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Objective: The purpose of this study was to identify potential therapeutic targets by

examining the hub genes contributing to progression of intracranial aneurysm (IA) in

patients with hypertension.

Methods: The bulk RNA sequencing (RNA-seq) datasets of hypertension and IA were

obtained from the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo) database.

These data were then used to calculate disease-related differentially expressed genes

(DEGs) at the individual level. An scRNA-seq dataset of patients with abdominal aortic

aneurysms (AAA) was used to analyze monocyte/macrophage-related DEGs. On the

basis of the DEG data related to monocytes and macrophages, a TF-genes network

has been developed. Hub genes and core sub-networks have also been identified.

Furthermore, the key genes have been validated in an external cohort.

Results: From combined monocyte and macrophage-derived DEGs from abdominal

aortic aneurysms, five hub DEGs were detected, including IFI30, SERPINE1, HMOX1,

IL24, and RUNX1. A total of 57 genes were found in the IA bulk RNA-seq dataset.

A support vector machine-recursive feature elimination algorithm (SVM-RFE) was

applied to further screen the seven genes (RPS4Y1, DDX3Y, RUNX1, CLEC10A,

PLAC8, SLA, and LILRB3). RUNX1 was the hub gene that regulated NFKB1 in the

monocyte/macrophage-related network. And RUNX1 is implicated in IA progression

by regulating hematopoietic stem cell differentiation and abnormal platelet production,

according to gene set enrichment analysis.

Conclusion: Among patients with hypertension, RUNX1 in monocytes and

macrophages was associated with a higher risk of IA through its regulation of NFKB1.
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INTRODUCTION

Intracranial aneurysm (IA) is a cerebrovascular disease caused
by the limited dilation of cerebral arteries (1). Its incidence is
approximately 3.2%, and it is higher in women than in men (2–
4). IA ruptures and bleeding are associated with high morbidity
rates and mortality rates (5). Subarachnoid hemorrhage (SAH)
results from an IA rupture or bleeding, and accounts for 70–
85% of all spontaneous SAHs (6). In addition, IA can induce
intracerebral or subdural hematoma (7, 8). Hypertension is a
common risk factor for IA as well as an independent risk factor
for IA rupture (9–11). IA poses a significant risk to patients with
hypertension. Therefore, IA progression in this patient group
should be prevented.

The role played by monocytes/macrophages in the
pathogenesis of IA has been demonstrated in recent studies.
Development of IA involves complex pathophysiological
processes, such as endothelial inflammatory responses triggered
by altered hemodynamics and genetic factors (12, 13). Changes
in cerebral artery hemodynamics can trigger a prolonged and
excessive inflammatory response in the vessel wall, leading to
the development, growth, and rupture of IA (13). Cell death
in the vessel wall and destruction of the extracellular matrix
can occur as a result of this chronic inflammation caused
by the recruitment of monocytes/macrophages (14). During
inflammation, monocytes can infiltrate the vessels and become
macrophages, which modulates the immune response (15).
Macrophages of the M1 type can release cytokines to increase
the inflammatory response and recruit further macrophages
(16). It is also possible for M1-type macrophages to remodel
the blood vessels in addition to releasing cytokines (17). By
inhibiting macrophage recruitment and accumulation in the
vessel wall of individuals with IA, the incidence and size of IA in
animal models will be significantly reduced (18). Monocytes and
macrophages play an important role in IA pathogenesis, but the
mechanism is not known.

Cells are the basic unit of life, which can communicate
via two distinct pathways (paracrine and autocrine) to
regulate metabolism, differentiation, and other biological
functions (19). Monocytes and macrophages in a hypertensive
microenvironment may cause IA through scRNA-seq analysis.
The rapid development of single-cell sequence technologies
has allowed previous studies to collect gene expression data
at the single-cell level in recent years (20–24). The analysis of
single cells can identify the mechanisms of cellular interactions
and is essential for establishing the molecular regulation of
diseases at the microscopic level (25–28). Single-cell RNA
sequencing analysis revealed that megakaryocytes and a few
monocyte subpopulations may significantly elevate cytokine
levels in patients with severe coronavirus disease 2019 (29).
We hypothesized that single-cell analysis could provide insight
into possible mechanisms underlying the development of
hypertension-induced IA.

Abbreviations: AAA, Abdominal aortic aneurysm; IA, Intracranial aneurysm;

RUNX1, Runt-related transcription factor 1; SAH, Subarachnoid hemorrhage,

SVM-RFE, Support Vector Machines–Recursive Feature Elimination algorithm.

This study examined hub genes that contribute to IA
progression among patients with hypertension and identified
potential therapeutic targets for preventing and reducing the
risk of IA, thereby lowering the risk of neurovascular diseases
including cerebral hemorrhage.

METHODS

Data Acquisition
First, the Gene Expression Omnibus (GEO) database was
searched for IA-related bulk and single-cell RNA-seq datasets. To
investigate the possible role of hypertension in IA development,
the keyword “Hypertension” was retrieved from the GEO dataset
to obtain HT-related datasets. The filtering criteria for the
datasets were as follows: First, bulk RNA-seq datasets were
derived from human samples, and each dataset contained at
least 10 samples. Second, single-cell RNA-seq datasets were
assigned as the control design. Transcriptomic data from the
peripheral blood mononuclear cells (PBMCs) of 11 patients
with hypertension and 10 healthy controls (HCs) were collected
from the GSE75360 dataset to analyze hypertension-related
differentially expressed genes (DEGs) according to the set
conditions (30). The mRNA transcriptomic data from 44 IA
samples and 16 HC samples of the intracranial cortical artery
from the GSE122897 dataset were used to analyze IA-related
DEGs. The GSE13353 dataset contains 11 ruptured and 8
unruptured intracranial aneurysm samples, and this dataset was
used as an external validation cohort in this study (31). To
assess the transcription of AI-related genes at the single-cell
level, we included a single-cell RNA-seq dataset (Gene Expression
Omnibus accession no. GSE166676) with four cases of abdominal
aortic aneurysm (AAA) and two cases of non-aneurysmal
control (NAC) among patients with atherosclerotic occlusive
disease after a cautious examination (32). The single-cell RNA
sequencing (scRNA-seq) dataset contains transcriptomic data
from 14,088 cells. All analyses and plots were created using R
(version 4.0.2). Differences between groups were assessed using
the Wilcoxon rank-sum test.

Quality Control and Data Merging of
ScRNA-Seq Data
First, the R package Seurat (version 4.0) was used for the quality
control of scRNA-seq data from AAA and NAC samples (33).
The metrics used for quality control included the number of
gene signatures detected in each cell, total RNA count, and
proportion of mitochondrial and hemoglobin genes expressed.
High-quality data from the scRNA-seq dataset were screened by
removing cells containing < 200 or > 2,500 genes as well as cells
with > 10% of mitochondrial genes. Finally, we obtained 9,796
cells for subsequent analysis. The “SelectIntegrationFeatures”
function was then used to identify the top 2,000 highly
variable genes shared among the six samples. Further, the
“FindIntegrationAnchors” function was then used to find the
anchors from the highly variable genes. Finally, by applying
the “IntegrateData” function, the scRNA-seq data from the six
samples were combined for subsequent dimension reduction and
clustering analysis.
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Dimensionality Reduction, Clustering, and
Annotation of scRNA-seq Data
The uniform manifold approximation and projection (UMAP)
algorithm was used to analyze and visualize cell clustering
(34). The top 30 principal components (PCs) were selected to
further perform UMAP and clustering analysis. We first used
SingleR (version 1.4) to predict the cell types of individual
cell clusters (35). The Database of Immune Cell Expression
(DICE) and Monaco Immune Cell Data were selected as the
reference datasets to predict the types of immune cells in the
IA single-cell dataset. Then, the cell type predictions were
manually validated against the marker molecules of immune cells
from the CellMarker (http://biocc.hrbmu.edu.cn/CellMarker/
index.jsp) website to complete the final cell annotation.

Extraction and Differential Analysis of
Target Cell Populations
According to a literature review, monocytes/macrophages play
an essential role in IA progression (36). Therefore, we further
included monocytes/macrophages for subsequent analysis. First,
the RNA transcripts of all genes in the monocytes/macrophages
between the AAA and NAC groups were subjected to differential
expression analysis. Two approaches were used to identify
DEGs between the two groups. The first approach applied the
“FindMarker” function to identify DEGs between the two cell
populations. The other approach used DESeq2 to the constructed
pseudo-bulk RNA data after establishing the pseudo-bulk RNA-
seq data for differential expression analysis. DEGs identified with
these two approaches were combined as monocyte/macrophage-
related DEGs.

Differential Analysis of Bulk RNA and
Identification of Shared DEGs
Based on the type of bulk RNA-seq data, the limma or edgeR
package was used for differential expression analysis. We applied
the limma package for the differential analysis of FPKM-type
RNA data and obtained IA-related DEGs (37). The R package
“edgeR” was used to identify hypertension-related DEGs and
to perform the differential analysis of count-type RNA data
(38). DEGs were screened with a threshold of P < 0.05.
Subsequently, we performed intersection analysis of IA-related
DEGs, hypertension-related DEGs, and monocyte/macrophage-
related DEGs to obtain shared DEGs, which were considered as
genes of interest (GOIs).

Support Vector Machines–Recursive
Feature (SVM-RFE) Elimination Model
Construction and Variable Selection
Intersection analysis of IA-related DEGs and
monocyte/macrophage-related DEGs revealed 57 shared DEGs.
Then, using the bulk RNA-seq data for IA, we incorporated
these 57 genes into the Support Vector Machines–Recursive
Feature Elimination (SVM–RFE) model to predict the incidence
of IA. This model can be applied to select the optimal number of
variables that must be included in the model and can yield the
most relevant variables for classification prediction (39).

TF-Gene Network Construction and
Functional Pathway Enrichment Analysis
To explore the significant TF regulatory network in
monocytes/macrophages, we applied the TRRUST (version
2.0) database to predict the TF–gene pairs corresponding
to monocyte/macrophage-related DEGs (40). Cytoscape
(version 3.9) was used to visualize this TF–gene network,
and the Molecular Complex Detection plug-in was further
used to identify the core sub-networks in this network
(degree cutoff = 2, node score cutoff = 0.2, and max
depth= 100).

To explore the potential pathways involved in
DEGs, we used the clusterProfiler R package for
Kyoto Encyclopedia of Genes and Genomes and Gene
Ontology (GO) analysis as previous research (41, 42).
Gene Set Enrichment Analysis (GSEA) was applied
to analyze the functional pathways of enrichment of
core genes at the individual and cellular levels. The
“c2.cp.v7.2.symbols.gmt [Curated]” gene set downloaded
from MSigDB Collections (https://www.gsea-msigdb.org/gsea/
msigdb/) was used as the reference gene set. The filtering
threshold for differences in functional pathways was set
at P < 0.05 (43).

RESULTS

Quality Control and Annotation Results for
scRNA-seq Data
First, we performed quality control on the scRNA-seq data of
arterial tissue. The Figure 1A shows the distribution of total
NRA counts, the number of gene signatures, and the proportion
of mitochondrial gene expression and hemoglobin-related
gene expression in cells before filtration. Following the pre-
defined filtering conditions, 9,796 cells were included in the
subsequent analysis (Figure 1B). UMAP showed that each cell
cluster overlapped between the two groups and between the six
samples. Therefore, data integration eliminated the batch effect
(Figures 1C,D). Data were reduced in dimension and clustered
into 21 cell clusters (Figure 2A). Figures 2B,C show four and
eight cell clusters annotated using the DICE and Monaco
reference datasets, respectively. Among them, monocytes
had a relatively large overlap between the two annotation
methods. Subsequently, we applied cellular annotation with
nine cellular marker genes from CellMarker, which were
consistently expressed between the two groups (Figure 2D).
Figures 3A,B illustrate the expression of these nine cell markers
within each cluster of cells. Among them, CSF1R was used
to annotate monocytes/macrophages, CD14 to annotate
monocytes, CD68 to annotate macrophages, CD3D and CD2
to annotate T cells, PRF1, and KLRF1 to annotate NK cells,
ITGAX to annotate dendritic cells, and CD19 to annotate B cells.
Finally, four cell types were annotated by combining the cell
annotation results of SingleR and CellMarker, including T cells,
B cells, NK cells, and monocytes/macrophages (Figure 3C). A
significant difference in the percentage of T cells was observed
between the AAA and NAC groups (p 0.05) (Figure 3D). In
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FIGURE 1 | Quality control and cell clustering of single cell data. (A) Scatter plot of quality control metrics for scRNA-seq data. The red dashed line represents the

threshold used to filter out high quality transcriptomic data. pMT: percent of mitochondrial counts; pHB: percent of hemoglobin RNA counts. (B) Violin plots showing

the distribution of cell characteristics after quality control. (C,D). UMAPs show the results of cell clustering based on the top 30 principal components, color coded by

(C) tissue type, or (D) patient.

addition, the proportion of monocytes/macrophages differed

significantly between samples in the AAA group. Thus,

monocytes/macrophages might be involved in the different

stages of IA progression.

Results of Differential and Intersection
Analyses
In total, 2,102 monocytes/macrophages were extracted and
used for differential analysis between the AAA and NAC
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FIGURE 2 | SingleR annotation of cell clusters. (A) The UMAPs show a distribution of 21 cell clusters in the AAA and NAC groups, respectively. (B). Application of cell

annotation to the DICE reference dataset.DICE: Database of Immune Cell Expression (/eQTLs/Epigenomics). (C) Cell annotation using Monaco Immune Cell Data. (D)

Heat map showing good concordance in the expression of cellular marker genes between AAA and NAC groups.
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FIGURE 3 | Cell annotation in conjunction with CellMarker. (A) UMAPs show the results of applying the marker genes in CellMaker to annotate cells. (B) The bars

depict the percentage of each cell type in each tissue type and patient. (C) UMAPs show the expression of cellular marker genes in cells. (D) Violin diagram depicting

cell marker gene expression in each cell cluster.

groups. Further, DESeq2 and FindMarker identified 419 and
539 DEGs, respectively, with a total of 869 genes after
removal of intersections. Then, 2,550 and 3,079 DEGs were
identified from the bulk RNA-seq data of HT and IA,
respectively. These genes of interest (GOIs) were annotated in
the volcano map (Figures 4A,B). The top 20 upregulated and
downregulated DEGs in AAA identified by FindMarker and
DESeq2, respectively, are shown in Figures 4C,D. To further
explore the functional pathways that are jointly dysregulated
in hypertension and IA, GO function enrichment analysis
of the 95 DEGs common to HT and IA was performed.
Figures 4E,F show the pathways that are jointly upregulated
and downregulated in hypertension and IA, respectively. Finally,
cross-tabulation analysis revealed that five GOIs, including IFI30,
SERPINE1, HMOX1, IL24, and RUNX1, were found to be
associated with hypertension, IA, and monocytes/macrophages
(Figure 4G). And the differential expression of IFI30, SERPINE1,

HMOX1, IL24, and RUNX1 were shown in the volcano
plot (Figures 4A,B).

SVM–RFE Analysis of the Expression
Distribution of Hub Genes in the Bulk RNA
of IA
In total, 57 genes were identified as shared DEGs in
monocytes/macrophages from AAA and IA (Figure 4G).
These DEGs were then further screened by applying SVM–RFE
to the bulk RNA-seq dataset from IA. The variable screening
results of the SVM–RFE algorithm showed that the IA prediction
model constructed from seven gene features (RPS4Y1, DDX3Y,
RUNX1, CLEC10A, PLAC8, SLA, and LILRB3) had the highest
accuracy (Figure 5A), with an area under the curve (AUC) of
0.862 (Figure 5B). This seven-gene SVMmodel was validated by
ROC analysis with the GSE13353 dataset as an external cohort
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FIGURE 4 | Differentially expressed genes and intersection analysis. (A,B) Volcano plots showing the results of tests for differentially expressed genes in (A) HT, and

(B) IA, respectively, and the differences in expression of GOIs are marked in the plots. (C,D). Differentially expressed genes in monocytes/macrophages obtained by

applying (C) FindMarker, or (D) DEGs. (E,F) Differential gene-enriched (E) up-regulation pathway and (F) down-regulation pathway shared in HT and IA. (G)

Intersection analysis of HT-associated DEGs, IA-associated DEGs and monocytes/macrophages-associated DEGs revealed five GOIs.

(AUC: 0.812) (Figure 5C). Figures 5D,E depict the ROC curves
for each of the seven genes (AUC: 0.601–0.817). The above
studies suggest that these genes (RPS4Y1, DDX3Y, RUNX1,
CLEC10A, PLAC8, SLA, and LILRB3) can predict the prevalence
of IA. Figure 5F depicts the expression distribution of these
seven genes in the bulk RNA of IA. By analyzing the heat map,
RUNX1, CLEC10A, PLAC8, SLA, and LILRB3 were found to be
highly expressed in IA, while RPS4Y1 and DDX3Y were lowly
expressed in IA.

RUNX1 As a Hub Gene in IA Progression
Determined via Network Analysis and
Intersection Analysis
We analyzed and constructed the TF regulatory network in
monocytes and macrophages (Figure 6A). In addition, the
intersection analysis of the seven genes and five GOIs used to
build the IA prediction model revealed that RUNX1 was the hub

gene (Figure 6B). In the PPI network, RUNX1 was responsible
for regulating four downstreammolecules. According to the core
sub-network of this PPI network, NFKB1, regulated by RUNX1,
is the hub gene of the entire network (Figure 6C). Therefore,
RUNX1was identified as a hub gene in the IA process by network
analysis and crossover analysis.

Correlation Between RUNX1 and IA
Progression
We performed GSEA analysis of monocytes/macrophages
in the single cell dataset. GSEA showed phospholipase
C-mediated cascade FGFR4, dopaminergic neurogenesis,
and RHO GTPases activate PAKs were downregulated in
monocytes/macrophages upregulated with RUNX1 (Figure 6D).
Based on GSE122897, GSEA was also further performed
to explore the functional pathways enriched for RUNX1 at
the individual level (Figure 7). Moreover, it revealed that in
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FIGURE 5 | Construction and variable selection of the intracranial aneurysm prediction model using the Support Vector Machines–Recursive Feature Elimination

(SVM–RFE) algorithm. (A) Broken line graph of the number of genes identified using the SVM–RFE model and the accuracy of the model. Hence, the highest accuracy

can be achieved using the SVM model constructed from seven genes. (B) Receiver operating characteristic (ROC) curve based on the SVM model constructed from

these seven genes, with an area under the curve (AUC) value of 0.862. (C) Validation of this seven-gene SVM model by ROC analysis with an external cohort. (D,E)

ROC curves showing the AUCs of RUNX1, LILRB3, PLAC8, SLA, RPS4Y1, CLEC10A, and DDX3Y. (F) Heatmap depicts the expression distribution of these seven

genes in the bulk RNA of IA.
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FIGURE 6 | Construction of the protein–protein interaction network and hub gene screening. (A) TF-mRNA protein–protein interaction network in

monocytes/macrophages. The red circles denote the RUNX1 and target genes. (B) Intersection analysis of the seven genes screened using the SVM–RFE model, and

these five regions of interest yielded the hub gene RUNX1. (C) Sub-protein–protein interaction network showing that NFKB1, which is regulated by RUNX1, is the hub

gene in this PPI network. (D) Gene Set Enrichment Analysis of RUNX1 at the single-cell level.

samples with upregulated RUNX1 expression, nonalcoholic
fatty liver disease, oxidative phosphorylation, RUNX1 regulates
the transcription of genes involved in the differentiation of
HSCs and those involved in megakaryocyte differentiation, and
platelet function pathway RUNX1 regulates genes involved in

megakaryocyte differentiation and platelet function. Therefore,
RUNX1 plays a complex role in IA progression. Further, it
might be involved in IA progression via the regulation of HSC
differentiation and platelet production andmight play a potential
regulatory role in oxidative phosphorylation.
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FIGURE 7 | RUNX1 GSEA at the bulk RNA level.

DISCUSSION

From cellular data, it is evident that RUNX1 contributes
to the development of IA via its role in regulating
NFKB1 in monocytes/macrophages within the hypertensive
microenvironment. GSEA revealed that RUNX1 was associated
with IA progression by regulating hematopoietic stem cell
differentiation and platelet production.

In this study, scRNA-seq data were used to examine the
transcriptional patterns of IA at the single-cell level. The risk
mRNAs of IA were screened, and predictive models were
established using the combined bulk RNA-seq data. Further, the
IA-related TF-gene regulatory network was constructed. RUNX1
was identified as the hub gene, and it regulated four genes. And
NFKB1 was found to be regulated by RUNX1. This finding was
consistent with that of previous studies showing that NF-κB was
involved in IA progression (44, 45). And we first identified the
mechanism at the single-cell level.

RUNX1 was significantly expressed in the IA group (P
< 0.001). GSEA revealed that phospholipase C-mediated

cascade FGFR4, dopaminergic neurogenesis, and RHO GTPases
activate PAKs were downregulated in monocytes/macrophages
cells where RUNX1 was upregulated. Thus, RUNX1 plays a
complex role in IA progression, possibly via the regulation of
hematopoietic stem cell differentiation and platelet production.
RUNX1 might be a hub gene between hypertension, IA,
and DEGs in monocytes. Previous studies have found that
RUNX1 is involved in hypertension progression to some
extent. Further, it is an important hematopoietic transcription
factor associated with thrombocytopenia and impaired platelet
activation response and is correlated with vascular disease
progression (46). RUNX1 is involved in endothelial cells and
hematopoietic processes, thereby affecting endothelial function
and inflammatory changes, and the abnormal expression of
RUNX1 can induce hypertension (47). An experimental study
has shown that the inhibition of RUNX1 expression decreases
pulmonary hypertension progression in mice (47). In addition,
it reduces vascular remodeling and macrophage recruitment,
which play essential roles in hypertension progression (48, 49).
Hypertension is a significant risk factor for IA progression.
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The role of RUNX1 identified in related studies may be
relevant to IA. RUNX1 is involved in regulating endothelial cell
function and is a key transcriptional regulator of the conversion
of endothelial to hematopoietic cells (47, 50). An early feature
of IA is endothelial cell dysfunction and degeneration (51). Lilly
et al. found that SOX7 interacted with RUNX1 at the protein
level and inhibited the transcriptional activity of RUNX1, thereby
regulating the conversion of endothelial to hematopoietic cells
and maintaining arterial endothelium stability (52). RUNX1 can
directly or indirectly regulate signal transduction pathways such
as the TGF-β signaling pathway and the Wnt signaling pathway
(53). TGF-β is associated with cerebral edema after subarachnoid
hemorrhage and can be used as a prognostic indicator (54).
Therefore, RUNX1 in the TGF-β signaling pathway may be
correlated with the progression and prognosis of IA. Based on the
functions played by RUNX1 in the progression of hypertension
and IA, we hypothesized that RUNX1 promotes hypertension
progression combined with IA.

A population-wide genomic study showed that NFKB1 is
a susceptibility gene for primary hypertension (54). NFKB1
is involved in hypertension progression by affecting vascular
endothelial function via the regulation of downstream NOS3
gene expression (55). It also promotes oxidative stress injury in
gestational hypertensive mice, which contributes to hypertension
pathogenesis (56–58). In addition, NF-κB is involved in the
IA progression via several pathways. The activation of NF-
κB in signaling pathways upregulates MCP-1 expression and
participates in the apoptotic process in vascular smooth muscle
cells. This phenomenon further reduces the elasticity of the
cerebral vascular wall, making it less able to adapt to altered
hemodynamics, promotes IA progression, and increases the risk
of rupture (59–61). NF-κB elevates the transcription of various
pro-inflammatory genes such as COX-2, CCL-2, MMP, and iNOS,
and the inflammatory response is involved in the progression
and rupture of IA (62, 63). Moreover, macrophage infiltration
and NF-κB activation are reduced if macrophages are specifically
absent or in the mutants of the NF-κB inhibitory protein. To
the best of our knowledge, this study first identified the role of
RUNX1 in monocytes/macrophages at the single-cell level in IA
progression among patients with hypertension via the regulation
of NFKB1.

The purpose of this study was to investigate the potential
mechanisms of IA induction by monocytes and macrophages
in the hypertensive microenvironment at the single-cell level
using bioinformatics. RUNX1 and its regulated NFKB1 were
identified as hub genes. RUNX1may play a role in the progression
of IA by regulating abnormalities in hematopoietic stem cell
differentiation and platelet production. Identification of these
two genes is an important step in understanding IA mechanisms
in patients with hypertension. Moreover, it can facilitate further
research about potential targets for preventing and reducing the
risk of IA in patients with hypertension. There was no single-
cell dataset available for IA assessment; therefore, the single-cell
dataset (GSE166676) for AAA assessment was used instead. The
dataset should be expanded in the future. Finally, neither cellular

nor animal tests were conducted to investigate the signaling

pathways of the identified hub genes. Further work is required
to corroborate these findings.

CONCLUSION

RUNX1 in monocytes/macrophages is associated with the
development of IA via the expression of NFKB1 among patients
with hypertension. This potential role can lay the foundation
for the further identification of molecular mechanisms
underlying IA progression in patients with hypertension
and can provide data about treatment targets in IA among
patients with hypertension.
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