection much

easier than before. [3–5].

Despite the development of technologies, the missing data problem still exists. Missing data

could be due to various reasons such as malfunction of sensors and loss of communication.

The Mobility Monitoring Program of the Texas Transportation Institute (TTI) reported that

after screening erroneous data, the complete rate of collected data can be anywhere between

16% and 93% with a median value of 67% [6]. Williams and Hoel [7] reported that the data

missing rate collected by Georgia’s statewide advanced traffic management system was 10% or

higher. The data missing rate of the freeway Performance Measurement System (PeMS) in Los

Angeles was found to be 15% [8]. Chandra and Al-Deek [9] reported a 15% missing rate of

data collected by loop detectors on I-4 in Orlando, Florida. An empirical study showed that

the average missing rate of data collected by Georgia NaviGAtor system at GA 400 was

between 4% and 14% [10]. In Beijing, China, the average missing rate of the daily traffic vol-

ume data was about 10% (4% due to malfunction of detectors and 6% due to other reasons)

with the missing rate of data collected by some detectors as high as 25% [11].

The missing data issue has posed great challenges for data based applications such as traffic

forecasting, incident detection, route guidance, and massive evacuation optimization. There-

fore, a lot of efforts need to be made to impute the missing data.

Most current imputation techniques could estimate a single value for the missing data

point. These techniques include heuristic imputation, prediction imputation, and statistical

learning imputation etc. The heuristic imputation methods fill the missing data point by aver-

aging data of the same time period on neighboring days or averaging data of neighboring time

periods of the same day. These methods are based on the assumption that traffic characteristics

are similar at the same time period of different days or the fluctuations of traffic data are low

during short time period [12]. Another group of heuristic methods are called pattern-similar

imputation methods which search for the most similar traffic data series from historical data

and use it to estimate missing data points [13]. These heuristic methods make good use of the

similarity and periodicity of traffic data. However, the local variation and unexpected changes

of traffic pattern could result in high imputation inaccuracy [14, 15]. To address this issue, two

advanced methods, Bayesian Principal Component Analysis (BPCA) and Probabilistic Princi-

pal Component Analysis (PPCA), were recently proposed by Qu et al. [11, 16]. Researchers

first show that traffic flow data follow Gaussian distribution and that principal component

analysis (PCA) can be used to retrieve the features of traffic flow. Then, a robust PCA is used

to filter out the abnormal traffic flow data that disturb the imputation process. The difference

between BPCA and PPCA is that BPCA is slower than PPCA but yields similar results. BPCA

is usually carried out first on a small sample to determine the important parameters. Then, the

imputation tasks are performed by PPCA with those parameters.

Prediction method is also an important way to impute data. Regression method is a classic

example. Al-Deek et al. [9] compared the feasibility and imputation accuracy of three regres-

sion models, multiple regression, time series, and pairwise regression. They found that qua-

dratic model performed better because of its ability to capture nonlinear relationships among

variables. To impute missing traffic data during holidays, Liu et al. introduced a new proce-

dure using non-parametric regression, the K-nearest neighborhood (KNN) method, estimate

missing values for different types of highways on holidays [17]. Other regression models that

have been used for imputation include ARIMA [18], support vector regression [19], expo-

nential smoothing [18], neural network [20], hidden Markov Model [21] and so on [12]. How-

ever, these prediction methods can only use data before the missing data point and ignore the

data after the missing data, which means they cannot take full advantage of the data set for

imputation.

A Kriging based spatiotemporal approach for traffic volume data imputation
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Statistical learning imputation methods assume that data are missing at random. Specifically,

the missing data are considered as realizations of random variables characterized by a certain

probability distribution function. Antonio et al. proposed an incremental approach theoretically

motivated by the Statistical Learning Theory of Vapnik, and provided a new paradigm for miss-

ing data imputation [22]. Ma et al. employed copula theory to build a connection between the

correlation function and the marginal distribution function of traffic flow, and proved effective-

ness of the method to impute missing data in large-scale transportation networks [23].

Most of the methods mentioned above only use temporal information for imputation,

while spatial information is not well used. As traffic flows from upstream to downstream, the

traffic stream characteristics at a certain location are usually closely related to those at neigh-

boring locations. The incorporation of surrounding traffic information has been proved to be

useful to improve traffic prediction accuracy [24–26]. Literature review results show that Mar-

kov chain Monte Carlo (MCMC) [10] and PPCA [11] are two representative methods that use

both temporal and spatial information. However, both MCMC and PPCA methods assume a

probability distribution model of the data [12]. This assumption limits the use of these meth-

ods since when the data does not follow a specific distribution these methods may generate

inaccurate imputation results. As a result, this paper proposed an alternative method, a Kriging

based method, that does not assume the data follow any probability distribution and that can

fully use both temporal and spatial information, to impute data.

The rest of the paper is organized as follows. Section 2 describes the proposed Kriging

based imputation approach and other benchmark models that are used for comparison. Study

location and data are described in Section 3. A brief description of data missing patterns and

missing ratios are presented in Section 4. Section 5 compares imputation accuracy of proposed

approach with benchmark models, historical average and KNN. Concluding remarks are given

in section 6.

Methodology

Kriging based spatiotemporal imputation approach

Background about Kriging. Kriging originated in the mining industry in the early 1950’s

as a means of improving ore reserve estimation and has been used as synonym for geo-statisti-

cal interpolation for many decades. Traditionally, the Kriging method only deals with spatial

variables. Consider a set of spatial data z (μi) of an attribute z at location Ui, i = 1, 2, 3, ..,n,

where U is a vector of spatial coordinates μi = (xi, yi). The task of data imputation is to estimate

missing values of z at a set of m locations. Generally speaking, Kriging is just optimal interpola-

tion method based on regression using observed surrounding data points, weighted according

to covariance values. Compared with other methods, the Kriging method has following advan-

tages: 1) It can reduce the effect of data clustering by assigning data points within a cluster less

weight; 2) It can produce a measure for possible estimation error (Kriging variance), along

with the estimation of the missing values [27].

Kriging based spatiotemporal imputation. Traffic stream characteristics change over

time and space. Traffic volume at a location is not only correlated with the traffic volumes at

upstream and downstream locations but also correlated with volumes of the previous and next

time step [28]. Thus, time dimension needs to be considered in the Kriging model to better

estimate the missing data.

In the example of traffic volume, each data point is referenced by its temporal timestamp ti,
and spatial location μα = (xα, yα). Different from the aforementioned traditional spatial Kriging

models, the coordinates are simplified as μα = xα as roads can be seen as a longitudinal system

with only one spatial dimension, in which xα is the mile marker.

A Kriging based spatiotemporal approach for traffic volume data imputation
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In the space-time framework, traffic volume is formulated as Q (μα, ti); α = 1, 2, . . ., n; i = 1,

2, . . ., m. Similar to the spatial models, the covariance is defined as the variance of the mean

squared difference between data separated by a given spatial and temporal lag (hs, ts):

Cðhs; htÞ ¼ E½ðzðua; taÞ � zðua þ hs; ta þ htÞÞ
2
� ð1Þ

To be consistent with the common practice in spatial statistics, experiment semivariogram

is computed as half of covariance:

ĝs;t hs; htð Þ ¼
1

2
E ðzðua; taÞ � zðua þ hs; ta þ htÞÞ

2
� �

ð2Þ

In the ordinary space-time Kriging system, the missing value Q
�

(μ, t) can be estimated as

weighted average of values of surrounding locations:

Q�ðu; tÞ ¼
P

la;iðu; tÞQðua; tiÞ with
P

laðu; tÞ ¼ 1 ð3Þ

The weights λα, i (μα, ti) assigned to each neighboring data point are calculated by minimiz-

ing the prediction variance:

s2ðu; tÞ ¼ Var ½Q�ðu; tÞ � Qðu; tÞ�; ð4Þ

while maintaining unbiasedness of the estimated value Q
�

(μ, t).
As the calculation of covariance is based on both spatial and temporal distance between

data points, the spatial and temporal correlations of traffic volumes are well considered and

utilized in the model. In this study, the Gaussian variogram method is used to approximate

empirical variogram in the proposed spatiotemporal imputation method. It should be noted

that the temporal and spatial properties of data are not similar, which makes it difficult for the

variogram to capture the temporal and spatial variability. To address this issue, the very

straightforward solution is to regard time dimension as the third orthogonal dimension and to

extend traditional 2-dimensional Kriging to a 3-dimensional Kriging. In addition, the tempo-

ral dimension has to be rescaled to align with the spatial directions. All the works mentioned

above are implemented using R studio and related packages.

Benchmark imputation methods for comparison

To evaluate the performance of the Kriging based spatiotemporal approach, the results were

compared with those of two classical imputation models, historical average and KNN.

Historical average (same time and weekdays and same stations). The historical average

model is a widely used prediction model [29]. A missing data point is estimated by averaging

data points of the same location at the same time of the day on the same day of the week. To be

more robust to extreme values, the historical median can be used too.

K-nearest neighborhood. Because the data were recorded every 30 seconds by sensors,

2880 data points were collected every day (2880 = 24h � 60min/h � 60s/min / 30s). In order to

implement KNN method [30], the traffic volume data needs to be reformatted as a 2880×(s� d)
matrix), where s is the number of stations and d is total number of days. After the transforma-

tion, the data collected at a given station on a specific day is considered as a column of the

matrix.

For the column with missing values, the Euclidean distances between this column and

other columns were calculated to find k nearest neighbors. Finally, the weights for the k nearest

neighbors were derived and the estimation of missing values were the weighted averages of k

nearest neighbors [31].

A Kriging based spatiotemporal approach for traffic volume data imputation
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Evaluation criteria

Mean absolute deviation (MAD) and root mean squared error (RMSE) were used to compare

imputation results of proposed approach with benchmark methods. Suppose there were n
missing data points in the test dataset with Vi

act as ground truth for ith missing data point and

Vi
est as the estimated value for the missing data point. The two measures could be calculated as

follows:

MAD ¼
Pn

i jV
i
act � Vi

estj

n
ð5Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i ðVi
act � Vi

estÞ
2

n

s

ð6Þ

Data source and study locations

Smart Way [32], a key program of Tennessee’s intelligent transportation system, uses solar-

powered nonintrusive RTMS to collect real-time highway traffic information (including vol-

ume, speed and occupancy). The collected data are sent to the traffic management center. The

data used in this study are collected by these RTMS radars installed along interstates across

Tennessee. Vehicle presence, traffic volume, speed, and occupancy per lane are recorded every

30 seconds by these sensors [33].

To better identify data missing patterns, a long period of 33 days of data (from April 29 to

May 31, 2013) are collected for six RTMS stations along Ellington Parkway in Nashville, Ten-

nessee [34]. The detailed description of RTMS stations is presented in Table 1 and their loca-

tions are given in Fig 1. As the data are collected every 30 seconds, a total of 570,240

(2880×33×6) data points would be obtained if no data were missing.

Different from previous studies, imputation was performed on the raw data in this study

instead of aggregated data to prevent information loss during the aggregation process. The

data description and missing rates are shown in Table 2. Numbers in parenthesis indicate cor-

responding standard errors. The average count means the average number of vehicles that

were recorded by sensors over 30 seconds.

Data missing rates

To understand RTMS radars’ performance, a boxplot of missing rates by station and day of the

week is shown in Fig 2. It shows that the performance of a station varies across days and the

performance of different stations on the same day also varies significantly. Station 115 usually

has the lowest data missing rates with only a few exceptions. In contrast, station 117 has the

highest data missing rates across the week.

Table 1. Description of RTMS stations.

Station Direction Location Lanes Mile marker

115 Northbound Ellington Parkway @I24 2 10.6

117 Northbound Ellington Parkway @Cleveland 2 11.4

119 Northbound Ellington Parkway @Granada 2 11.8

121 Northbound Ellington Parkway @Douglas Ave 2 12.2

123 Northbound Ellington Parkway @South of Trinity 2 12.4

124 Northbound Ellington Parkway @Trinity 2 13.0

https://doi.org/10.1371/journal.pone.0195957.t001
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Evaluation of imputation performance

Experiment design of data missing scenarios

A complete data set is preferred to train the proposed and benchmark models and to evaluate

their performance. A close look at the data reveals that the data collected by station 119 on

May 17, 2013 has a low data missing rate, 0.03% (only one data point is missing), and thus is

used in this study. Another reason for choosing station 119 is that there are both upstream sta-

tions and downstream stations, which means there are both upstream and downstream infor-

mation available.

To compare the imputation performance, imputation methods are tested based on simu-

lated scenarios with different data missing rates. The missing rates are set to be different per-

centiles of the actual missing rates for all stations during the 33 days of the study. Also, the

Fig 1. RTMS stations for this study.

https://doi.org/10.1371/journal.pone.0195957.g001

Table 2. Data description.

Station number Lane Average speed (mi/h) Average count Missing rate

115 1 47.41 (22.67) 5 (4) 3.19%

2 36.63 (31.47) 2 (3)

117 1 38.46 (33.65) 3 (4) 33.83%

2 25.94 (31.75) 2 (4)

119 1 57.85 (21.71) 5 (4) 14.27%

2 37.77 (27.38) 3 (5)

121 1 41.95 (17.56) 5 (4) 15.28%

2 40.47 (24.18) 4 (4)

123 1 43.41 (26.52) 4 (5) 18.77%

2 43.22 (26.63) 4 (5)

124 1 40.06 (18.46) 4 (3) 17.28%

2 35.26 (21.38) 3 (4)

https://doi.org/10.1371/journal.pone.0195957.t002
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missing data points are generated randomly. The simulation process for the simulation is as

follows:

1. Choose a specific data missing rate among 25%, 30%, 35%, . . ., 75% percentiles of missing

rates of all stations during the study period;

2. Based on the missing rate selected above, generate the number of points to be flagged as

missing in the dataset;

3. Generate missing data points randomly;

4. Repeat step 1 to 3 for different missing rates to generate corresponding scenarios;

5. Perform imputation on these generated scenarios using the proposed method and bench-

mark methods, and compare their results.

For the whole day of May 17, 2013, the traffic was congested during the rush hours and was

in free-flow condition during the non-rush hours, just like the other days. Since the missing

data points were generated randomly, with missing rate ranging from 1.0% and 36.1%, the

missing data was likely to cover both free-flow conditions and congested conditions.

Imputation performance

The proposed imputation method and the benchmark methods were tested on 11 different

scenarios. The semivariogram is shown in Fig 3. Imputation results are shown in Table 3 and

Fig 4. It can be seen from the table that the proposed imputation method is more accurate

than the other two methods in most scenarios. Only when the missing rate is lower than 1%,

the performance of the historical average method is better than the proposed imputation

method. KNN method usually has the lowest imputation accuracy. This may be due to that

Fig 2. Boxplot of data missing rates by station and day of the week.

https://doi.org/10.1371/journal.pone.0195957.g002
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there are only three features in this study for KNN to determine the nearest neighbors while

KNN usually needs more than three features to obtain a reliable result [1].

Conclusions

The paper presents a Kriging based spatiotemporal data imputation approach that is able to

fully utilize the spatiotemporal information of the traffic data and that does not assume the

data follow any distribution. As traffic flows from upstream to downstream, the traffic stream

characteristics at a certain location are usually related to those at neighboring locations. So the

traffic stream characteristics at upstream and downstream locations can be used to impute the

missing value at a specific location. Besides, the traffic characteristics of a specific location at

a certain time are also related to those of previous/future days or time periods. Therefore, a

Kriging based imputation method that considers both temporal and spatial information is

proposed. Compared with KNN and historical average, the proposed method has higher

Fig 3. Initial variogram.

https://doi.org/10.1371/journal.pone.0195957.g003

Table 3. Performance of proposed approach.

Quantile % Missing MAD(Kr) MAD(H) MAD(Kk) RMSE(Kr) RMSE(H) RMSE(Kk)

25% 1.0% 3.65 3.06 5.63 4.66 4.16 7.26

30% 1.4% 2.63 3.04 3.81 3.46 3.89 5.25

35% 1.8% 3.21 3.03 5.33 4.22 4.44 6.89

40% 2.8% 2.78 3.16 4.42 3.86 4.46 6.25

45% 4.4% 3.00 3.40 4.90 4.07 4.72 6.37

50% 6.0% 2.85 3.11 4.06 3.88 4.52 5.78

55% 8.3% 2.84 3.11 4.39 3.96 4.52 5.99

60% 13.9% 2.85 2.93 3.99 3.93 4.13 5.55

65% 20.7% 2.70 3.20 4.16 3.71 4.44 5.75

70% 31.1% 2.77 3.01 4.18 3.87 4.26 5.87

75% 36.1% 2.66 3.07 4.00 3.71 4.30 5.68

Note: Kr represents the proposed imputation method, H represents the historical average method, and Kk represents the KNN method.

https://doi.org/10.1371/journal.pone.0195957.t003
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imputation accuracy in ten out of the eleven generated scenarios. Only when the data missing

rate is lower than 1%, the performance of the historical average method is better than the pro-

posed imputation method. It suggests that the historical average method is more suitable for

the scenarios in which only a few data points are missing. This study also finds that the KNN

method has the lowest imputation accuracy. The result of KNN may be more reliable when

there are more features to determine the nearest neighbors are available.
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