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Abstract

Background—Previous studies of artificial intelligence (AI) applied to dermatology have shown 

AI to have higher diagnostic classification accuracy than expert dermatologists; however, these 

studies did not adequately assess clinically realistic scenarios, such as how AI systems behave 

when presented with images of disease categories that are not included in the training dataset or 

images drawn from statistical distributions with significant shifts from training distributions. We 

aimed to simulate these real-world scenarios and evaluate the effects of image source institution, 
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diagnoses outside of the training set, and other image artifacts on classification accuracy, with the 

goal of informing clinicians and regulatory agencies about safety and real-world accuracy.

Methods—We designed a large dermoscopic image classification challenge to quantify the 

performance of machine learning algorithms for the task of skin cancer classification from 

dermoscopic images, and how this performance is affected by shifts in statistical distributions 

of data, disease categories not represented in training datasets, and imaging or lesion artifacts. 

Factors that might be beneficial to performance, such as clinical metadata and external training 

data collected by challenge participants, were also evaluated. 25 331 training images collected 

from two datasets (in Vienna [HAM10000] and Barcelona [BCN20000]) between Jan 1, 2000, 

and Dec 31, 2018, across eight skin diseases, were provided to challenge participants to design 

appropriate algorithms. The trained algorithms were then tested for balanced accuracy against the 

HAM10000 and BCN20000 test datasets and data from countries not included in the training 

dataset (Turkey, New Zealand, Sweden, and Argentina). Test datasets contained images of all 

diagnostic categories available in training plus other diagnoses not included in training data 

(not trained category). We compared the performance of the algorithms against that of 18 

dermatologists in a simulated setting that reflected intended clinical use.

Findings—64 teams submitted 129 state-of-the-art algorithm predictions on a test set of 8238 

images. The best performing algorithm achieved 58·8% balanced accuracy on the BCN20000 

data, which was designed to better reflect realistic clinical scenarios, compared with 82·0% 

balanced accuracy on HAM10000, which was used in a previously published benchmark. Shifted 

statistical distributions and disease categories not included in training data contributed to decreases 

in accuracy. Image artifacts, including hair, pen markings, ulceration, and imaging source 

institution, decreased accuracy in a complex manner that varied based on the underlying diagnosis. 

When comparing algorithms to expert dermatologists (2460 ratings on 1269 images), algorithms 

performed better than experts in most categories, except for actinic keratoses (similar accuracy on 

average) and images from categories not included in training data (26% correct for experts vs 6% 

correct for algorithms, p<0·0001). For the top 25 submitted algorithms, 47·1% of the images from 

categories not included in training data were misclassified as malignant diagnoses, which would 

lead to a substantial number of unnecessary biopsies if current state-of-the-art AI technologies 

were clinically deployed.

Interpretation—We have identified specific deficiencies and safety issues in AI diagnostic 

systems for skin cancer that should be addressed in future diagnostic evaluation protocols to 

improve safety and reliability in clinical practice.

Funding—Melanoma Research Alliance and La Marató de TV3.

Introduction

Melanoma has the highest mortality rate of all skin cancers, with about 220 000 cases and 

37 000 deaths reported annually in the USA and Europe combined.1 Early detection of 

melanoma and other skin tumours is the most important predictor for survival.2,3 Diagnosis 

of skin cancer requires sufficient expertise and proper equipment for adequate accuracy. For 

expert dermatologists, the accuracy of melanoma diagnosis is about 71% with naked-eye 

inspection, and 90% using a dermatoscope, which is a magnifying lens with either liquid 

emulsion or cross-polarisation filters to eliminate surface reflectance of skin.4,5 However, 
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there is a global shortage of expert dermatologists: in Spain, there are 3·27 dermatologists 

per 100 000 citizens, 6·6 in Germany, 0·55 in the UK, and 0·33 in the USA.6

Because of this shortage of expertise, efforts have focused on scaling expertise by 

developing tools for automated assessment. The International Skin Imaging Collaboration 

(ISIC) Archive has collated the largest public repository of dermoscopic image datasets 

to support this continued research effort, facilitating 5 years of public challenges to use 

artificial intelligence (AI) to detect skin cancer.7–12 Several articles have reported the 

development of AI systems with diagnostic accuracy superior to expert dermatologists in 

controlled experiments.9,13–17

Although tremendous technical progress has been achieved, there are still important 

deficiencies that remain to be addressed before clinical deployment. For example, external 

validation studies with shifted statistical distribution that is more reflective of real-world 

clinical application have not been performed, even for algorithms that are already available 

for use in clinical practice.9,17,18 In addition, current AI systems are unable to communicate 

what they do not know. For example, when shown an image of a disease not represented in 

the training data, the system cannot flag it as a category on which it was not trained, and 

will instead classify it as one of the conditions it was trained to identify.19,20 Finally, most 

previous work on this topic has involved studying system performance on only standardised 

image data or without correlation to performance of dermatologists.9,21–23

We aimed to create the largest public dataset in this domain, the BCN20000 dataset, 

to design a skin cancer recognition challenge that rigorously evaluates the effects to AI 

performance of statistical imbalances, images from categories not trained (NT), and clinical 

data of varying quality, and allows us to analyse the effect of these factors on performance. 

The public challenge approach was chosen to explore the current state-of-the-art algorithms 

in skin cancer diagnosis through AI. We investigated the accuracy (1) of state-of-the-art 

classification methods on datasets specifically designed to better reflect clinical realities 

than previous studies; (2) of algorithms specifically designed to fail safely by flagging not 

trained categories; (3) and of algorithms as related to real-world clinically unusual features 

and other imaging artifacts, such as variations in lighting conditions, clinical markings on 

the skin, or hair occluding visualisation of the lesion. We also tested the algorithms against 

dermatologists.

Methods

Study design

We designed a large image classification challenge, the ISIC challenge, to quantify the 

performance of machine learning algorithms for the task of skin cancer classification from 

dermoscopic images. The challenge was hosted online using the Covalic platform, where 

challenge participants could upload their algorithm’s diagnostic predictions for each image 

in the test dataset.

Invitations for submissions were solicited from around the world; calls for submissions were 

sent via email to ISIC subscribers and the challenge was publicised on social media and at 
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academic conferences. Challenge participants were permitted to form teams, and allowed to 

submit diagnostic predictions from up to three distinct algorithms. Unlimited submissions 

were allowed per algorithm, but only the most recent submission was scored. Further details 

of the challenge can be found online.

We divided the challenge into two tasks: (1) skin cancer classification from dermoscopic 

images and (2) skin cancer classification from dermoscopic images and metadata.24 In both 

tasks, algorithms were tested on their ability to recognise the eight trained categories, as well 

as whether they were able to fail safely by correctly identifying diagnostic categories on 

which they were not trained. To improve the reproducibility of successful algorithms, each 

team in the challenge was required to submit a manuscript detailing the methods used for 

image classification.25

The study protocol was approved by the ethics review boards of the University of 

Queensland, Memorial Sloan Kettering Cancer Center, the Medical University of Vienna, 

and the Hospital Clinic of Barcelona. At all contributing institutions, written informed 

consent for retrospectively collected dermoscopic images was waived by the ethics review 

due to the deidentified nature of the images.

Datasets

Dermoscopic images of skin lesions were obtained from skin cancer surveillance clinics 

around the world, with photographs captured between Jan 1, 2000, and Dec 31, 2018. Each 

image was paired with metadata regarding the age and sex of the patient, the anatomical 

location of the lesion, and a lesion identifier. Multiple images acquired from different 

photographic equipment or on different dates were allowed for a given lesion, mimicking 

true clinical practice. Lesions were partitioned between training and test sets, balanced by 

source and diagnostic category in the training dataset.

The training dataset contained 25 331 images, which was composed of data from 

the Medical University of Vienna (HAM10000)26 and Hospital Clinic Barcelona 

(BCN20000).7,27–29 HAM10000 was used as the benchmark for a previous ISIC challenge 

in 2018.8,9 All datasets included labels specifying the clinic that data were acquired from, 

which is henceforth referred to as the source institution.26

An independent, unbalanced, validation dataset of 100 randomly selected dermoscopic 

images captured between Jan 1, 2000, and Dec 31, 2018 from the Medical University of 

Vienna was available to challenge participants.9 These images were not included in the 

training or test datasets and were provided to challenge participants to validate and debug 

their algorithm submissions, but the validation dataset was not used for evaluation or further 

assessments.

The test dataset included 8238 images retrospectively collected from the Hospital Clinic 

Barcelona (BCN) and the Medical University of Vienna (HAM). Images from Turkey, New 

Zealand, Sweden, and Argentina were also included. Patient images were not individually 

labelled for ethnicity, skin tone, or nationality.9 The test dataset contained all diagnostic 

categories available in training, as well as other diagnoses not included in training data, 
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which were grouped into a single category referred to as NT. Although test data were 

acquired at centres that also contributed training data, there was no image or lesion overlap 

between training and testing datasets. Further dataset details and distributions are available 

in the appendix (p 2).

Diagnostic labels

The training and test datasets contained images of nevi, melanoma, benign keratosis, 

dermatofibroma, basal cell carcinoma, squamous cell carcinoma including Bowen’s disease, 

vascular lesions, and actinic keratosis. Borderline melanocytic lesions were excluded. 

Participants were challenged to classify untrained images into a ninth category in the test 

dataset, labelled NT, which refers to diagnostic classes that were not included in the training 

data. We generated ground truth diagnostic labels through review of histopathology for 

all malignant and biopsied lesions and unanimous expert consensus (at least three experts 

defined as board certified dermatologists from Memorial Sloan Kettering Cancer Center, 

Medical University of Vienna, or Hospital Clinic Barcelona; VR, CC, MAM, SPo, SPu, JM, 

PT, and HK), digital monitoring, or confocal microscopy for unbiopsied benign lesions.7,8 

For the BCN dataset, we conducted these reviews. For HAM, we used published data.26

Additional labels

In addition to the labels provided as training and testing metadata, geographical 

characteristics and the source institution were obtained by the researchers of this study 

for the purposes of this analysis. The source institution represents alternate statistical 

distributions and photographic acquisition differences.26 Furthermore, quantified imaging 

features (such as pigmentation) and lesion artifacts (such as the presence of ulceration, 

crust, pigmentation, hair, or pen marks) were manually annotated. Paid medical student 

research fellows at Memorial Sloan Kettering Cancer Center and Hospital Clinic Barcelona 

used in-house annotation software to annotate the presence or absence of ulceration, crust, 

pigmentation, hair, or pen using active learning techniques.9,21,27,30 Pigmentation was 

defined as a brown pigment in the lesion area, crust was defined as keratinaceous crust 

or scale over the lesion area, and ulceration was a defect in the epidermal surface (such as 

an erosion or ulcer). Hair was defined as having vellus or terminal hairs over the lesion of 

interest, and pen markings could be anywhere in the image.

Algorithm evaluation

Challenge participants submitted a comma-separated value file to the online submission and 

scoring system (Covalic) containing the diagnostic predictions for each image in the test 

dataset. Diagnosis confidences were expressed as floating-point values in the closed interval 

(0·0, 1·0).

Algorithms were ranked according to balanced multiclass accuracy (mean recall across 

classes after mutually exclusive classification decisions), which has the advantage of 

balancing for the prevalence of malignant diagnoses, especially melanoma, as compared 

to standard accuracy.7 Algorithms’ balanced accuracy performance was compared between 

data subsets using Bonferroni-adjusted paired t tests. The level of significance for all 

hypothesis tests was 0·05. Paired Student’s t test was used because algorithms were 
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evaluated on the same images. Confusion matrices and area under the receiver operating 

characteristic curve (AUROC), were also calculated and compared with imaging and lesion 

factors that each influence diagnostic accuracy (using algorithm identifiers as group labels 

with an exchangeable covariance matrix). Matrices are separated into nine diagnostic groups 

for each ground truth annotation, with aggregate statistics shown in the first row of each 

group (the reference row), and stratifications shown across subsequent rows. Values of the 

matrix convey the proportion of images with given ground truth labels (specified by group) 

that were assigned a particular prediction by algorithms (specified by the columns) on 

average across the top 25 algorithms.

Statistical analyses were performed using pandas, matplotlib, scipy, numpy, and statsmodels 

Python packages.31–34

Expert reader study

We compared the performance of the algorithms against that of dermatologists in 

a simulated setting that reflected intended clinical use. 18 expert board-certified 

dermatologists from around the world (with at least 2 years of active daily use of 

dermoscopy) classified images selected from a pool of 1269 images from the test set. To 

perform assessment, these experts (henceforth referred to as expert readers) used a custom 

platform, DermaChallenge, created by the Medical University of Vienna.8,13,32,35 Expert 

readers were first given three training levels of 30 images each from the training dataset 

to practise, before classifying images from the nine diagnostic categories (including NT) in 

groups of 30 images at a time. To compare performance between expert readers and the 

algorithms, a summary sAUROC metric was used and implemented in R.36

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report.

Results

169 algorithms were submitted by 64 teams, divided into the image-only task (129 

submissions from 64 teams) and the combined image and metadata task (40 submissions 

from 16 teams). The top two performing algorithms used ensembles of the EfficientNet 

architecture,37–39 and the third-place team used ensembles of the ResNet architecture.37 The 

top performing algorithm achieved 63·6% overall balanced accuracy.

The balanced algorithm accuracy on the HAM dataset partition—which is an earlier 

benchmark that is less reflective of image quality variations seen in practice—was 

significantly better than the BCN images, even without considering the impact of the NT 

category, on which all algorithms performed poorly (figure 1). Balanced accuracy of the best 

algorithm reduced by 23·2% (from 82·0% to 58·8%) when comparing the HAM dataset to 

the new images in BCN. For mean AUROC, this decrease was 0·075 (from 0·981 in HAM 

to 0·907 in BCN). Across all algorithms, the mean decrease in balanced accuracy between 

dataset partitions was 22·3% (SD 8·6; p<0·0001).
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The use of auxiliary metadata (such as the lesion anatomic location, patient sex, and age) 

slightly improved mean algorithm accuracy from 50% (SD 15) to 56% (7; figure 1).

Across all methods, the algorithms’ ability to flag the NT category was impaired relative 

to the algorithms’ ability to classify diagnoses included in the training data (figure 2). On 

average across the top 25 teams, only 11% of the NT predictions were correct, which was 

similar to random chance (1 in 9). Most of the benign NT disease states were misclassified 

as basal cell carcinoma (32·4% on average across the top 25 algorithms), with another 7·8% 

misclassified as melanoma, and another 6·9% misclassified as squamous cell carcinoma.

The best performing team approached the NT class by training a model on external data 

they obtained themselves, including healthy skin, warts, cysts, and benign alterations. Other 

approaches used by challenge participants included direct 8-class models allowing the image 

not to belong to any class, and Shannon entropy estimation.40 Despite these attempts, the top 

algorithm estimated only 1·6% of the NT class correctly (appendix p 6).

A confusion matrix as a function of diagnosis for the top 25 algorithms (additionally 

stratified according to image artifacts, anatomic site, and source institution) is shown in 

figure 2. The proportional representation of each category is provided in the appendix (p 3).

The influence of quantified image artifacts (such as crust, hair, or pen marks), on diagnostic 

accuracy is shown in subsequent rows of figure 2 across the top 25 algorithms. Diagnoses 

that do not frequently present with crust (such as vascular lesions, dermatofibromas, and 

nevi) were frequently miscategorised by the algorithms when crust was present. Presence of 

hair did not affect misclassification; except for actinic keratosis, where only 36% of actinic 

keratosis with hair present in the image were correctly classified (vs 56% without hair). 

Typically, pigmented lesions, such as nevi and melanomas, were frequently misclassified 

as basal cell carcinomas when they were non-pigmented (24% and 27% of the time, 

respectively). Typical pigmented lesions, such as nevi (83% correct when pigmented) and 

melanomas (71% correct when pigmented), had decreased accuracy when non-pigmented 

(35% for nevi and 46% for melanomas). When non-pigmented, nevi and melanoma were 

frequently misclassified as basal cell carcinomas (24% and 27% of the time, respectively).

When we measured the impact of anatomical site on algorithm performance, lesions 

from the head and neck anatomical regions were frequently misclassified among nevi, 

vascular proliferations, and dermatofibromas. This finding could be a result of differences in 

dermoscopic patterns on skin from chronic sun damage due to their location in sun-exposed 

areas on the body. Regarding the impact of different image source institutions, the top 25 

algorithms correctly diagnosed 99·0% of nevi correctly from s_HAM_molemax; however, 

no algorithms correctly identified melanoma from that same source. On average, the top 25 

algorithms correctly identified 75·0% of melanomas from s_HAM_external. This disparity 

in diagnostic performance between image sources probably reflects the varied underlying 

distributions of melanomas and nevi in the datasets (appendix p 3).

The NT category was divided into five subcategories for the purpose of analysis, including 

scar, benign neoplasm (eg, onychomatricoma), normal variant (including hyperpigmentation 

and hypomelanosis), inflammatory disease (including eczema and psoriasis), and infectious 
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disease (appendix p 3). Figure 3 presents a confusion matrix between these subcategories 

and other diagnostic categories included in the training data, averaged across the top 25 

algorithms. Lesions that are predominantly pink, such as scars, inflammatory lesions, and 

benign neoplasms, were commonly misdiagnosed as basal cell carcinoma (which are also 

pink in colour).

We used an online interactive reader platform (DermaChallenge) to evaluate the diagnostic 

performance of expert readers as compared with the algorithm submissions. 82 tests of 

30 images were performed (baseline distribution, table 1), each reflecting the overall 

distribution in the test set. This distribution was not known to the expert readers at the 

time of the study. We received 2460 ratings on 1269 images in rounds of 30 images each. 

(table 2, figure 4). The receiver operating characteristic curve analysis showed that the 

performance of the top three algorithms for malignancy was superior to that of expert 

readers, except for the NT category (figure 4). The top experts still outperformed the top 

three algorithms for malignancy; however, on average, experts did not outperform the top 

three algorithms. For the actinic keratosis diagnosis, expert readers demonstrated lower 

accuracy than the top three algorithms (43% vs 83%) but performed similarly (43% vs 
44%) to the algorithms on average (table 2). The top three algorithms had better diagnostic 

accuracy than expert readers did on basal cell carcinomas (91% vs 70%), dermatofibromas 

(73% vs 50%), and nevi (76% vs 56%). Although the NT class was challenging for experts 

and for the algorithms, expert readers performed significantly better than all algorithms in 

terms of sensitivity and summary AUROC (26% correct classification vs 6%, p<0·0001).

Discussion

Our image classification challenge and analysis shows that, when compared with a 

previously published, well controlled benchmark (HAM10000), the balanced, multiclass 

accuracy of state-of-the-art image classification methods decreases by more than 20% on 

datasets specifically designed to better reflect clinical realities. Overall, a balanced accuracy 

of 63·6% for the top algorithm is a notable decrease in performance when compared with 

the previous benchmark of 86·1%.9 We simulated intended clinical use by including images 

that were of varying quality, were from different source institutions, contained diagnostic 

categories that were not captured in the training dataset, and contained quantified imaging 

artifacts across both train and test datasets, all of which were found to contribute to 

performance degradation. Algorithms specifically designed to fail safely by flagging images 

outside its area of expertise were unable to complete this task. These findings highlight the 

poor generalisability of current state-of-the-art algorithms, and a potentially serious safety 

issue for clinical deployment, despite previously reported high AUROCs for malignancy on 

well controlled datasets.

The poor performance of algorithms on the NT category has significant implications for 

clinical practice. The NT class was diagnosed correctly only 11% of the time across the top 

25 algorithms. The NT category, which primarily comprised benign inflammatory diagnoses 

and scars, was confused for malignancy 47% of the time by the top 25 algorithms. NT 

images were most commonly confused for basal cell carcinoma, probably due to the pink 

colour of basal cell carcinomas and most lesions in the NT category. This leads to concerns 
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for clinical implementation, as 47% of benign NT lesions might have been biopsied if 

biopsy decisions were predicated upon an automated classification system for skin lesions. 

In addition, false-positive malignancy predictions will contribute to patient anxiety and 

concern. Although the NT category was also challenging for expert clinician readers, readers 

performed significantly better than the algorithms (26% vs 6% correct, p<0·0001), on 

average.

Melanomas, benign keratoses, and actinic keratoses were frequently confused for one 

another. Clinically unusual features decreased the accuracy of algorithms’ predictions 

compared with images without those features, such as the decrease seen between pigmented 

versus non-pigmented nevi (83% correct vs 35% correct) and melanomas (71% correct 

vs 46% correct). Source institution was also found to influence classification errors, 

highlighting the challenges of algorithm generalisation.

These results highlight that algorithms should be tested on both usual and unusual 

types of lesions and imaging attributes, and the need for algorithms with a robust 

capability to identify images outside of its training distributions. Caution should be used 

when considering the implementation of automated classification predictions into clinical 

workflows, especially in clinically unusual representations (such as nevi with crust, which 

were correctly classified in only 34·7% of cases). Careful analysis of the distribution of 

algorithm performance on test data according to various characteristics, such as image 

source, anatomical site, image attributes, and clinical features, will help stakeholders to 

understand how to deploy algorithms in prospective studies.

The results from our comparison of board-certified dermatologists against AI challenge 

submissions are consistent with previous reports. On average, the algorithms achieved 

higher accuracy than most expert readers (apart from the top experts who outperformed 

the algorithms for malignancy). However, to our knowledge this study is the first to 

identify a group of lesions, the NT categories, for which expert readers outperformed the 

automated approaches. This result exposes concerning safety issues around the deployment 

of automated algorithms in clinical settings, and the need to design better methods to 

identify images outside of an algorithm’s area of expertise to avoid unnecessary biopsies or 

missed melanomas—both of which would have occurred if the algorithms tested in this work 

were deployed.

This analysis has several limitations. First, providing metadata improved algorithm 

predictions, but the effect size was small. This small effect size is probably due to the 

scarce metadata that were available for incorporation into the images. For example, it 

might be possible for age to be derived from the amount of sun damage visible on the 

background skin. Future efforts could review a more expansive list of metadata features 

to more deeply evaluate this impact. Second, the utility of this work is restricted by the 

retrospective nature of image collection, the scarce diversity in ethnicities (as presumed 

from clinic locations), the absence of skin tone labelling of patient images, and that the 

expert reader study was conducted on static images that do not mimic a clinical setting. 

We also included multiple lesion timepoints, which highlights the difficulty of gold standard 

labelling of melanomas that develop from benign neoplasms. Future work could investigate 
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this transition to improve AI detection. Third, we tested algorithms against scenarios and 

statistical shifts that are highly dependent on the training dataset. Although the specific 

decreases in performance we report might not be generalisable to other applications and 

training distributions, the considerations outlined, the image artifacts that are found to 

impact accuracy, and the algorithm failure on images have not been trained to recognise 

should be considered for all applications. There is increasing evidence that human–computer 

interaction might improve upon the accuracy of humans or AI alone.15 Further work would 

benefit from a prospective approach to dataset design, and closely supervised trials of 

automated approaches with clinicians in clinical practice.

In summary, this large dermoscopic image classification challenge showed that the 

accuracy of state-of-the-art classification methods decreases by more than 20% on datasets 

specifically designed to better reflect clinical realities, as compared with a previous, well 

controlled benchmark. Quantified imaging artifacts contained in both training and testing 

datasets were found to decrease accuracy when accuracy was stratified by artifacts and 

disease conditions. In addition, algorithms specifically designed to fail safely by flagging 

images outside their training data performed worse than expert readers. These results 

highlight potentially serious safety issues for clinical deployment, despite previous well 

controlled datasets reporting high AUROCs for diagnoses such as malignancy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

We searched arXiv and PubMed Central for articles published in English between Jan 

1, 2002, and Feb 28, 2021, using the search terms “melanoma diagnosis” or “melanoma 

detection”. Our search returned more than 60 000 articles, of which 30 were relevant 

to this topic. The summary estimate of the accuracy of machine learning algorithms 

reported for melanoma detection had consistently exceeded that of human experts since 

2018. We found no study that evaluated algorithm performance across a range of image 

artifacts and source institutions. Although there were studies that evaluated algorithm 

performance on untrained diagnostic classes, none systematically evaluated the errors 

that algorithms are prone to make on untrained images or images with artifacts. We found 

many studies that were susceptible to biases, such as selection and labelling, and many 

did not include publicly available data.

Added value of this study

This study provides an analysis of state-of-the-art deep learning algorithms. Using 

algorithms submitted via the 2019 International Skin Imaging Collaboration Grand 

Challenge, we assessed the effect on diagnostic accuracy of alternate statistical 

distributions of data (via different image sources), disease categories not represented 

in training datasets, imaging or lesion artifacts, and factors that might be beneficial to 

performance (such as clinical metadata and external training data). Although algorithms 

continued to outperform expert readers on melanoma detection, shifted statistical 

distributions and disease categories not included in training data contributed to decreases 

in algorithm accuracy. For automated methods, around 50% of the images from 

categories not included in the training data were misclassified as malignant diagnoses, 

which would lead to a substantial number of unnecessary biopsies if clinically deployed.

Implications of all the available evidence

We have identified specific deficiencies and safety issues in AI dermatological diagnostic 

systems that should be addressed in future diagnostic evaluation protocols to improve 

safety and reliability before clinical implementation. These findings advance existing 

evidence as they highlight the effects of image artifacts, image source institution, and 

underlying training distributions and diagnostic classes on algorithm performance. This 

work advocates for future funding and research devoted to accurate benchmarking and 

predeployment testing that mimics clinical scenarios.
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Figure 1: Algorithm accuracy across all submissions, by dataset, metadata use, and diagnostic 
class
(A) Boxplot and table showing median (IQR) for balanced accuracy across all participant 

submissions for each test set partition (p<0·001 for all comparisons).

(B) Boxplot of diagnosis-specific balanced accuracies for each diagnostic class.

(C) Comparison of balanced accuracy over all submissions with and without clinical 

metadata. AK=actinic keratosis. BCC=basal cell carcinoma. BCN=Hospital Clinic 

Barcelona. BKL=benign keratosis. DF=dermatofibroma. HAM=Medical University of 
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Vienna. MEL=melanoma. NT=not trained. NV=nevi. SCC=squamous cell carcinoma. 

VASC=vascular lesions.
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Figure 2: Confusion matrix, separated into nine groups for each diagnostic category in the test 
set
Values represent the proportion of images in the test set given a classification specified 

by columns, on average for the top 25 algorithms. The reference row of each group 

shows the aggregate values for each diagnosis. Subsequent rows include stratifications 

across artifacts (ie, crust, hair, pen marks), anatomical site, and source institution. Upper 

extremity refers to arms and feet (not palms or soles). Lower extremity refers to legs 

(not palms or soles). AK=actinic keratosis. BCC=basal cell carcinoma. BCN=Hospital 

Clinic Barcelona. BKL=benign keratosis. DF=dermatofibroma. HAM=Medical University 

of Vienna. MEL=melanoma. NT=not trained. NV=nevi. SCC=squamous cell carcinoma. 

VASC=vascular lesion.
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Figure 3: Confusion matrix of the diagnoses comprising the NT category
The confusion matrix shows which of the other categories included in training the diagnoses 

were confused for, measured across the top 25 algorithms. AK=actinic keratosis. BCC=basal 

cell carcinoma. BKL=benign keratosis. DF=dermatofibroma. MEL=melanoma. NT=not 

trained. NV=nevi. SCC=squamous cell carcinoma. VASC=vascular lesion.
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Figure 4: Receiver operating characteristic curves for the expert readers on grouped malignant 
diagnoses (A) and NT class (B) as compared with the top three algorithms
Crosses represent the average sensitivity and specificity of the readers, with the length 

of the bars corresponding to the 95% CI. AI=artificial intelligence. NT=not trained. 

SROC=summary receiver operating characteristic curve.

Combalia et al. Page 20

Lancet Digit Health. Author manuscript; available in PMC 2022 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Combalia et al. Page 21

Table 1:

Goal distribution of diagnoses included in a set of 30 images in the reader study

Goal number

Actinic keratosis 1

Basal cell carcinoma 6

Benign keratosis 3

Dermatofibroma 1

Melanoma 1

Not trained 5

Nevi 8

Squamous cell carcinoma 1

Vascular lesion 1
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Table 2:

Summary of reader accuracy versus that of automated classifiers

Readers All algorithms Top 3 algorithms

AK* 0·43 (0·23–0·63) 0·44 (0·42–0·46) 0·83 (0·77–0·89)

BCC* 0·70 (0·61–0·79) 0·80 (0·77–0·82) 0·91 (0·88–0·95)

BKL 0·48 (0·36–0·60) 0·37 (0·35–0·39) 0·43 (0·37–0·50)

DF* 0·50 (0·30–0·71) 0·33 (0·30–0·36) 0·73 (0·50–0·95)

MEL 0·62 (0·53–0·71) 0·58 (0·56–0·60) 0·70 (0·64–0·77)

NV* 0·56 (0·46–0·66) 0·76 (0·74–0·79) 0·76 (0·74–0·77)

NT† 0·26 (0·17–0·35) 0·06 (0·05–0·08) 0·01 (0·01–0·02)

SCC 0·65 (0·46–0·83) 0·31 (0·29–0·33) 0·62 (0·55–0·69)

VASC 0·83 (0·68–0·97) 0·46 (0·43–0·49) 0·79 (0·66–0·92)

Data are accuracy of mean count (95% CI). Mean count of correct reader classifications in batches of 30 lesions was 15·7 (95% CI 14·46–16·94). 
Mean count of correct algorithm (best) classifications in batches of 30 lesions was 18·95 (18·20–19·70). AK=actinic keratosis. BCC=basal 
cell carcinoma. BKL=benign keratosis. DF=dermatofibroma. MEL=melanoma. NT=not trained. NV=nevi. SCC=squamous cell carcinoma. 
VASC=vascular lesion.

*
Top three algorithms (average) performed >20% better than readers.

†
Readers performed ≥20% better than algorithms.
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